
Declarative Belief Set Merging using Merging Plans?

Christoph Redl, Thomas Eiter, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{redl,eiter,tkren}@kr.tuwien.ac.at

Abstract. We present a declarative framework for belief set merging tasks over
(possibly heterogeneous) knowledge bases, where belief sets are sets of liter-
als. The framework is designed generically for flexible deployment to a range
of applications, and allows to specify complex merging tasks in tree-structured
merging plans, whose leaves are the possible belief sets of the knowledge bases
that are processed using merging operators. A prototype is implemented in MELD
(MErging Library for Dlvhex) on top of the dlvhex system for HEX-programs,
which are nonmonotonic logic programs with access to external sources. Plans
in the task description language allow to formulate different conflict resolution
strategies, and by shared object libraries, the user may also develop and integrate
her own merging operators. MELD supports rapid prototyping of merging tasks,
providing a computational backbone such that users can focus on operator opti-
mization and evaluation, and on experimenting with merging strategies; this is
particularly useful if a best merging operator or strategy is not known. Example
applications are combining multiple decision diagrams (e.g., in biomedicine),
judgment aggregation in social choice theory, and ontology merging.

1 Introduction

Merging knowledge from multiple knowledge bases has gained increasing attention over
the years, given that more and more knowledge from (possibly heterogeneous) different
sources must be combined into a coherent view. As knowledge bases are associated with
sets of beliefs, i.e., statements an agent believes to be true (which need not to be the
case), in particular merging the belief sets of knowledge bases into a single belief set is
an issue. This problem has been widely studied, and there are many different approaches,
e.g., [10]; for an introduction and a distinction from belief revision, see [11].

Roughly, the merging approaches fall into two classes. The one class adheres to
base-oriented, syntactic strategies where the result of merging is a knowledge base, such
that its belief sets are the merged belief sets (e.g., [8]). The other class performs merging
at the semantic level, i.e., at the level of models of the knowledge bases, and aims to
construct a merged set of models with associated syntactic belief sets (e.g., [13, 16]).
Several approaches are based on measuring distances between models resp. formulas [9];
however, appropriate distance functions are usually application dependent.

Apparently there is no single approach which is superior to all others in arbitrary
scenarios and applications. Lack of domain knowledge may make it very hard to predict
? This research has been supported by the Austrian Science Fund (FWF) project P20841.

which choice will work out best. It is then reasonable, or also necessary, to experiment
with various choices and to evaluate the results empirically. Furthermore, it may be
necessary to combine different merging operators, taking the specific needs and crite-
ria of some of the knowledge bases into account. However, despite many theoretical
frameworks for belief merging, support for merging in practice is scarce, and the user
has the burden to develop merging procedures and implement a workflow (e.g. perform
syntactic alignment of the knowledge bases, apply a binary merging operator repeatedly,
etc), as well as to cope with issues of heterogeneity. Changes for experimenting with
different operators and workflows are cumbersome and require major efforts.

To alleviate this problem, we have developed a practical framework for belief set
merging. It allows the declarative specification of a merging task in a formal and machine-
readable way, using merging plans in a dedicated language. Application-dependent parts
of the specification are defined by the user, i.e., the application developer, while routine
tasks are managed by our framework. To encompass wide applicability, the framework
is generically based on beliefs that are literals, i.e., possibly negated atomic formulas,
following the semantic direction; via suitable encodings and operators, also sources with
non-logical content may be handled (e.g., decision diagrams as we show).

Our main contributions are briefly summarized as follows.
• We define a simple, generic framework for belief set merging tasks where belief sets

are sets of ground literals in predicate logic; they may also be viewed as models of
the knowledge bases, which are sets of formulas (we will use the term belief bases
synonymously) (Section 2). We provide the formal syntax and semantics of merging
plans in a dedicated merging task language (Section 3). A merging plan is, like an
arithmetic expression, a hierarchical arrangement of merging operators of arity n ≥ 1
which describe how to merge n sets of belief sets into a single one; allowing n = 1 is
convenient to accommodate also transformations (conversion, data cleaning, etc.) on
sets of belief sets. An operator is either applied on merging sub-plans, i.e., the result
of previous operator applications, or on the input knowledge bases.
• We have implemented the formal framework in the MELD system (MErging Library

for Dlvhex) [14] (Section 4), which has been developed as plugin for the dlvhex
reasoner.1 The systems allows the automatic evaluation of merging plans written in
our merging language, i.e., the computation of the merged belief sets according to the
merging plans. MELD is based on HEX-programs [5], which are non-monotonic logic
programs that allow to access external sources (for our concerns, knowledge bases at
an extensional level). In fact, we extended HEX-programs to nested HEX-programs
that allow to evaluate HEX-programs and access the resulting models as first class
citizens; such an extension is novel and of independent interest for non-monotonic
logic programs in general. Via abstract interfacing, also merging of heterogeneous
knowledge bases can be handled in a flexible way.
• To explore the usefulness of the approach, we have considered various applications,

which currently include decision diagram merging in life sciences (e.g., for DNA
classification or screening tests), judgment aggregation, and merging of knowledge
bases in the Semantic Web (Section 6). We focus here on decision diagrams, which
are encoded to belief sets via a natural encoding into a factual representation. The

1 www.kr.tuwien.ac.at/research/systems/dlvhex/mergingplugin.html

support for rapid prototyping and experimenting with merging scenarios could be
fruitfully exploited to arrive for real-world data at a merging result that outperforms
other results, and could have hardly been obtained without automated support.
To our knowledge, no comparable framework for belief merging in practice exists.

MELD aims at providing a user-friendly interface for rapid prototyping of belief set
merging tasks with large flexibility, such that the application developer can focus on the
selection, optimization, and workflow of the merging strategy. The merging operators
can be selected from a predefined library or defined by the user, using a simple plugin
interface. We believe implementations of our framework like MELD will greatly alleviate
to determine the right merging strategy in prototyping for a range of applications.

2 Preliminaries

We consider merging of belief sets that are close to model-based semantics of classical
logic, in a finite setting. In our view, we abstract from a concrete language for knowledge
bases and identify the latter with associated sets of belief sets. In this context, the term
belief bases is used as a synonym for knowledge bases. To formulate beliefs, we assume
a signature Σ = (Σc, Σp) of a set Σc of constant symbols and a set Σp of predicate
symbols of arity ≥ 0. For practical concerns, Σ is finite.

Definition 1. A belief is an atomic formula p(c1, . . . , cn) or negated atomic formula
¬p(c1, . . . , cn) (i.e., a literal) over Σ. The set of all beliefs over Σ is denoted by LitΣ
(i.e., the set of all literals over Σ). A belief set is a set B ⊆ LitΣ of literals. The set of
all belief sets is denoted by A(Σ) = 2LitΣ .

The semantic abstraction of knowledge bases is then as follows.

Definition 2. Given a knowledge base KB (in some language), it has associated belief
sets BS (KB) ⊆ A(Σ).

Intuitively, each belief set B ∈ BS (KB) coherently collects conclusions from the
knowledge base. There might be different possibilities, e.g., in a model-based view, or
as common in non-monotonic logics. The following examples illustrate this.

Example 1. Consider the knowledge base KB = {dog(sue) ∨ cat(sue), male(sue)}
in classical logic. Adopting as belief sets the maximal sets of literals consistent with KB
(i.e., the Herbrand models of KB), we have BS (KB) = { {dog(sue), ¬cat(sue),
male(sue)}, {¬dog(sue), cat(sue), male(sue)} }. Alternatively, if a belief set consists
of all classically entailed literals, we obtain BS (KB) = { {male(sue)} }.

Example 2. Consider the logic program P = {dog(sue) ∨ cat(sue)., eat fish(X)←
cat(X),not abnormal(X).}. Adopting as belief sets the answer sets AS(P) of this
program [7], we obtain BS (P) = AS (P) = {{dog(sue)}, {cat(sue), eat fish(sue)}}.

While we abstract from concrete languages, it will be convenient to refer with KBΣ

to the implicitly defined signature of BS (KB).
HEX-programs. Our implementation employs HEX-programs [5], which consist of rules

a1 ∨ · · · ∨ an ← b1, . . . , bm,not bm+1, . . . ,not bn,

where each ai is a classical literal and each bj is either a classical literal or an external lit-
eral of the form &p[q1, . . . , qk](t1, . . . , tl), where p is the name of an external predicate,
the qi are predicate names, and the tj are terms;2 intuitively, p is evaluated externally,
where the value of q1, . . . , qk is passed as input. The atom succeeds for variable binding
if the external evaluation succeeds. Via such atoms, in particular abstract belief set
computation is conveniently facilitated, also across the Web.

Example 3. Suppose an external knowledge base consists of an RDF file located on the
web at “http:// . . . /data.rdf .” Using an external atom &rdf [< url >](X,Y, Z), we
may access all RDF triples (s, p, o) at the URL specified with <url>. To form belief
sets of pairs that drop the third argument from RDF triples, we may use the rule

bel(X,Y)← &rdf [“http:// . . . /data.rdf”](X,Y, Z).

The semantics of HEX-programs generalizes the answer set semantics of logic
programs [7], but we omit a further account (as it is less relevant) and refer to [5, 6] for
background and details. For execution, we use the dlvhex system [6], which implements
HEX-programs providing a plugin mechanism for library and user defined external atoms.

3 Belief Set Merging using Merging Plans

We now develop our formal framework for merging belief sets, which introduces merging
plans and merging tasks. In the following, we suppose to have a collection KB =
KB1, . . . ,KBn of knowledge bases with associated sets of belief sets BS (KB1), . . . ,
BS (KBn). For illustration, we use logic programs under answer set semantics.

Recall that we aim at merging the belief sets BS (KB i) as such, rather than the
underlying knowledge bases KB i. This may be necessary if the knowledge base access
is limited, for instance in the Web context. There also frequently the source formats may
be not aligned, such that beliefs and belief sets are similar but not identical. Possible
mismatches have to be overcome and conflicts resolved.

A closer look at the problem reveals that two basic types of mismatches need
attention, viz. language (syntactic) incompatibilities and logical inconsistencies.
Syntactic Incompatibilities. A first problem is that the belief sets may use differ-
ent vocabularies to encode the same information. For example, the programs P1 =
{degree(john, “MSc”) ←} and P2 = {deg(john, “Master of Science”) ←} have a
single answer set with a single fact encoding the same information, but syntactically
their answer sets are different. The problem may concern constants or predicate names.

We resolve this problem by introducing a so called common signature, which acts as
a vocabulary shared by all sources, and applying mapping functions.

The common signature ΣC = (ΣC
c , Σ

C
p) is a signature which suffices to define

mappings from the collections of belief sets BS (KB i) over ΣKBi to new collections of
belief sets B′i over ΣC , such that B′i = B′j if and only if the user considers B′i and B′j
to represent equivalent information, with respect to the application in mind. A belief
set conversion is then a function µi : 2A(ΣKBi) → 2A(ΣC). Informally, µi maps the

2 Strictly, [5] considers only positive literals but the extension to negative literals is trivial;
furthermore, [5], also allows variables for predicate names which we do not need.

semantics of KB i, expressed in the signature ΣKBi , to a semantics in the common
signature ΣC . The mapping has to provided by the user, who must ensure that converted
sets of belief sets are identical only if she wishes them to be treated the same for merging.

Continuing our previous example, suitable mapping functions are
µ1(B) = B,
µ2(B) = {{degree(X, “MSc”) | deg(X, “Master of Science”) ∈ B}∪

{degree(X,Y) | deg(X,Y) ∈ B, Y 6= “Master of Science”} | B ∈ B};
i.e., the belief sets of P1 are unchanged while all occurrences of “Master of Science”
in the belief sets of P2 are changed to “MSc”, and predicate deg is changed to degree.

The above notion of conversion is very general, but as in the example, often simple
modular conversions at the level of belief sets (µi(B) =

⋃
B∈B µ

′
i(B)) or even at the

level of atoms (µ′i(B) = {τi(b) | b ∈ B}), for instance by mapping ΣKBi via τi to ΣC)
may be used. More involved mappings may exploit schema matching and alignment (if
possible), which however we omit here. After the mappings have been applied, we can
safely assume that all sources are given over the same vocabulary.
Logical Inconsistencies. The second and more complicated type of conflicts concerns
logical mismatches. While syntactic incompatibilities could be resolved by translating
each source independently into the common language, logical inconsistencies only
appear when multiple belief sets with contradicting contents are united.

We abstractly model application-dependent integrity constraints on sets of belief
sets B as a set C ⊆ 2A(ΣC), such that B ⊆ A(ΣC) satisfies the integrity constraints
iff B ∈ C. Then, collections B1,B2 ⊆ A(ΣC) of belief sets over the common signa-
ture ΣC violate the constraints (i.e., are inconsistent) iff (B1 ∪ B2) 6∈ C.

The resolution of such inconsistencies is only possible during the incorporation of
the sources. For this purpose we introduce the concept of merging operators.

Definition 3. An n-ary operator with parameters from D1, . . . ,Dm, m≥0, is a function

◦n,m :
(
2A(ΣC)

)n
︸ ︷︷ ︸

collections of belief sets

× D1 × . . .×Dm︸ ︷︷ ︸
additional parameters

→ 2A(ΣC) .

The first n arguments are the collections of belief sets the operator is applied on. We
assume that they have already been mapped to the common signature by applying the
functions µi. The other m arguments over arbitrary domains Di (like integers, enum
types or strings) may provide additional information to control the behavior of the
operator, e.g., by guiding it in special cases. The result of the operator is a further set of
belief sets over the common signature ΣC .

Example 4. The naive union operator, which has no parameter (m = 0), is defined as
◦2,0∪ (B1,B2) = {B1 ∪B2 | B1 ∈ B1, B2 ∈ B2,@A : {A,¬A} ⊆ (B1 ∪B2)} ,

where the parameters B1 and B2 are sets of belief sets. The operator unions the belief
sets of both sources pairwise, where classically inconsistent pairs are skipped.

If this operator is applied on the belief sets of the programs P1 = {p∨¬p← ; q ←}
and P2 = {p ∨ r ← ; s←} under the answer set semantics, the result is

◦2,0∪ (AS (P1),AS (P2)) = {{p, q, s}, {p, q, r, s}, {¬p, q, r, s}} .

◦2\

◦3∪

◦1¬

µ1(P1)

µ2(P2) µ3(P3)

◦2∪

µ4(P4) µ4(P4)

Fig. 1: Merging plan

The belief sets of the knowledge bases are AS (P1) = {{p, q}, {¬p, q}} and AS (P2) =
{{p, s}, {r, s}}. This yields four pairs B1 ∪B2; one is inconsistent and thus skipped.

3.1 Merging Plans and Tasks

The result of an operator could be input to a further operator, similar as sub-expressions
and numbers in complex arithmetic expressions. This leads to a hierarchical tree-structure
with the converted belief sets µi(BS (KB i)) at the leaf nodes, and merging operators at
the inner nodes. We call such a structure a merging plan, formally defined next.

Definition 4. The setMKB,Ω of merging plans over knowledge bases KB = KB1, . . . ,
KBn and a set Ω = {◦1, . . . , ◦n} of operators is the smallest set such that

(i) each M ∈ KB , called atomic merging plan, is inMKB,Ω;
(ii) if ◦n,mi ∈ Ω, sj ∈ MKB,Ω and ak ∈ Di for 1 ≤ j ≤ n, 1 ≤ k ≤ m, then

(◦n,mi , s1, . . . , sn, a1, . . . , am) ∈MKB,Ω .

Example 5. Fig. 1 shows a graphical representation of a merging plan over logic pro-
grams P1, . . . , P5 with primitive merging operators of different arities. It informally
computes the negation of P1 using the unary operator ◦1¬, and unions this with P2 and P3

(using a ternary version of the operator). It then subtracts from this the union of P4

and P5, using set difference. The formal expression for this merging plan is
M = (◦2\, (◦

3
∪, (◦1¬, P1), P2, P3), (◦2∪, P4, P5)).

With merging plans available, we now formalize merging tasks.

Definition 5. A merging task is a quintuple T = 〈KB , ΣC , µ,Ω,M〉, where KB =
KB1, . . . ,KBn are knowledge bases, ΣC is a common signature, µ = µ1, . . . , µn are
belief set conversions µi : 2A(ΣKBi) → 2A(ΣC), Ω is a set of operators, and M ∈
MKB,Ω is a merging plan over KB and Ω.

The set of merging operators Ω is the only component that is, even though it is part
of the formal task definition, usually not specific for a certain merging task in practice.
It rather consists of approved operators which are probably useful in many different
scenarios. The knowledge bases KB will mostly exist before merging is planned and are
often provided by third parties. The components ΣC , µi and M must be defined by the
user as part of he merging scenario formalization.

Using our previous definitions, we define the outcome of a merging task next.

MTL parser
HEX-

program P ∗

external atoms
for nested

HEX-programs

belief bases
KB1,...,KBn

Merging
Task T

dlvhex core
answer

sets

Fig. 2: MELD System Architecture (control flow −→ , data flow 99K)

Definition 6. The result of a merging task T = 〈KB , ΣC , µ,Ω,M〉, denoted as [[T]], is

[[T]] =

{
[µi(BS(M))]ΣCp , if M ∈ KB ,

[◦n,m([[T1]], . . . , [[Tn]], a1, . . . , am)]ΣCp , if M = (◦n,m, s1, . . . , sn, a1, . . . , am),

where [B]ΣCp = {{p(a1, . . . , an) ∈ BS | p = (¬)p′, p′ ∈ ΣC
p } | BS ∈ B} denotes the

projection of B to the atoms over ΣC
p , and Ti = 〈KB , ΣC , µ,Ω, si〉, 1 ≤ i ≤ n.

Informally, if M is an atomic merging plan (i.e., a knowledge base), then it can be
evaluated directly and the result is just the associated set of belief sets, mapped to the
common signature. Otherwise, M contains at least one operator application, and the
result is the one of the topmost operator, applied on the results of the merging sub-plans.

Example 6 (cont’d). Let M be the merging plan from Example 5 and consider programs
P1 = {a., b.}, P2 = {x., y.}, P3 = {¬a., c.}, P4 = {a., x.}, P5 = {c., x., y.}

that consist only of facts (rules p←, omitting←). The complete merging task is T =〈
{P1, . . . , P5}, ΣC , µid, Ω,M

〉
, where the common signature contains the proposi-

tional (0-ary) atoms a, b, c, x and y, all mappings in µid are identity functions (since all
knowledge bases use already the common vocabulary), and Ω = {◦3∪, ◦2\ ◦

1
¬}.

Now we compute the result [[T]] of this merging task as follows. For the sake of
readability, we use [[[M]]] as an abbreviation for [[{P1, . . . , P5}, ΣC , µid, Ω,M]]:

[[〈{P1, . . . , P5}, ΣC , µid, Ω,M〉]] =
◦2\
(
[[[(◦3∪, (◦1¬, P1), P2, P3)]]], [[[(◦2∪, P4, P5)]]]

)
=

◦2\
(
◦3∪([[[(◦1¬, P1)]]], [[[P2]]], [[[P3]]]), [[[(◦2∪, P4, P5)]]]

)
=

· · · = ◦2\ ({{¬a,¬b, c, x, y}}, {{a, c, x, y}}) = {{¬a,¬b}}.
We may view a merging task T as a knowledge base per se by casting it into a knowledge
base in some logic language; e.g., T may be cast to the classical formula ¬a ∧ ¬b.

The examples above are trivial and involve only simple set operations, but still
illustrate the principles. We clearly can use advanced belief merging operators, showing
the usefulness of the framework. We will see this in the following sections.

4 The MELD System

We have implemented our framework in MELD (MErging Library for Dlvhex), using
the infrastructure and possibilities of the dlvhex system to transparently access heteroge-

neous (possibly dispersed) knowledge sources. In MELD, we assume that the knowledge
bases KB i are given as HEX-programs [6]. This has the great advantage that by using
external atoms, the belief sets (which then are answer sets) may contain information
from virtually any knowledge source, e.g. the tuples of a relational database, the triplets
of an RDF ontology, or a model of a propositional formula. The HEX-programs only
serve as an interface to these sources, enabling access to their belief sets (in fact, using
nested HEX-programs described below).

The architecture of MELD is shown in Fig. 2. Essentially the system consists of three
major components: (1) a language for specifying merging tasks in a machine-readable
format; (2) a compiler which translates declarative task descriptions into semantically
equivalent nested HEX-programs, i.e., HEX-programs with program nesting. The program
constructed computes the merged belief sets in its answer sets; and (3) a suite of specific
external atoms developed in dlvhex which allow for executing nested HEX-programs.

The system is realized as a plugin to dlvhex, and provides a user-friendly interface
for the specification of a merging task T = 〈KB , ΣC , µ,Ω,M〉 as defined above. The
knowledge bases KB are given as (nested) HEX-programs, and the merging operators Ω
are implemented as C++ classes. MELD comes with a few predefined operators, and can
be easily extended, using a plugin-mechanism, with user-defined operators in C++. The
components ΣC , µi and R are the most specific parts of a certain merging scenario. All
components are declaratively specified in an INI-style text file (we use here filename
extension .mt), in a dedicated merging task language (MTL), which we discuss below.
Then MELD can be used to compute merging task result according to the semantics
above by executing the command: dlvhex --merging task.mt. The evaluation
of merging tasks will be described below.

Merging Task Language (MTL). To specify merging tasks in a machine-readable
way, we defined the merging task language (MTL). For space reasons, here an in depth
presentation is not possible, and we will illustrate it on examples. More details, including
the complete syntax, can be found on the system’s website (see footnote 1).

Example 7. Consider the merging task description in Fig. 3. It consists of three parts.
– [common signature]: The first part is the common signature, which is a list of

all predicate names with associated arities. Only atoms over these predicates will be
regarded during belief set merging.

– [belief base]: The second part is the declaration of the belief bases. For each
belief base, a unique name and the mapping function to the common signature are
specified, via arbitrarily many mapping rules under the HEX-semantics. The mapping
may be done directly, as for belief bases input1 and input3, or outsourced as in
case of input2. Note that the actual belief sources are not defined directly, as they
are given implicitly and accessed by queries in the rule bodies. E.g., in input1 we
access an RDF file on the web using the external atom &rdf. The mapping rules can
derive arbitrary atoms in the heads (also intermediate atoms), but only those using
predicates listed in the common signature will be regarded during merging.

– [merging plan]: The third part is a tree-structured merging plan, which defines
how to combine the sources, described as a nested expression, with names of belief
bases at the bottom and operators applied to inputs (source). In the example, we first
compute the union of input1 and input2, and subsequently subtract input3.

[common signature]
predicate:foo/1; predicate:bar/3;

[belief base]
name: input1;
mapping: "bar(X, Y, Z) :- &rdf[\’http://...\’](X, Y, Z).";
mapping: "foo(Y) :- &rdf[\’http://...\’](X, Y, Z).";

[belief base]
name: input2;
source: "P2.lp";

[belief base]
name: input3;
mapping: "foo(X) :- &dlC[\’http://...\’,a,b,c,d,\’student\’](X)";

[merging plan] {
operator: setminus;
source: {

operator: setunion; source: {input1}; source: {input2};
};
source: {input3};

}

Fig. 3: Merging Task Description

MELD allows the automatic computation of the merged belief sets according to a
merging plan of this kind a more elaborate example is discussed in Section 5.

Translation to Nested HEX-Programs. We briefly describe how merging task descrip-
tion are evaluated in MELD. The key concept are nested HEX-programs.

We designed a suite of external atoms which allow to evaluate a (possibly nested)
HEX-program P given as input, and to access each answer set of P like an object in the
host program. Thus, processing the answer sets and reasoning over them, inside another
program, is possible. To our knowledge, this is the first ASP language featuring this and
of independent interest. The sub-programs can be executed independently of the host
program, such that their answer is imported into the main program and computation
continued afterwards. We realized nested HEX-programs using handles that refer to
sub-programs, answer sets and their constituents; this is best explained with an example.

Example 8. Consider the following two rules.

h(H ,S)← &hex [“node(a). node(b). edge(a, b).”, “”](H),&answersets[H](S).

p(P,A) ← h(H ,S),&predicates[H ,S](P,A).

The external atom &hex in the first rule is used to execute the sub-program Q given as
string literal “node(a). node(b). edge(a, b).”. It will “return” a unique integer value H
that can be used later on to investigate the answer to Q. Here, this done in the evaluation
of the external atom &answersets , which in turn returns, one by one, a set of unique
handles S that point to the answer sets of Q. In the second rule, we pass each pair (H ,S)
retrieved by the first rule to the external atom &predicates which finds out the names
and arities of the predicates contained in the respective answer set. This well lead to
the atoms p(node, 1) and p(edge, 2). We could go a step further and also retrieve the

&

= 1

= 1

&
≥ 1

•x = 1

•y = 1
•cin = 1

•

s = 0
$

cout=1
"

Fig. 4: Malfunctioning full adder (expected output: s = 1 and cout = 1)

arguments of the atoms in Q’s answer sets, using further external atoms provided by our
plugin. Moreover, by using &hexfile , sub-programs in external files can be included.
Evaluation of merging tasks. We have implemented a transformation which parses a
declarative merging task, specified in MTL, and assembles a semantically equivalent
HEX-program P ∗ that uses program nesting, reflecting the merging plan structure. The
translation is complex and we omit the details here.

Briefly, &hex resp. &hexfile atoms serve as starting point for evaluating atomic
merging plans, i.e., merging plans which consist of a single belief base without operator
applications. For non-atomic merging plans, we compute the result bottom-up like an
arithmetic expression. To this end, we realized an external atom &operator which allows
us to call operators implemented as C++ classes. As answer sets are accessible objects
in our extension, we can pass them from operator to operator until we finally retrieve the
result of the topmost operator, which yields the outcome of the merging plan.

Our implementation automatically assembles and evaluates P ∗ when dlvhex is started
with the --merging option. The input files must contain a merging task description.
For details of the transformation and a proof of the correctness, we refer to [14].

5 Belief Merging in Action

We now consider a more realistic belief merging example in fault diagnosis, which is
a classical KR problem. In the course of this, we consider different merging operators,
which are based on distance functions and give rise to a hierarchically constructed a
family of such operators, and we report how the problem can be solved in MELD.

Example 9 (Circuit Diagnosis). Consider the full adder circuit shown in Fig. 4. Given
input values x = y = 1 and carry input cin = 1, the value of the output carry cout =
1 is correct, but the output sum s should be 1 instead of 0. Any component in the
circuit may be broken, leading to different possible abductive explanations (i.e., fault
assumptions that logically entail the observation): either (1) the XOR gate on the lower
left (xor1), (2) the XOR gate located middle top (xor2), or (3) both xor1 and xor2 are
malfunctioning; the result is not unique.

Here our framework comes into play: different experts may find different explana-
tions. For a collective diagnosis, we must integrate the individual opinions such that
(i) the group explanation is still a valid explanation, and (ii) it is close to the individual
opinions (under a suitable notion).

Suppose we have three experts inspecting the malfunctioning full adder, with in-
dividual explanations AS (P1) = {ab(xor1)}, AS (P2) = {ab(xor2)} and AS (P3) =

[common signature]
predicate:ab/1;

[belief base]
name: expert1;
source: "P1.lp";

[belief base]
name: expert2;
source: "P2.lp";

[belief base]
name: expert3;
source: "P3.lp";

[merging plan] {
operator: dbo; bsdistance: "ignoring";
constraintfile: "fulladder.lp";
constraintfile: "fault.obs";
{expert1}; {expert2}; {expert3};

}

Fig. 5: Group decision problem

{ab(xor1), ab(xor2)}. Informally, expert 1 believes that xor1 is broken, expert 2 sus-
pects xor2 is broken, and expert 3 believes both are broken. Clearly, besides on these
opinions, the overall result depends on the merging operator.
Distance-based merging operators. A popular class of operators is defined using a
distance function for between two interpretations resp. sets of literals. We call such oper-
ators distance-based operators. An example is an adaption of Dalal’s distance between
interpretations [2] (which is their Hamming distance) to |B14B2|, the cardinality of the
symmetric difference of belief sets B1 and B2. For more discussion, see [9].

We build a distance function Dd,d(B,KB) between a belief set B and knowledge
bases KB = KB1, . . . ,KBn in three steps:
1. We start from a distance function d(B1, B2) between two belief sets. Besides the

adapted Dalal distance, which we denote with dal , many other choices are possible
(e.g., weighted distance; we consider two other options below).

2. Next, we define a distance function d on top of d to measure the distance of belief set
B to a knowledge base KB , denoted dd(B,KB), by aggregating the values d(B,B′)
for all belief sets of B′ ∈ BS (KB). Here a popular choice is d = min:

mind(B,KB i) = min
B′∈BS(KBi)

d(B,B′)

i.e., we informally take the distance of B to the closed belief set of KB .
3. For each 1 ≤ i ≤ n, the function dd(B,KB i) yields a distance value; these n values

are aggregated into a single value Dd,d(B,KB). A popular choice for D is the sum:
sumd,d(B,KB) = Σn

i=1dd(B,KB i)

Summarizing, in each step some parameter (d, d, D) can be chosen to arrive
at Dd(B,KB). Given the latter, the following merging operator is straightforward:

∆d,d,D(KB , C) = argmin
B∈C

Dd,d(B,KB),

i.e., selecting among all possible belief sets that satisfy the (application dependent)
constraints C, a belief set B which is at minimum overall distance to KB .
Solving the group decision problem. In MELD, a group decision of the three experts
can be obtained using the above operator ∆d,d,D(KB , C) (named dbo for distance-
based operator there), where the constraints C ensure that the result is still an abductive
explanation. The merging task is specified as follows.

The belief bases with respective belief sets (as answer sets) are in external files Pj.lp.
with answer sets as described above (either hard-coded or suitable computed). As all

external programs deliver belief sets over predicate ab, no mapping functions are
specified; this makes the implementation use identity mappings. The merging plan
applies the previously defined operator on the three individual belief sets, where in MELD
dd = mind andDd,d = sumd,d by default, and d (the distance between two belief sets) is
defined in the bsdistance-statement. Setting bsdistance to dal gives us the adapted
Dalal distance dal. The group decision is then {{ab(xor1)}, {ab(xor2)}}; either xor1 or
xor2 is defect. Omitting formal details, the value ignoring for bsdistance penalizes
situations where atoms from individual belief sets are missing in the group decision
candidate. This results in the group decision {{ab(xor1), ab(xor2)}}: it satisfies all
three experts completely - no beliefs are ignored, thus has distance 0.

Besides ignoring and dal, MELD supports the option unfounded, which penal-
izes situations where the group decision candidate contains atoms not occurring in
an individual belief set. This will yield the result {{ab(xor1)}, {ab(xor2)}}. Each
explanation is minimal, as its single atom is unfounded for only one of the experts.

This example demonstrates the advantages of the framework and its implementation
compared to hard-coding: It is easy to prototype merging scenarios and quickly change
merging operators and parameters. If we would like to add further expert opinions or
sub-divide the group into sub-groups and aggregate the decisions hierarchically, this
could be easily done by modifying the .mt file accordingly.

6 Evaluation and Experiments

We take a closer look at MELD regarding performance and usefulness in practice. The
runtime behavior is less an issue for two reasons. First, the system is intended to serve
as a rapid prototyping tool to support the user when experimenting and evaluating
different merging strategies. For a production version, a hard-coded implementation can
be considered after an optimal setting has been found. Second, the behavior is largely
determined by the merging operators in use, as the information flow in between and
the translation of formal merging tasks to nested HEX-programs are both linear in the
number of belief bases and the sizes of their answer sets. Also evaluating the assembled
program P ∗ is not a big issue as its structure is fairly simple. The merging operators
are application dependent and can be implemented and optimized by the user, so our
framework does not cause notable overhead. We now describe real world tasks which
can be solved by MELD with merging task descriptions similar to Example 9.
Decision diagram merging. Decision diagrams are an important tool for decision
making in many fields of science. This is because compared to other formalisms (e.g.
production rules) they are intuitive even for non-professionals in knowledge engineering.
Biomedical examples include severity ratings of diseases depending on patient data (in
particular tumor staging systems [19]), DNA classification (coding vs. junk DNA), and
aids for therapy selection. Another frequent application domain is business and economy
(e,g., liquidity appraisal in economics [1]).

Informally, a decision diagram is are rooted directed acyclic graph D = (V,R).
Each edge in E is labeled with a condition X3Y , where 3 is a comparison operator
and X and Y are variables or values from suitable domains. For example, b ≤ 12.5 may
compare a blood value b of a patient to the maximum value for healthy people, and each

leaf (a node without out-edges) of D is tagged with a class label. Clearly, D must satisfy
further structural and semantic conditions, but we simply omit this here.

To classify an instance, one starts at the root (the only node without in-edges) and
follows an edge iff its condition is satisfied. This is repeated until a leaf is reached; there
one reads the assigned class. Sometimes we have multiple similar but non-equivalent
diagrams, e.g. due to different expert opinions or different training sets if the diagrams
stem from machine-learning tools. It becomes then necessary to incorporate the input
classifiers into a single one. If we encode decision diagrams as sets of facts (e.g., over
predicates leaf (X, C), innernode(X,Y), etc.) and provide merging operators tailored
for decision diagrams (and decode the encodings internally), the merging can clearly be
done automatically using MELD. This is a great advantage if it is not clear right from
the beginning which training algorithms and merging strategies behave best.

As a concrete example we consider a popular approach to classify protein-coding
DNA sequences [17]. One first computes numerical features of the sequences in a large
annotated training set T , which are known to vary significantly between coding and
non-coding DNA for biological reasons. We used 20 numerical features proposed by [12].
They are computed for a set of sequences of 54 bases each. Subsequently, one trains a
decision diagram D over these features; we will work with decision trees here, which
are a special form of decision diagrams. When a new sequence needs to be classified,
one computes the feature values and runs through D.

Here our framework comes into play, realizing an idea discussed in [18]. Instead
of training a single decision tree over T , first split T into subsets T1, . . . , Tn and train
classifiers D1, . . . , Dn on them (thus fostering parallelization); then merge the Di into a
single tree D. We found that combining several classifiers trained by different machine-
learning algorithms may significantly improve the final result. This is not always true, but
depends on the training set T , the selection of learners, and the merging procedure. Some
combinations may increase the accuracy compared to a single tree trained over T , while
others decrease it. However, this exactly demonstrates the strengths of our framework: it
is easy to try out several different scenarios and evaluate the results empirically, while
the technical details of the merging process are managed by MELD.

For training data extracted from the Human-Genome Project, we achieved our
optimal result using a merging operator inspired by the algorithm in [1] and three input
trees trained over only 10 sequences each (hence each tree queried only the feature
with highest entropy), gaining an accuracy increase from 48.85% to 65.25%; see [15]
for details. Many other approaches based on statistical features were developed; in
comparison, our result is fairly good. Most of them produce a classifier with accuracy
only slightly above 70%, see e.g., [17], including recent ones [20, 21]; this suggests that
there may be a close by natural limit for statistical features.

A further finding of our experiments is that by training multiple classifiers and
merging them afterwards, mostly a much smaller training set (in total) suffices to gain
the same accuracy as by training a single classifier; e.g., for an accuracy of 65.25%, the
latter needed several hundred sequences (compared to 30). Furthermore, the merged
decision tree usually has a lower depth than a tree created over a single, but larger training
set. Obtaining these results would have been much harder without the framework, since
the merging of the classifiers had to be done by hand after each change of parameters.

Our merging operator implements an algorithm developed in [18] and realized in the
MORGAN system. But in contrast to MORGAN, where the algorithm is implemented
directly as part of the main system, MELD sources it out into an operator library. This
simplifies the implementation of further merging strategies and exchanging them easily.
Judgment aggregation. In Section 4 we have seen how to incorporate individual beliefs
into a group decision; this is a common problem in social choice theory [3]. Realistic ap-
plications include planning of group activities with individual preferences, and diagnosis
making by teams of several doctors.
Syntactic belief merging. We distinguished syntactic belief merging approaches, i.e.,
merging sets of formulas or programs, and semantic approaches. Even if our framework
is essentially semantic, we may also use it for syntactic tasks by using an appropriate
encoding of formulas or programs. That is, we encode the knowledge base as sets
of literals. This allows us to use MELD for (e.g. talking about the same domain but
focusing on different details), we need to combine them into a single ontology [22].
Given appropriate merging operators which decode the ontologies represented by literal
sets internally, this task can clearly be supported by MELD. To vary the ordering of the
sources is then easy. If the merging operator is not commutative and associative or if we
have multiple alternative operators, the quality of the final ontology can vary as well,
and we may find the best one by empirically using MELD.

7 Related Work and Conclusion

While the theory of belief merging has a rich literature, only few implemented systems
are available. In [8], the authors present an implementation of Removed Set Fusion
based merging of logic programs by translating sets of logic programs into a single logic
program, whose answer sets correspond to removed sets. Compared to our approach,
this method uses a syntactic strategy for merging belief bases and has a fixed semantics.

COBA [4] handles belief revision rather than merging. Its approach to finding con-
sistent models is similar to our implementation of distance-based operators in Section 4.
In contrast to our generic framework, COBA uses a fixed semantics.

The MORGAN system [18] was used to merge DNA classification trees. The merg-
ing operator we used for our experiments is almost equivalent to this system. However,
while we implemented the algorithm as merging operator for our flexible framework,
MORGAN is hard-coded. Therefore it is easy to modify parameters and make experi-
ments with different settings in our system. The changes only concern the declarative
task description, while in MORGAN one needs to rewrite the main source files.

Our approach works semantically, i.e., it does not merge logic programs but inter-
pretations of the programs. Nevertheless, by encoding formulas as literals one can also
implement syntactic strategies within the framework. Future work will include address-
ing performance issues which was neglected so far since the main goal was flexibility.
Another possible extension is the implementation of additional merging operators. This
increases the chance that the user will find a suitable one and avoids that she needs to
implement it on his own. Also support for syntactic strategies for belief merging may be
fruitfully deployed in our framework. Additionally, the merging task language may be
extended by further language constructs like iterative application of operators.

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.:
Algebraic decision diagrams and their applications. In: ICCAD’93. pp. 188–191 (1993)

2. Dalal, M.: Investigations into a theory of knowledge base revision. In: AAAI. 475–479 (1988)
3. Dasgupta, P.S., Hammond, P.J., Maskin, E.S.: The implementation of social choice rules:

Some general results on incentive compatibility. Rev. Econ. Stud. 46(2), 185–216 (1979)
4. Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: A Consistency-Based Belief

Change System. In: ECSQARU’07. pp. 78–90. Springer (2007)
5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order

reasoning and external evaluations in answer-set programming. In: IJCAI’05. 90–96 (2005)
6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A system for integrating multiple

semantics in an answer-set programming framework. In: WLP’06. pp. 206–210 (2006)
7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generat. Comput. 9(3–4), 365–385 (1991)
8. Hué, J., Papini, O., Würbel, E.: Merging belief bases represented by logic programs. In:

ECSQARU’09. pp. 371–382. Springer (2009)
9. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. AIJ 157(1-2), 49–79 (2004)

10. Konieczny, S., Pérez, R.P.: On the logic of merging. In: KR’98. pp. 488–498 (1998)
11. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Trans.

Knowl. Data Eng. 10(1), 76–90 (1998)
12. Liew, A.W.C., Wu, Y., Yan, H.: Selection of statistical features based on mutual information

for classification of human coding and non-coding DNA sequences. In: ICPR. 766–769 (2004)
13. Lin, J., Mendelzon, A.: Knowledge base merging by majority. In: Dynamic Worlds: From the

Frame problem to Knowledge Management. Kluwer (1999)
14. Redl, C.: Development of a belief merging framewerk for dlvhex. Master’s thesis, Vienna

University of Technology, A-1040 Vienna, Karlsplatz 13 (June 2010), http://media.
obvsg.at/AC07808210-2001

15. Redl, C.: Merging of biomedical decision diagrams. Master’s thesis, Vienna University of
Technology, A-1040 Vienna, Karlsplatz 13 (October 2010), http://media.obvsg.at/
AC07808795-2001

16. Revesz, P.: On the semantics of arbitration. Intl. J. Algebra Comput. 7(2), 133–160 (1997)
17. Salzberg, S.: Locating protein coding regions in human DNA using a decision tree algorithm.

J. Comput. Biol. 2, 473–485 (1995)
18. Salzberg, S., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding

genes in DNA. J. Comput. Biol. 5(4), 667–680 (1998)
19. Sobin, L., Gospodarowicz, M., Wittekind, C.: TNM Classification of Malignant Tumours.

Wiley, 7 edn. (2009)
20. Sree, P.K., Babu, I.R., Murty, J.V.R., Rao, P.S.: Towards an artificial immune system to

identify and strengthen protein coding region identification using cellular automata classifier.
Intl. J. Comput. Commun. 1(2), 26–34 (2007)

21. Sree, P.K., Babu, I.R.: Identification of protein coding regions in genomic DNA using unsuper-
vised FMACA based pattern classifier. Intl. J. Comp. Sci. Netw. Secur. 8(1), 305–309 (2008)

22. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontologies. In: IJCAI’01,
pp. 225–230 (2001)

