
Integrating Answer Set Programming
with Object-oriented Languages?

Jakob Rath and Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

jakob.rath@student.tuwien.ac.at, redl@kr.tuwien.ac.at

Abstract. Answer Set Programming (ASP) is a declarative programming para-
digm which allows for easy modeling and solving of hard problems that are often
cumbersome to implement in object-oriented programming languages. It was
successfully applied to a range of applications from artificial intelligence, such as
combinatorial or scheduling problems. On the other hand, real-world applications
for end-users usually consist also of components which cannot be (easily) solved in
ASP, such as user interaction via graphical user interfaces, presentation of results,
and interfaces to data sources. Instead, realizing such components is typically in
the domain of traditional (object-oriented) programming languages. To address
this issue, we introduce a language which allows for a formal specification of the
input and output of an ASP program, which can be exploited to easily interface
the program from object-oriented languages using a dedicated library. While the
language is independent from the concrete object-oriented language, we also
provide and present a reference implementation as a Python library. We then
discuss some applications which can be realized on top of our approach.

Keywords: Answer Set Programming, Nonmonotonic Reasoning, Interface to Object-
oriented Languages

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm based on
nonmonotonic reasoning and a multi-model semantics [7]. The problem at hand is
encoded as an ASP program in such a way that its models, called answer sets, correspond
one-to-one to the solutions of the problem. Thanks to disjunction and default negation,
the formalism has a high expressiveness, and thanks to various language extensions
such as aggregates, many problems from artificial intelligence such as combinatorial and
scheduling problems can be encoded in ASP in an intuitive way. In contrast, solving such
problems in traditional object-oriented programming languages is often cumbersome as
an algorithm needs to be specified. ASP has also been successfully applied to various
real-world applications from industry, e.g. workforce management [12] and automatic
suggestion of holiday plans for tourists [9]; for further examples we refer to [8].

? This research has been supported by the Austrian Science Fund (FWF) project P27730.

However, typical applications for end-users also contain components which cannot
be (easily) solved in ASP, but their realization is rather in the domain of traditional object-
oriented languages. These components include, for instance, graphical user interfaces,
presentation of results, and interfaces to data sources. As a concrete example, consider
a packing problem which needs to be solved by employees of a logistics company,
such as to distribute a set of goods to a minimum number of trucks under given side
constraints. While the core problem is a typical use case for ASP, if it occurs as part of a
real application, data needs to be imported from databases, parameters need to be entered
by the user, and the results must be further processed by other system components, such
as for accounting purposes. In ASP, the input is specified via facts and the output is
presented as answer sets. However, since typical users of such an application are no
computer scientists and are not used to read and write formal notations, more appropriate
interfaces must be developed. Moreover, even if users are used to ASP programs, a
manual transfer of data between the ASP program and other components is cumbersome.
Instead, this should be transparent from the user. Hence, an interface between the ASP
program and other components is needed.

An ad hoc solution when developing an application is to implement such an interface
from scratch. To this end, facts are generated and piped to the ASP solver, which
computes its answer sets that are then parsed and transformed into objects. However,
while the details of generating facts and transforming the answer sets to objects depend
on the application, it seems that these steps are similar in most cases. This calls for a
generic interface which can be instantiated depending on the application at hand.

To address this issue, we present a language for ASP which allows the programmer
to annotate ASP programs with specifications of their input and output. Based on these
annotations, the ASP program can then be used from the object-oriented code similarly
to modules by sending input to it and retrieving its answer sets in form of objects. We
specify the language independently of the concrete object-oriented language and the
ASP solver at hand. Instead, the formalism can be instantiated for arbitrary languages
resp. solvers which provide a certain minimum set of features. However, we also provide
an implementation of this language for Python, using the DLVHEX solver [11] as solver
backend.

Unlike existing approaches such as JASP [4] and EmbASP [5], our system uses
annotations of the ASP program rather than embeddings of the ASP program into the
object-oriented code, and the input and output is specified in a language-independent
manner. This has the advantage that the program is more independent of the remaining
components of the application, which allows for easier adoption or integration into
multiple applications (which might even be implemented in different programming
languages), similarly to modules in software engineering. As a further difference to some
existing approaches such as [10], which modifies the ASP language by providing access
to objects defined in the object-oriented code, our language does not modify but rather
extend ASP in a conservative way using annotations, i.e., all annotated programs in our
system are still ordinary ASP programs and can also be used independently.

The structure of the remaining part of the paper is as follows:

– In Section 2 we recapitulate the syntax and semantics of ASP.
– In Section 3 we introduce the language for specifying the input and output of ASP

programs and illustrate it with examples.

– In Section 4 we present our prototypical implementation PY-ASPIO (ASP Interface
to Object-oriented programs) in Python.

– In Section 5 we discuss possible real-world applications in more detail.
– In Section 6 we discuss related work and point out differences to ours.
– In Section 7 we conclude and give an outlook on possible future work.

2 Preliminaries

We briefly recapitulate Answer Set Programming (ASP) [7], and refer to [1] for a more
in-depth overview of the field of ASP. Our alphabet consists of possibly infinite sets
of constant symbols C (including all integers), variables V , function symbols F , and
predicate symbols P . We assume that V is disjoint from all other sets, while symbols
may be shared between the other sets. We let the set of terms T be the least set such that
C ⊆T , V ⊆T , and f ∈F , T1, . . . ,T` ∈T implies f (T1, . . . ,T`) ∈T . An (ordinary)
atom is of form p(t1, . . . , t`) with predicate symbol p ∈P and terms t1, . . . , t` ∈ T ,
abbreviated as p(t); we write t ∈ t if t = ti for some 1 ≤ i ≤ `. A term resp. atom is
called ground if it does not contain variables. A (default) literal is either an atom a or a
default-negated atom nota.

Definition 1. An answer set program P consists of rules

a1∨·· ·∨ak← b1, . . . ,bm,not bm+1, . . . ,not bn , (1)

where each ai and each b j is an atom. A non-disjunctive rule with empty body (i.e., k = 1
and n = 0) is called a fact.

For such a rule r we let H(r) = {a1, . . . ,ak} be its head, B+(r) = {b1, . . . ,bm} be its
positive body and B−(r) = {bm+1, . . . ,bn} be its negative body. A rule resp. program is
ground if it contains only ground atoms.

An interpretation I is a subset of the set of atoms A(P) occurring in the ground
program P at hand, where a ∈ I, also denoted I |= a, expresses that a is true and a 6∈ I,
also denoted I 6|= a, that a is false. Conversely, a negated literal nota is satisfied under I,
denoted I |= nota, if I 6|= a, and it is unsatisfied, denoted I 6|= nota, otherwise. A ground
rule r of form (1) is satisfied under I, denoted I |= r, if ai ∈ I for some 1≤ i≤ k, or bi 6∈ I
for some 1≤ i≤ m, or bi ∈ I for some m+1≤ i≤ n. A ground program P is satisfied
under I, denoted I |= P, if each r ∈ P is satisfied under I. A set of literals L is satisfied
under I, denoted I |= L, if I |= l for all l ∈ S.

The answer sets of a ground program P are defined using the (GL-)reduct [7]
PI = {H(r)← B+(r) | r ∈ P, I 6|= b for all b ∈ B−(r)} of P wrt. an interpretation I.

Definition 2. An interpretation I is an answer set of a ground program P, if I is a
⊆-minimal model of PI .

Example 1. Consider the program P = {a← notb; b← nota}. Its answer sets are
I1 = {a} and I2 = {b}. 2

We let AS(P) be the set of answer sets of P. The answer sets of a program P with
variables are given by the answer sets of its grounding grnd(P), which results from P if
all variables are replaced by all terms in all possible ways. Throughout the rest of the
paper we assume that suitable safety conditions on P guarantee that grnd(P) is finite.

3 Specifying the External Interface of ASP Programs

In this section we present a language which allows for specifying the interfaces of
ASP programs in order to use them from object-oriented code. It comprises of the
input specification, which declares what input arguments are expected and how they are
mapped to ASP facts, and the output specification, which defines how the answer sets
are mapped back to objects. The language is realized by conservative annotations added
to the program, while the rules remain in ordinary ASP syntax and thus can also be used
stand-alone. Each program has exactly one input and exactly one output specification.

In view of the implementation (cf. Section 4), such an ASP program can then be
interfaced from the object-oriented program using a library, which receives the ASP
program and input arguments as parameters. It then evaluates the ASP program under
the given input and returns its results as objects generated from its answer sets. This is
described by

O = eval(P,v1, . . . ,vn),

where P is an ASP program, v1, . . . ,vn are input arguments, and O is a set of objects
corresponding one-to-one to the answer sets (which in turn correspond to the solutions to
the problem at hand). The object-oriented code can then process these objects in a loop.

Internally, the evaluation of an ASP program from object-oriented code with given
input arguments consists of three steps:

1. Facts are generated from the input arguments according to the input specification.
2. These facts along with the original ASP program are passed to the ASP solver.
3. The answer sets are transformed into objects according to the output specification.

The exact transformation performed by eval will be described in the rest of this
section. However, we first make some assumptions about the object-oriented language at
hand. This is in order to allow for instantiating the approach also for arbitrary program-
ming languages which provide the following minimum set of features (while we provide
a reference implementation for Python, cf. Section 4).

3.1 The Object-oriented Language

Most importantly, our system assumes the language to be object-oriented. Data is
organized in classes, which, for the purposes of this paper, are definitions of structures
with named attributes and methods. An object is an instance of a class which assigns
certain values to its attributes and is accessible via a variable in the object-oriented code.
For an object x we let x.attr be the value of the attribute attr.

The language must provide at least the classes str and int with the usual functionality
for representing character strings and integers, respectively. Moreover, classes that are to
be used during input mapping are required to provide a toString method which returns a
string representation of the object at hand, that can be used as an ASP constant.

Furthermore, the following collection types are required, i.e., types that allow for
storing (ordered or unordered) groups of objects. For these collection types we allow
type parameters T specified in angle brackets; that is, the type of objects which can be
stored in the respective collection is constrained by this parameter.

– Set〈T 〉: a collection of unique objects of type T .
– Dictionary〈K,V 〉: a mapping from objects of type K (the keys) to objects of type V

(the values).
– Tuple〈T1, . . . ,Tn〉: an ordered list of fixed length n, where the component at position i

is of type Ti for 1≤ i≤ n.
– Sequence〈T 〉: a finite ordered sequence containing objects of type T , where elements

are addressable by an integer index.

For a collection object x of type Tuple or a Sequence, let x[i] for i ∈N be its i-th element.

3.2 Input Specification

We now describe our language for specifying the input of an ASP program. The input
specification defines the expected arguments and how they are mapped to ASP facts.
Before we introduce the language for the general case, we show an intuitive example.

Example 2. Assume we have a graph represented by a set of instances of the class Node.
The attribute label of this class is a unique string identifying the node, and the attribute
neighbors is a list containing the neighbor nodes. The following input specification
takes such a set of nodes as input and maps it to the two predicates vertex and edge:

1 INPUT (Set<Node> nodes) {
2 vertex(n.label) for n in nodes;
3 edge(n.label, m.label) for n in nodes for m in n.neighbors; }

More precisely, the input of the ASP program is a set of nodes, given as an in-
stance of class Set<Node>, where Node is a custom class defined in the object-
oriented code. Given this input, line 2 defines the predicate vertex by generating a
fact vertex(n.label) for every object n in the set nodes.

Similarly, line 3 defines the predicate edge from the adjacency lists of the nodes.
To this end, the loop-like construct iterates over the nodes and for each node over
its (attribute) neighbors. Multiple iterations are evaluated from left to right, i.e.,
variables bound in an iteration are available in all iterations to the right, and in the
predicate arguments. The outer loop iterates over all nodes, and, for each node, the inner
loop over its neighbors. 2

Definition of the Language. In general, an input specification ι is of the form

INPUT (t1 v1, . . . , tn vn) {s1;s2; . . .sk;}

where v1, . . . ,vn are input parameters to the ASP program of types t1, . . . , tn, and s1, . . . ,sk
are predicate specifications defined as follows. Each predicate specification si for 1≤
i≤ k is of form

p(x1, . . . ,xm) for w1 in y1 . . .for w` in y` (2)

where p ∈P is a predicate symbol, x1, . . . ,xm are objects of any type, w1, . . . ,w` are
(iteration) variables, and y1, . . . ,y` are collections.

The first step in the evaluation of a program P with an input specification ι of the
above form under parameters v1, . . . ,vn, i.e., the evaluation of eval(P,v1, . . . ,vn), is the
construction of facts genFacts(ι ,v1, . . . ,vn) =

⋃
1≤i≤k genFacts(si,v1, . . . ,vn) from the

given parameters. To this end, each predicate specification si of form (2) is handled
independently as follows and yields a set of input facts genFacts(si,v1, . . . ,vn).

The constructs for wi in yi in a predicate specification s for 1≤ i≤ ` are iteration
clauses which are used to let wi iterate over the contents of collection yi, similarly to
loops in procedural languages. If yi is a Set, then wi iterates over its elements, if it is a
Dictionary resp. Sequence/Tuple, then wi iterates over its pairs of the current
key resp. index and value. Multiple iteration clauses are nested from left to right, i.e., the
leftmost iteration clause defines the outermost iteration. For a predicate specification of
form (2), an iteration variable wi can be accessed in all y j with j > i and in x1, . . . ,xn.

Such a predicate specification s generates all facts genFacts(s,v1, . . . ,vn) of the
form p(u1, . . . ,um), where each term u j ∈T for 1≤ j ≤ m is the string representation
x j.toString() of the corresponding object x j. In x j, all iteration variables w1, . . . ,w`

defined by s and all input parameters v1, . . . ,vn can be accessed.

Language Shortcuts. When iterating over a Sequence y using for w in y, the cur-
rent index and element are accessed by w[0] and w[1], respectively. Iteration over a
Dictionary y works analogously, where w[0] and w[1] yield the current key and value,
respectively. Towards a more readable notation, further allow to use a list of iteration
variables (w1, . . . ,wm) in place of a single iteration variable w. Then, wi is automatically
assigned the value of w[i] for all 1≤ i≤ m. For instance, an iteration for w in y over
the key-value pairs (w[0],w[1]) in the Dictionary y may be written as for (k,v) in y.
In case of iteration over nested collection types, this shortcut can be repeated recursively,
i.e., an element in a list of iteration variables can itself be a list. Additionally, it is possible
to use the anonymous variable _. Each occurrence of _ is viewed as a new variable that
is never referenced.

Example 3. The following example illustrates the iteration over a sequence. The input is
a series of measurements of the current temperature and humidity, respectively, which
corresponds to the type Sequence<Tuple<int, int>>; the time point serves as
index in this sequence.

1 INPUT (Sequence<Tuple<int, int>> readings) {
2 temperature(x[0], x[1][0]) for x in readings;
3 humidity(t, hum) for (t,(_,hum)) in readings; }

The specification of the predicate temperature uses a single iteration variable x. Since
readings is of type Sequence, this iteration variable x is assigned pairs of the current
index and value, where the value itself is a pair of temperature and humidity. Hence, x[0]
refers to the current index and x[1] refers to a pair of measurements, where x[1][0] is the
temperature and x[1][1] is the humidity. In contrast, the definition of humidity uses
a (nested) pair of iteration variables (t,(,hum)) which are directly assigned the time
point t and the humidity hum. Since the temperature value is not used in this definition,
it is ignored by using an anonymous variable. 2

3.3 Output Specification

The evaluation of an ASP program yields a collection of answer sets. The output
specification enables the object-oriented program to extract information from them by
assigning values to the attributes of a certain class depending on the atoms in the current
answer set. Then, each answer set yields one instance of this class.

Before we introduce the language in the general case we present an intuitive example.

Example 4. Assume we have evaluated an ASP program that computes a graph repre-
sented by the predicates vertex and edge (cf. Example 2), and received the answer set I.
Assume that every vertex v has exactly one associated color c represented by color(v,c).
Consider the answer set

I = {vertex(a),vertex(b),vertex(c),edge(a,b),edge(a,c),

color(a,blue),color(b,red),color(c,red)}

and the following output specification:

1 OUTPUT {
2 labels = set { query: vertex(X); content: X; };
3 red_nodes = set { query: color(X, red); content: X; }; }

It defines the values of the attributes labels and red_nodes of the output class,
depending on the current answer set I. The value of the attribute labels is a new
instance of class Set, whose elements x are extracted from atoms vertex(x) ∈ I. To this
end, the query specifies a set of literals which are matched against the atoms in the
answer set I. For every match, the argument terms of the matched atoms are assigned to
the corresponding variables in the query, and an element to be added to the Set instance
is constructed according to the content property. In this example, for the given answer
set I, the value of labels will thus correspond to the set {a,b,c}. Similarly, the set
red_nodes contains the labels of all red-colored nodes, i.e., the values {b,c}. 2

Definition of the Language. We now explain output specifications in the general case.
The basic building blocks are (attribute) expressions which transform atoms, sets of
atoms, and/or the results of subexpressions to attribute values (see below). The value
mapOutput(e, I) of an expression e is itself an object, that is constructed relative to a
fixed answer set I. Based on expressions, an output specification ω is then of the form

OUTPUT {w1 = e1; . . .wk = ek;}

where w1, . . . ,wk are pairwise distinct attributes and e1, . . . ,ek are expressions. For a
program P with such an output specification ω , each answer set I ∈ AS(P) is then
mapped to an object mapOutput(ω, I), which contains the attributes wi, whose values
are given by mapOutput(ei, I), for all 1≤ i≤ k.

– Basic Expressions are integer and string constants e which evaluate to themselves,
i.e., mapOutput(e, I) = e for all I. We show their usage together with collection
expressions.

– Collection Expressions are of one of the following forms:

• set{query : q; content : e; }
• sequence{query : q; index : i; content : e; }
• dictionary{query : q; key : k; content : e; }

In all cases, the query q = l1, . . . , ln specifies a set of (possibly nonground) liter-
als, where each variable must occur in a positive literal akin to safe rules, which
are to be checked against the answer set I at hand in order to find substitutions
S(q) =

{
σ : V (q)→T

∣∣ I |= σ(q)
}

for the variables V (q) occurring in q, which sat-
isfy the query under I, akin to query answering. Then, for each such substitution σ ,
content e specifies a (sub)expression which defines how to construct an object
from the current variable substitution. In the simplest case, this is a variable occur-
ring in q which will, after application of the substitution σ , be a basic expression
(i.e., a constant). However, the content can also be nested collection or compos-
ite (see below) expressions, in which case it is recursively evaluated. Moreover,
for sequence, i is a variable or integer constant, and for dictionary, k is a
(sub)expression.
The value mapOutput(e, I) of the expression e=set{query : q; content : e′; }
wrt. an answer set I is a Set with the elements {mapOutput(σ(e′), I) | σ ∈ S(q)},
where σ(e′) results from e′ if all variables X occurring in e′ are replaced by σ(X).
Given the expression e = sequence{query : q; index : Y ; content : e′; },
the value mapOutput(e, I) wrt. an answer set I is an instance of Sequence containing
all elements mapOutput(σ(e′), I) for σ ∈ S(q), ordered by the index σ(Y) (which
is assumed to be an integer and yields an error otherwise).

Example 5. To illustrate, consider the following output specification:

1 OUTPUT {
2 indices = set { query: p(I, X); content: int(I); };
3 xs = sequence { query: p(I, X); index: I; content: X; }; }

The definition of indices gathers the first argument of all atoms of p into a
Set. Note that all constant symbols are mapped to str instances by default. The
constructor int can be used to convert strings to int values. On the other hand, the
definition of xs constructs an instance of Sequence. The positions of the elements
in xs are determined by the variable given as index, which must occur in query.
For instance, for the answer set I = {p(0,a), p(1,b), p(2,a)}, the value of indices
is the set {0,1,2} and the value of xs is the sequence (a,b,a). 2

Similarly, given e = dictionary{query : q; key : k; content : v; }, the
value mapOutput(e, I) wrt. an answer set I is an instance of Dictionary, which
maps for all σ ∈ S(q) the key mapOutput(σ(k), I) to the value mapOutput(σ(v), I).
Note that the result of applying a substitution σ to the key k is a general expression
itself, which needs to be recursively evaluated. This is opposed to the index in the
previous paragraph, which is, after application of σ , always a basic expression.

Example 6. The following output specification demonstrates how collection expres-
sions can be nested. We assume that every node x is assigned exactly one color c,
which is represented by an atom color(x,c). Suppose we want to extract a dictionary
which maps each color to the set of nodes with that color. This is done as follows:

1 OUTPUT {
2 labels_by_color = dictionary {
3 query: color(X, C);
4 key: C;
5 content: set { query: color(L, C); content: L; }; }; }

Evaluating this expression under the answer set I from Example 4, the dictionary
labels_by_color yields the mappings blue 7→ {a} and red 7→ {b,c}. Note that
the variable C is introduced in the dictionary expression and for every match σ

of its query color(X, C), the set expression is evaluated with C fixed to the
matched value σ(C), thus generating a set of labels colored by color C. 2

– Composite Expressions are instances of custom classes of the object-oriented lan-
guage. They are created by passing appropriate parameters to their constructors, i.e.,
the expression cls(e1, . . . ,ek) with (sub)expressions e1, . . . ,ek creates an instance
of the class cls by calling its constructor with the arguments constructed by the
(sub)expressions e1, . . . ,ek. A special case thereof is the instantiation of Tuple, which
is written as (e1, . . . ,ek).

Example 7. We continue with the answer set I from Example 4.

1 OUTPUT {
2 graph = Graph(
3 set { query: vertex(X); content: X; },
4 set { query: edge(X, Y); content: (X, Y); });
5 colored_nodes = set {
6 query: color(X, C);
7 content: ColoredNode(X, C); }; }

The variable graph holds an instance of the custom class Graph, which is to be
defined in the object-oriented language. To create the Graph instance, its constructor
is called with the set of labels (cf. Example 4) and the set of edges as parameters.
The set of edges is defined by a Tuple (x,y) for each atom edge(x,y) ∈ I. This
example also demonstrates nesting of expressions. The constructor call contains two
set expressions, and the content of the second set contains a tuple expression.
The value of colored_nodes is a Set of instances of the class ColoredNode,
which is defined in the object-oriented language. 2

3.4 Overall Evaluation

Given an ASP program P with input specification ι and output specification ω , we can
now describe the complete evaluation process under input arguments v1, . . . ,vn by

eval(P,v1, . . . ,vn) =
{

mapOutput(ω, I)
∣∣ I ∈ AS(P∪genFacts(ι ,v1, . . . ,vn))

}
.

That is, in the process of evaluating P with input arguments v1, . . . ,vn we first generate
the set of facts F from the input arguments according to the input specification of P.
Then, the answer sets of P∪F are computed. Finally, each answer set is mapped back
to an object as per the output specification of P, yielding a set of objects that can be
processed in the object-oriented code.

4 Implementation in Python

We have implemented the language from the previous section in the PY-ASPIO library1

(ASP Interface to Object-oriented programs) in the Python programming language2.
The library utilizes dlvhex3 as the underlying answer set solver, but adaptation to other
reasoners is simple.

Object Model. In our implementation, an object x is accepted to have an attribute attr if
getattr(x, "attr") does not raise an AttributeError4. Subscripts x[i] can
be used on any object x that supports subscription, not just Sequence and Tuple instances.
For the output mapping, by default, we substitute the builtin Python classes int, str,
tuple, frozenset, list, and dict for the respective abstract types int, str, Tuple,
Set, Sequence, and Dictionary. In Python, the contents of sets and the keys of dictionaries
are required to be hashable objects. Since list and dict are mutable collections and
thus not hashable, they cannot immediately be used as contents of sets. However, it easy
to replace these types by immutable, hashable variants either by using a constructor in
the output specification, or by setting configuration parameters of the PY-ASPIO library.

Interface of PY-ASPIO. When interfacing an ASP program using the PY-ASPIO library,
it is expected to contain the input and output specifications as defined above in special
comments starting with %! inside the ASP code (while normal comments in ASP begin
with just %). This ensures that annotations are conservative in the sense that the program
uses still valid ASP syntax and can also be used independently of the PY-ASPIO library.

The central interface to the program is then provided by the class Program. It
represents an ASP program and provides methods to evaluate it under given input and
access its answer sets as objects. The actual ASP code can be provided either as file
or as string passed to the constructor of the class. The input and output specifications
contained in the program are parsed and interpreted at the time a program is accessed
for the first time. Then, once a Program instance was created, the program can be
evaluated multiple times with varying input arguments.

In the following we assume that p is an instance of Program. The ASP program
is evaluated by calling the method p.solve(...) with arguments as defined by
the input specification. This method returns a Python iterable that contains a Result
instance for every answer set that has been computed. These Result objects possess
attributes corresponding to the variables defined in the output specification of p.

If custom class constructors are used in the output specification, PY-ASPIO needs to
be able to resolve class names. To this end, we distinguish two types of names:

– Qualified names (e.g., package.module.Class) are automatically resolved.
– Unqualified names must be registered manually before evaluating the ASP program.

The programmer can either register each name separately with method calls of form
p.register(MyClass), or import all global names in the current scope with
p.register_dict(globals()).

1 Available at https://github.com/hexhex/py-aspio
2 https://www.python.org
3 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
4 Information about Python-specific terms is available at https://docs.python.org/3/

Most settings in PY-ASPIO have global and local counterparts. For example, it is
possible to register names locally for the ASP program p by calling its instance methods,
e.g., p.register(...). On the other hand, simpler applications that need to set
up these bindings once for all ASP programs may call the global counterparts on the
PY-ASPIO module: aspio.register(...).

Example 8. We show now a complete example of how the PY-ASPIO library is used. The
Python script in Listing 1 loads the ASP program shown in Listing 2 and demonstrates
three ways of evaluating the program and accessing the output data.

Listing 1: Python program in the file coloring.py

1 from collections import namedtuple
2 import aspio
3 # Define classes and create sample data
4 Node = namedtuple('Node', ['label'])
5 ColoredNode = namedtuple('ColoredNode', ['label', 'color'])
6 Arc = namedtuple('Arc', ['start', 'end'])
7 a, b, c = Node('a'), Node('b'), Node('c')
8 nodes = {a, b, c}
9 arcs = {Arc(a, b), Arc(a, c), Arc(b, c)}

10 # Register class names with aspio
11 aspio.register_dict(globals())
12 # Load ASP program and input/output specifications from file
13 prog = aspio.Program(filename='coloring.dl')
14 # Iterate over all answer sets
15 for result in prog.solve(nodes, arcs):
16 print(result.colored_nodes)
17 # Shortcut if only one variable is needed (note prefix "each_")
18 for colored_nodes in prog.solve(nodes, arcs).each_colored_nodes:
19 print(colored_nodes)
20 # Compute a single answer set
21 result = prog.solve_one(nodes, arcs)
22 if result is not None: print(result.colored_nodes)
23 else: print('no answer set')

Listing 2: Mapping specification and ASP code in the file coloring.dl

1 %! INPUT (Set<Node> nodes, Set<Arc> arcs) {
2 %! node(n.label) for n in nodes;
3 %! edge(arc.start.label, arc.end.label) for arc in arcs; }
4 %! OUTPUT {
5 %! colored_nodes = set {
6 %! query: color(X, C);
7 %! content: ColoredNode(X, C); }; }
8 color(X, red) v color(X, green) v color(X, blue) :- node(X).
9 :- edge(X, Y), color(X, C), color(Y, C).

The input specification defines two input parameters, nodes and arcs (cf. List-
ing 2, line 1). The solve method must thus be called with two arguments. The output
specification declares a single output variable colored_nodes (cf. Listing 2, line 5),
which is accessed with the same name in the Python code (cf. Listing 1, line 16). 2

User Code

ASP Program

Input Arguments Input Mapper

PY-ASPIO

Facade

Output Mapper

Facts

ASP Solver

Answer Sets

User Application PY-ASPIO Library ASP Solver

Fig. 1: PY-ASPIO Architecture (data flow , control flow)

Implementation Architecture. Our system runs the ASP solver as a subprocess to
compute answer sets, communicating via pipes and temporary files. Its architecture is
shown in Figure 1. Upon invoking the solver, PY-ASPIO immediately returns a wrapper
object representing the set of answer sets. Iterating over this wrapper object yields each
answer set as soon as it is available, i.e., the client code is not forced to wait until all
answer sets have been computed. To reduce communication overhead, PY-ASPIO uses
the solver’s --filter option in order to capture only predicates that are needed to
construct output objects, which may allow for optimizations in the solver. The output
objects themselves are constructed at the time when they are first accessed by the client
code, which is realized by exploiting Python’s attribute access mechanism.

The exact mapping of objects to ASP terms depends on their type. Integers are
passed to the solver as-is to allow use of arithmetic, and strings are passed as quoted
string constants (where enclosed quotation marks have been replaced by an appropriate
escape sequence). Any other objects are first converted to strings by calling Python’s
str function and then mapped to quoted string constants.

For more detailed information about the PY-ASPIO library, we refer to the library’s
documentation and example programs available at https://github.com/hexhex/py-aspio.

5 Applications

In this section we discuss possible applications of the PY-ASPIO library. As noted in
Section 1, Answer Set Programming has proven well suited for solving computationally
hard problems. Typical examples are planning and scheduling problems under domain-
specific constraints. They are cumbersome to implement in classical languages but can
be modeled easily in a declarative language.

However, a solution of the underlying computational problem in form of an ASP
program is usually not enough to allow practical application. End-users are typically not
trained in logic programming and thus cannot be expected to directly edit ASP files, to
enter input data in form of facts or to interpret the answer sets. Moreover, even for trained
personnel, manual data entry in this form would be inefficient and calls for automated
interfaces to other system components which realize, e.g., user interfaces, interfaces to

data sources, or other parts which cannot (easily) be solved in ASP. Such an interface is
provided by the PY-ASPIO library. Since Python is suitable for developing state-of-the-art
graphical user interfaces (GUI, e.g., using pyqt5) and Web applications (e.g., using
django6), one can create a Python program to support data entry and presentation of
results. With help of the PY-ASPIO library, it is then easy to integrate an ASP program to
solve the actual underlying problem.

We now discuss some concrete possible applications.

Creating Timetables for Schools. The pupils of a typical school are grouped as classes
and each class, depending on its grade and possibly specialization, needs to receive
instruction in certain subjects for a fixed number of hours per week. Every teacher can
teach certain subjects and each class should be assigned one fixed teacher per subject. The
challenge is then to find a timetable where each class fulfills the teaching requirements
while observing a large number of constraints, e.g., a class cannot be taught two subjects
at the same time, certain subjects require special facilities which may be limited; we
refer to Faber et al. [3] for a more thorough discussion.

Since the application is to be used by the administrative personnel which is in charge
of the creation of timetables it should come with an easy-to-use GUI. The application
further needs to connect to a database for retrieval of information about classes, such as
their teaching requirements, available teachers and their subjects. The GUI may present
this data and allow for specifying constraints and desired properties (e.g., that the music
room is not available on Fridays). These components are typically implemented in an
object-oriented language.

However, the actual creation of the timetable is more easily realized in ASP. To this
end, PY-ASPIO can be used to interface the ASP program. An input specification can be
used to pass the input from the GUI to the program, and an output specification is used
to extract the candidate timetables into objects which can be displayed in the GUI.

Afterwards, the results can be further processed by the object-oriented components.
For instance, timetables may be printed for distribution to classes and teachers. To this
end, the application first needs to layout the data in a printable format and then send this
layout to the printer by relying on the printing functions of the operating system, which
cannot be done in ASP.

Workforce Allocation Problem. As part of their regular operation, companies need to
assign workers to tasks under a number of (possibly weak) constraints such as necessary
skills and legal restrictions. Creating these allocation plans manually is a time-intensive
and error-prone task. Ricca et al. [12] have developed an encoding in ASP, and a GUI
in Java on top of the ASP program. Here, again, the object-oriented part of such an
application needs to interface with other systems and the user to retrieve input data, and
the output of the ASP program (allocation plans, employee statistics and/or a list of
constraint violations) is used for additional processing. Besides displaying the plans,
the system might generate reports about the workload statistics and forward them to the
responsible managers, and automatically notify the workers of their new assignments
once approved by the user.

5 https://www.riverbankcomputing.com/software/pyqt/intro
6 https://www.djangoproject.com/

6 Discussion and Related Work

The specification language has been designed to be independent from the concrete object-
oriented language. While the types on the input parameters are not strictly required by
our Python implementation, they allow our approach to be implemented for statically-
typed languages such as C++ and Java. An implementation in C++, for example, can
be realized with a separate compilation step, turning the annotated ASP program into
a function that accepts the input parameters from the input specification and returns a
result with a structure as defined in the output specification. The types of the expressions
in the output specification can be inferred automatically to allow static declarations of
the output variables, e.g. both definitions in Example 4 result in instances of Set〈str〉.

Our system uses the DLVHEX solver as backend, which can solve HEX programs in
addition to plain ASP programs. HEX is an extension of ASP that allows the incorpora-
tion of external computation sources (cf. [2] for details). Currently, external computation
sources can be implemented via DLVHEX plug-ins written either in C++ or Python. In
the latter case, PY-ASPIO allows for a seamless integration of application components,
which cannot be easily realized in ASP, a declarative component, and the possibility to
make callbacks to the procedural code.

We now discuss differences to existing works on bridging the gap between ASP
and procedural or object-oriented languages. Oetsch et al. [10] present a system that
integrates ASP with Java programs. As in our system, the ASP code resides in a separate
file and is annotated with input parameters (here, the annotations show similarity to
a Java function definition). However, in this system the input arguments are accessed
from the rules of the ASP program using dedicated atoms, and special atoms govern
the creation of output objects. Another approach is JASP [4], which extends Java by
constructs to allow ASP code to be directly embedded in Java code, forming a hybrid
language. This hybrid language is compiled to pure Java code that uses a lower-level API
to interact with the ASP solver. An interesting aspect of this system is that standardized
annotations of the Java Persistence API (JPA) for object-relational mapping are used to
interface with ASP. In contrast to both JASP and the system presented by Oetsch et al.,
we do not modify the syntax of ASP itself. Because of this, all annotated programs are
still valid ASP programs that can continue to be used in existing systems. Furthermore,
most ASP variations can immediately be used without adaptation of the mapping library,
e.g. external atoms via existing DLVHEX plugins can already be used with PY-ASPIO.

EmbASP [5] is a recent work that describes the abstract architecture of an ASP
framework and implements this framework as a Java library with an emphasis on support
for mobile platforms. However, while EmbASP intends to provide a language-agnostic
ASP framework, the definitions of the input/output mapping still depend on Java-specific
features (alternatives for other languages are discussed briefly). The mapping is guided
by custom annotations on Java classes, which are associated one-to-one with a predicate,
where annotations on their fields define the argument positions. asp4j7 is a Java library
that utilizes custom class annotations to guide the mapping process, similar to EmbASP.
Unlike JASP, EmbASP and asp4j, the mapping annotations in our system are in the ASP
code and separate from the object-oriented code. This means the ASP program forms a

7 https://github.com/hbeck/asp4j

self-contained component, with the input and output specifications defining an external,
object-oriented interface to the declarative ASP part, while still being independent from
the concrete object-oriented language. This approach enables the ASP component to be
maintained separately, and allows a single ASP file to be used simultaneously by multiple
applications (possibly in different programming languages, provided the custom classes
have the same names). While the ASP programmer still needs certain knowledge about
the object-oriented world, the object-oriented programmer can call the ASP component
as-is, without requiring much accomodation on the OOP side, e.g., usually no separate
data-holding objects need to be constructed by the client code when using our approach.

Tweety [13] is a collection of Java libraries with the goal of providing a general
framework for many different approaches to knowledge representation and reasoning. Its
ASP component includes a parser for ASP programs, classes to construct ASP programs
in Java, and connections to several solvers. PyASP8 provides a Python wrapper of the
answer set solving tools gringo and clasp from the Potassco suite [6]. While both Tweety
and PyASP provide an easy way to invoke an ASP solver from object-oriented code,
the burden of mapping between objects and facts/answer sets is still mostly on the user
because input data is passed by manually instantiating fact objects, and answer sets are
returned as lists of literals which, again, must be inspected manually.

7 Conclusion and Outlook

We have introduced a language to provide an object-oriented interface for ASP programs.
It allows for the specification of input and output data of ASP programs in terms of
objects of a conventional object-oriented language. The language is flexible and can be
implemented for arbitrary object-oriented languages which provide a minimum set of
features. The approach does not depend on a specific ASP dialect or solver, which allows
many ASP extensions to be used together with input/output specifications. However, we
also provide a reference implementation PY-ASPIO in Python that enables programmers
to easily evaluate ASP programs from Python code with the help of this language. This
implementation currently supports DLVHEX as underlying ASP solver, thus offering
access to the full power of HEX programs in addition to regular ASP programs.

For future work, one possible starting point concerns the language itself. More
features, such as the possibility to handle errors (e.g. duplicate indices when creating
sequences) may be added to increase flexibility. Also, because of the independence of the
specification language from a concrete object-oriented language, implementations for
other languages may be provided. In particular, for statically typed, compiled languages
such as C++ and Java. While this paper focuses on interfacing with object-oriented
languages, the same approach can conceivably be extended to other languages that
provide appropriate data structures (e.g., in Haskell, record types might be used instead
of classes). Moreover, the ASP solver is currently executed in a separate process, which
incurs overhead from inter-process communication. It is worthwhile to investigate the
impact of this overhead and, in case this is significant, integrate the ASP solver as a
shared library in the host process to enable more efficient communication.

8 https://pypi.python.org/pypi/pyasp

References

1. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: 5th International
Reasoning Web Summer School (RW 2009), Brixen/Bressanone, Italy, August 30–September
4, 2009. LNCS, vol. 5689, pp. 40–110. Springer (2009), http://www.kr.tuwien.ac.at/staff/tkren/
pub/2009/rw2009-asp.pdf

2. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI. pp. 90–96.
Professional Book Center (2005)

3. Faber, W., Leone, N., Pfeifer, G.: Representing school timetabling in a disjunctive logic pro-
gramming language. In: Proceedings of the 13th Workshop on Logic Programming (WLP98).
vol. 194 (1998)

4. Febbraro, O., Leone, N., Grasso, G., Ricca, F.: JASP: A Framework for Integrating Answer
Set Programming with Java. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles
of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International
Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press (2012), http://www.aaai.org/
ocs/index.php/KR/KR12/paper/view/4520

5. Fuscà, D., Germano, S., Zangari, J., Anastasio, M., Calimeri, F., Perri, S.: A framework for
easing the development of applications embedding answer set programming. In: Cheney, J.,
Vidal, G. (eds.) Proceedings of the 18th International Symposium on Principles and Practice
of Declarative Programming, Edinburgh, United Kingdom, September 5-7, 2016. pp. 38–49.
ACM (2016), http://doi.acm.org/10.1145/2967973.2968594

6. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco:
The Potsdam Answer Set Solving Collection. AI Commun. 24(2), 107–124 (2011), http://www.
mpi-inf.mpg.de/departments/rg1/conferences/deduction10/papers/martin-gebser.pdf

7. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9(3–4), 365–386 (1991)

8. Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at Work: Spin-off and Applications of
the DLV System. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the
Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 6565, pp. 432–451.
Springer (2011), http://dx.doi.org/10.1007/978-3-642-20832-4 27

9. Ielpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-Based System for e-Tourism. In:
Erdem, E., Lin, F., Schaub, T. (eds.) Logic Programming and Nonmonotonic Reasoning,
10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5753, pp. 368–381. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-04238-6 31

10. Oetsch, J., Pührer, J., Tompits, H.: Extending Object-Oriented Languages by Declarative
Specifications of Complex Objects using Answer-Set Programming. CoRR abs/1112.0922
(2011), http://arxiv.org/abs/1112.0922

11. Redl, C.: The DLVHEX system for knowledge representation: Recent advances (system
description). Theory and Practice of Logic Programming

12. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. TPLP 12(3), 361–381 (2012),
http://dx.doi.org/10.1017/S147106841100007X

13. Thimm, M.: Tweety: A Comprehensive Collection of Java Libraries for Logical Aspects of
Artificial Intelligence and Knowledge Representation. In: Baral, C., Giacomo, G.D., Eiter, T.
(eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth
International Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press (2014),
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7811

