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Abstract

hex-programs are an extension of answer set programs (ASP) with external sources. To this end,
external atoms provide a bidirectional interface between the program and an external source. The
traditional evaluation algorithm for hex-programs is based on guessing truth values of external
atoms and verifying them by explicit calls of the external source. The approach was optimized
by techniques that reduce the number of necessary verification calls or speed them up, but the
remaining external calls are still expensive. In this paper, we present an alternative evaluation
approach based on inlining of external atoms, motivated by existing but less general approaches
for specialized formalisms such as DL-programs. External atoms are then compiled away such
that no verification calls are necessary. The approach is implemented in the dlvhex reasoner.
Experiments show a significant performance gain. Besides performance improvements, we further
exploit inlining for extending previous (semantic) characterizations of program equivalence from
ASP to hex-programs, including those of strong equivalence, uniform equivalence, and 〈H,B〉-
equivalence. Finally, based on these equivalence criteria, we characterize also inconsistency
of programs w.r.t. extensions. Since well-known ASP extensions (such as constraint ASP) are
special cases of hex, the results are interesting beyond the particular formalism.

KEYWORDS: answer set programming, external computation, hex-programs, inlining,
equivalence

1 Introduction

hex-programs extend answer set programs (ASP) as introduced by Gelfond and Lifschitz

(1991) with external sources. Like ASP, hex-programs are based on nonmonotonic pro-

grams and have a multi-model semantics. External sources are used to represent knowl-

edge and computation sources such as, for instance, description logic ontologies and Web

resources. To this end, so-called external atoms are used to send information from the

logic program to an external source, which returns values to the program. Cyclic rules

that involve external atoms are allowed, such that recursive data exchange between the

program and external sources are possible. A concrete example is the external atom

&edge[g](x, y) which evaluates to true for all edges (x, y) contained in a graph that is

stored in a file identified by a filename g.
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The traditional evaluation procedure for hex-programs is based on rewriting exter-

nal atoms to ordinary atoms and guessing their truth values. This yields answer set

candidates that are subsequently checked to ensure that the guessed values coincide

with the actual semantics of the external atoms. Furthermore, an additional minimality

check is necessary to exclude self-justified atoms, which involves even more external calls.

Although this approach has been refined by integrating advanced techniques for learn-

ing (Eiter et al. 2012) and efficient minimality checking (Eiter et al. 2014), which tightly

integrate the solver with the external sources and reduce the number of external calls, the

remaining calls are still expensive. In addition to the complexity of the external sources

themselves, overhead on the implementation side, such as calls of external libraries and

cache misses after jumps out of core algorithms, may decrease efficiency compared to

ordinary ASP.

In this paper, we present a novel method for hex-program evaluation based on inlining

of external atoms. In contrast to existing approaches for DL-programs (Heymans et al.

2010; Xiao and Eiter 2011; Bajraktari et al. 2017), our’s is generic and can be applied to

arbitrary external sources. Therefore, it is interesting beyond hex-programs and also ap-

plicable to specialized formalisms such as constraint ASP (Gebser et al. 2009; Ostrowski

and Schaub 2012). The approach uses support sets (cf., e.g., Darwiche and Marquis

(2002)), that is, sets of literals that define assignments of input atoms that guarantee

that an external atom is true. Support sets were previously exploited for hex-program

evaluation (Eiter et al. 2014); however, this was only for speeding up but not for elimi-

nating the necessary verification step. In contrast, our new approach compiles external

atoms away altogether such that there are no guesses at all that need to be verified, that

is, the semantics of external atoms is embedded in the ASP. We use a benchmark suite

to show significant performance improvements for certain classes of external atoms.

Next, we have a look at equivalence notions for ASP such as strong equivalence

(Lifschitz et al. 2001), uniform equivalence (Eiter and Fink 2003), and the more gen-

eral notion of 〈H,B〉-equivalence (Woltran 2008); all these notions identify programs as

equivalent also w.r.t. program extensions. Equivalence notions have received quite some

attention and in fact have also been developed for other formalisms such as abstract argu-

mentation (Baumann et al. 2017). Thus it is a natural goal to also use equivalence notions

from ordinary ASP for hex-programs (and again, also special cases thereof), which turns

out to be possible based on our inlining approach. We are able to show that equivalence

can be (semantically) characterized similarly as for ordinary ASP. To this end, we show

that the existing criteria for equivalence of ASP characterize also the equivalence of hex-

programs. Based on the equivalence characterization of hex-programs, we further derive

a (semantic) characterization of inconsistency of a program w.r.t. program extensions,

which we call persistent inconsistency. More precisely, due to nonmonotonicity, an in-

consistent program can in general become consistent when additional rules are added.

Our notion of persistent inconsistency captures programs which remain inconsistent even

under (certain) program extensions. While the main results are decision criteria based on

programs and their reducts, we further derive a criterion for checking persistent incon-

sistency based on unfounded sets. Unfounded sets are sets of atoms which support each

other only cyclically and are often used in implementations to realize minimality checks

of answer sets. Thus, a criterion based on unfounded sets is convenient in view of prac-

tical applications in the course of reasoner development; we discuss one such application

at the end of this paper.
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362 C. Redl

To summarize the main contributions, we present

(1) a technique for external source inlining and three applications thereof, namely

(2) a new evaluation technique for hex-programs,

(3) a generalization of equivalence characterizations from ASP to hex-programs, and

(4) a novel notion of inconsistency of hex-programs w.r.t. program extensions and an

according characterization.

Here, item (1) is the foundation for the contributions in items (2)–(4).

After the preliminaries in Section 2 we proceed as follows:

• In Section 3, we show how external atoms can be inlined (embedded) into a pro-

gram. To handle nonmonotonicity we use a saturation encoding based on support

sets. For the sake of a simpler presentation we first restrict the discussion to positive

external atoms and then extend our approach to handle also negated ones.

• In Section 4, we exploit this approach for performance gains. To this end, we imple-

ment the approach in the dlvhex system and perform an experimental evaluation,

which shows a significant speedup for certain classes of external atoms. The speedup

is both over traditional evaluation and over a previous approach based on support

sets for guess verification.

• As another application of the inlining technique, Section 5 characterizes equivalence

of hex-programs, which generalizes results by Woltran (2008). The generalizations

of strong (Lifschitz et al. 2001) and uniform equivalence (Eiter and Fink 2003)

correspond to special cases thereof.

• In Section 6, we present a characterization of inconsistency of hex-programs

w.r.t. program extensions, which we call persistent inconsistency. This character-

ization is derived from the previously presented notion of equivalence. We then

discuss an application of the criteria in context of potential further improvements

of the evaluation algorithm.

• Section 7 discusses related work and concludes the paper.

• Proofs are outsourced to the Appendix.

A preliminary version of the results in this paper has been presented at AAAI 2017 (Redl

2017b; Redl 2017c); the extensions in this work consist of more extensive discus-

sions of the theoretical contributions, additional experiments, and formal proofs of the

results.

2 Preliminaries

Our alphabet consists of possibly infinite, mutually disjoint sets of constant symbols C,
predicate symbols P, and external predicates X ; in this paper, we refrain from using

variables in the formal part, as will be justified below.

In the following, an (ground) ordinary atom a is of form p(c1, . . . , c�) with predicate

p ∈ P and constant symbols c1, . . . , c� ∈ C, abbreviated as p(c); we write c ∈ c if c = ci for

some 1 ≤ i ≤ �. For � = 0 we might drop the parentheses and write p() simply as p. In the

following we may drop “ordinary” and call it simply an atom whenever clear from context.

An assignment Y over a set A of atoms is a set Y ⊆ A, where a ∈ Y expresses that a is

true under Y , also denoted Y |= a, and a �∈ Y that a is false, also denoted Y �|= a. For a

default-literal not a over an atom a we let Y |= not a if Y �|= a and Y �|= not a otherwise.
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hex-programs. We recall hex-programs (Eiter et al. 2016), which generalize (disjunc-

tive) logic programs under the answer set semantics (Gelfond and Lifschitz 1991), as

follows.

Syntax. hex-programs extend ordinary ASP by external atoms which provide a bidirec-

tional interface between the program and external sources. A ground external atom is

of the form &g [p](c), where &g ∈ X is an external predicate, p = p1, . . . , pk is a list of

input parameters (predicates from P or object constants from C), called input list, and

c = c1, . . . , cl are output constants from C.
Definition 1

A hex-program P consists of rules

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

where each ai is an ordinary atom and each bj is either an ordinary atom or an external

atom.

For such a rule r, its head is H(r) = {a1, . . . , ak}, its body is B(r) = {b1, . . . , bm,

not bm+1, . . . , not bn}, its positive body is B+(r) = {b1, . . . , bm}, and its negative

body is B−(r) = {bm+1, . . . , bn}. For a program P we let X(P ) =
⋃

r∈P X(r) for

X ∈ {H,B,B+, B−}.
For a program P and a set of constants C, let HBC(P ) denote the Herbrand base

containing all atoms constructible from the predicates occurring in P and constants C.
We restrict the formal discussion to programs without variables as suitable safety

conditions guarantee the existence of a finite grounding that suffices for answer set com-

putation, see, for example, Eiter et al. (2016).

Semantics. In the following, assignments are over the set of ordinary atoms constructible

from predicates P and constants C. The semantics of an external atom &g [p](c). w.r.t. an

assignment Y is given by the value of a decidable 1+k+l-ary two-valued (Boolean) oracle

function f&g that is defined for all possible values of Y , p, and c. We say that &g [p](c)

is true relative to Y if f&g(Y,p, c) = T, and it is false otherwise. We make the restriction

that f&g(Y,p, c) = f&g(Y
′,p, c) for all assignments Y and Y ′ which coincide with all

atoms over predicates in p. That is, only atoms over the predicates in p may influence

the value of the external atom, which resembles the idea of p being the “input” to the

external source; we call such atoms also the input atoms of &g [p](c).

Satisfaction of ordinary rules and ASP (Gelfond and Lifschitz 1991) is then extended

to hex-rules and hex-programs as follows. A rule r as by Definition 1 is true under Y ,

denoted Y |= r, if Y |= h for some h ∈ H(r) or Y �|= b for some b ∈ B(r).

The answer sets of a hex-program P are defined as follows. Let the FLP-reduct of P

w.r.t. an assignment Y be the set fPY = {r ∈ P | Y |= b for all b ∈ B(r)}. Then:
Definition 2

An assignment Y is an answer set of a hex-program P if Y is a subset-minimal model

of the FLP-reduct fPY of P w.r.t. Y .

Example 1

Consider the program P = {p ← &id [p]()}, where &id [p]() is true iff p is true. Then P

has the answer set Y1 = ∅; indeed it is a subset-minimal model of fPY1 = ∅.
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364 C. Redl

For an ordinary program P , the above definition of answer sets is equivalent to Gel-

fond and Lifschitz’s answer sets.

Traditional evaluation approach. A hex-programs P is transformed to an ordinary

ASP P̂ as follows. Each external atom &g [p](c) in P is replaced by an ordinary replace-

ment atom e&g[p](c) and a rule e&g[p](c)∨ne&g[p](c)← is added. The answer sets of the

resulting guessing program P̂ are computed by an ASP solver. However, the assignment

Y extracted from an answer set Ŷ of P̂ by projecting it to the ordinary atoms A(P ) in P

may not satisfy P as &g [p](c) under f&g may differ from the guessed value of e&g[p](c).

The answer set is merely a candidate. If a compatibility check against the external source

succeeds, it is a compatible set as formalized as follows:

Definition 3

A compatible set of a program P is an answer set Ŷ of the guessing program P̂ such that

f&g(Ŷ ,p, c) = T iff e&g[p](c) ∈ Ŷ for all external atoms &g [p](c) in P .

Example 2

Consider P = { p(a) ∨ p(b) ← &atMostOne[p]() }, where &atMostOne[p]() is true

under an assignment Y if {p(a), p(b)} � Y , that is, at most one of p(a) or p(b)

is true under Y , and it is false otherwise. Then we have P̂ = {p(a) ∨ p(b) ←
e&atMostOne[p]; e&atMostOne[p] ∨ ne&atMostOne[p]←}, which has the answer sets Ŷ1 =

{p(a), e&atMostOne[p]}, Ŷ2 = {p(b), e&atMostOne[p]}, and Ŷ3 = {ne&atMostOne[p]} (while

{p(a), p(b), e&atMostOne[p]} is not an answer set of P̂ ). However, although Ŷ3 is an an-

swer set of P̂ , its projection Y3 = ∅ to atoms A(P ) in P is not an answer set of P because

Y3 |= &atMostOne[p]() but e&atMostOne[p] �∈ Ŷ3, and thus, the compatibility check for Ŷ3

fails. In contrast, the compatibility checks for Ŷ1 and Ŷ2 pass, that is, they are compatible

sets of P , and their projections Y1 = {p(a)} and Y2 = {p(b)} to atoms A(P ) in P are

answer sets of P .

However, if the compatibility check succeeds, the projected interpretation is not always

automatically an answer set of the original program. Instead, after the compatibility

check of an answer set Ŷ of P was passed, another final check is needed to guarantee

also subset-minimality of its projection Y w.r.t. fPY . Each answer set Y of P is the

projection of some compatible set Ŷ to A(P ), but not vice versa.

Example 3

Reconsider P = { p ← &id [p]() } from above. Then P̂ = {p ← e&id[p](); e&id[p] ∨
ne&id[p] ← } has the answer sets Ŷ1 = {ne&id[p]} and Ŷ2 = {p, e&id[p]}. Here, Y1 = ∅ is a
⊆-minimal model of fPY1 = ∅, but Y2 = {p} not of fPY2 = P .

There are several approaches for checking this minimality, for example, based on

unfounded sets, which are sets of atoms that support each other only cyclically (Faber

2005). However, the details of this check are not relevant for this paper, which is why

we refer the interested reader to Eiter et al. (2014) for a discussion and evaluation of

various approaches.

Learning techniques. In practice, the guessing program P̂ has usually many answer

sets, but many of them fail the compatibility check against external sources (often because

of the same wrong guess), which turns out to be an evaluation bottleneck. To overcome
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the problem, techniques that extend conflict-driven learning have been introduced as

external behavior learning (EBL) (Eiter et al. 2012).

As in ordinary ASP solving, the traditional hex-algorithm translates the guessing

program to a set of nogoods, that is, a set of literals that must not be true at the same time.

Given this representation, techniques from SAT solving are applied to find an assignment

that satisfies all nogoods (Gebser et al. 2012). Notably, as the encoding as a set of

nogoods is of exponential size due to loop nogoods that avoid cyclic justifications of atoms,

those parts are generated only on-the-fly. Moreover, additional nogoods are learned from

conflict situations, that is, violated nogoods that cause the solver to backtrack; this is

called conflict-driven nogood learning, see, for example, Franco and Martin (2009).

EBL extends this algorithm by learning additional nogoods not only from conflict situ-

ations in the ordinary part, but also from verification calls to external sources. Whenever

an external atom e&e[p](c) is evaluated under an assignment Y for the sake of compat-

ibility checking, the actual truth value under the assignment becomes evident. Then,

regardless of whether the guessed value was correct or not, one can add a nogood that

represents that e&e[p](c) must be true under Y if Y |= &e[p](c) or that e&e[p](c) must

be false under Y if Y �|= &e[p](c). If the guess was incorrect, the newly learned nogood

will trigger backtracking; if the guess was correct, the learned nogood will prevent future

wrong guesses.

Example 4

Suppose &atMostOne[p]() is evaluated under Y = {p(a), p(b)}. Then the real truth value

of &atMostOne[p]() under Y becomes evident: in this case Y �|= &atMostOne[p](). One

can then learn the nogood {p(a), p(b), e&atMostOne[p]()} to represent that p(a), p(b), and

&atMostOne[p]() cannot be true at the same time.

Learning realizes a tight coupling of the reasoner and the external source by adding

parts of the semantics on demand to the program instance, which is similar to theory

propagation in SMT (see, e.g., Nieuwenhuis and Oliveras (2005)) and lazy clause genera-

tion (Ohrimenko et al. 2009; Drescher and Walsh 2012). However, while these approaches

consider only specific theories such as integer constraints, EBL in hex supports arbitrary

external sources. Moreover, EBL does not depend on application-specific procedures for

generating learned clauses but rather derives them from the observed behavior of the

source. Experimental results show that EBL leads to a significant, up to exponential

speedup, which is explained by the exclusion of up to exponentially many guesses by

the learned nogoods, but the remaining verification calls are still expensive and – de-

pending on the type of the external source – can account for large parts of the overall

runtime (Eiter et al. 2014).

Evaluation based on support sets. Later, an alternative evaluation approach was de-

veloped. While the basic idea of guessing the values of external atoms as in the traditional

approach remains, the verification is now accomplished by using so-called support sets

instead of explicit evaluation (Eiter et al. 2014). Here, a positive resp. negative support

set for an external atom e is a set of literals over the input atoms of e whose satisfaction

implies satisfaction resp. falsification of e. Informally, the verification is done by checking

whether the answer set candidate matches with a support set of the external atom. If

this is the case, the guess is verified resp. falsified.
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More precisely, for a set S of literals a or ¬a, where a is an atom, let ¬S = {¬a | a ∈
S} ∪ {a | ¬a ∈ S} be the set of literals S with swapped sign. We call a set S of literals

consistent if there is no atom a such that {a,¬a} ⊆ S. We formalize support sets as

follows:

Definition 4 (Support set)

Let e = &g [y](x) be an external atom in a program P . A support set for e is a consistent

set Sσ = S+
σ ∪ S−σ with σ ∈ {T,F}, S+

σ ⊆ HBC(P ), and S−σ ⊆ ¬HBC(P ) s.t. Y ⊇ S+
σ

and Y ∩ ¬S−σ = ∅ implies Y |= e if σ = T and Y �|= e if σ = F for all assignments Y .

We call the support set Sσ positive if σ = T and negative if σ = F.

Example 5

Suppose &diff [p, q](c) computes the set of all elements c that are in the extension1 of p

but not in that of q. Then {p(a),¬q(a)} is a positive support set for &diff [p, q](a) because

any assignment Y with {p(a)} ⊆ Y but Y ∩ {q(a)} = ∅ satisfies &diff [p, q](a).

We are in particular interested in families (=sets) of support sets which describe the

behavior of external atoms completely.

Definition 5 ((Complete) support set family)

A positive resp. negative family of support sets Sσ with σ ∈ {T,F} for external atom e

is a set of positive resp. negative support sets of e; Sσ is complete if for each assignment

Y with Y |= e resp. Y �|= e there is an Sσ ∈ Sσ s.t. Y ⊇ S+
σ and Y ∩ ¬S−σ = ∅.

Complete support set families Sσ can be used for the verification of external atoms as

follows. One still uses the rewriting P̂ , but instead of explicit evaluation and comparison

of the guess of a replacement atom to the actual value under the current assignment, one

checks whether for some Sσ ∈ Sσ we have Y ⊇ S+
σ and Y ∩ ¬S−σ = ∅ for the current

assignment Y . If this is the case, the external atom must be true if σ = T and false

if σ = F; otherwise, it must be false if σ = T and true if σ = F. This method is in

particular advantageous if the support sets in Sσ are small and few.

As a further improvement, positive support sets ST for &g [p](c) can be added as

constraints ← S+
T , {not a | ¬a ∈ S−T}, not &g [p](c) to the program in order to exclude

false-negative guesses. Analogously, for negative support sets we can add ← S+
F , {not a |

¬a ∈ S−F },&g [p](c) to exclude false-positive guesses. This was exploited in existing ap-

proaches for performance improvements (Eiter et al. 2014); we will also use this technique

in Section 4 when comparing our new approach to the previous support-set-based ap-

proach. This amounts to a learning technique similar to EBL. However, note that this

learns only a fixed number of nogoods at the beginning, while learning by EBL is not done

here as external sources are not evaluated during solving. Note that even if all ST ∈ ST
are added as constraints, the verification check is still necessary. This is because adding

a positive support set ST as a constraint eliminates only false-negative guesses, but not

false-positive guesses (since they encode only when the external atom is true but not

when it is false). Conversely, adding all SF ∈ SF prevents only false-positive guesses but

not false-negative ones.

1 The extension of a (unary) predicate p w.r.t. an assignment Y is the set {c | p(c) ∈ Y }; likewise for
predicates with other arities.
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The approach was also lifted to the non-ground level (Eiter et al. 2014). Intuitively,

non-ground support sets may contain variables as shortcuts for all ground instances.

Prior to the use of non-ground support sets, the variables are substituted by all relevant

constants that appear in the program. However, in the following we restrict the formal

discussion to the ground level for simplicity.

To summarize, improvements in the traditional evaluation approach (learning) have

reduced the number of verification calls, and the alternative support set approach has

replaced explicit verification calls by matching an assignment with support sets, but

neither of them did eliminate the need for guessing and subsequent verification altogether.

In the next section we go a step further and eliminate this need.

Construction of support sets. Obviously, in order to make use of support sets

there must be procedures that can effectively and efficiently construct them, which is

why we have a look at this aspect. Constructing support sets depends on the external

source (Eiter et al. 2014). In general, the developer of an external atom is aware of its

semantic structure, which usually allows her/him to provide this knowledge in the form

of support sets. Then, providing support sets can be seen as an alternative way to define

and implement oracle functions. For certain classes of external atoms, procedures for

constructing support sets are in fact already in place.

Compactness of families of support sets is an important aspect for evaluation tech-

niques based on families of support sets. It is therefore crucial for the approach by

Eiter et al. (2014) and our contribution that, although there may be exponentially many

support sets in the worst case, many realistic external sources have small support set fam-

ilies. For certain types of external sources, their small size is even provable and known

before evaluating the program. External sources with provably small support set families

include, for instance, the description logic DL-LiteA (Calvanese et al. 2007). Generally,

support set families tend to be small for sources whose behavior is structured, that is,

whose output often depends only on parts of the input and does not change completely

with small changes in the input (Eiter et al. 2014). Note that such a structure in many re-

alistic applications is also the key to parameterized complexity. In this paper, we focus on

such sources; also the sources used in our benchmarks are guaranteed to have small fam-

ilies of support sets (whose sizes we will discuss together with the respective benchmark

results).

As an example we have a closer look at constructing support sets for a DL-LiteA-
ontology that is accessed from the logic program using dedicated external atoms (also

called DL-atoms (Eiter et al. 2008)). DL-atoms allow for answering queries over the

ontology under an (possibly) extended Abox based on input from the program. We use

the external atom &DL[ont , inpc, inpr , con](X) to access an ontology ont and retrieve

all individuals X in the concept con, where the binary resp. ternary predicates inpc and

inpr allow for answering the query under the assumption that certain concept resp. role

assertions are added to the Abox of the ontology before answering the query. More

precisely, the query is answered w.r.t. an assignment Y under the assumption that concept

assertion c(i) is added for each inpc(c, i) ∈ Y and role assertion r(i1, i2) is added for each

inpr(r, i1, i2) ∈ Y .

For instance, suppose the program contains atoms of form inpc(“Person ′′, ·) to specify

persons and atoms of form inpr(“childOf ′′, ·, ·) to specify parent–child relations. Then

the external atom &DL[ont , inpc, inpr , “OnlyChild ′′](X) queries all members of concept
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OnlyChild under the assumption that concepts Person and roles childOf have been

extended according to the truth values of the inpc and inpr atoms in the program.2

For this type of description logic, Calvanese et al. (2007) have proven that at most

one assertion is needed to derive an instance query from a consistent ontology. Hence, for

each concept c and individual i there is a (positive) support set either of form ∅ or of form
{p(x)}, where the latter encodes that if p(x) ∈ Y , then Y |= &DL[ont , inpc, inpr , c](i) for

all assignments Y . Moreover, at most two added ABox assertions are needed to make such

an ontology inconsistent (in which case all queries are true). For each possibility where

the ontology becomes inconsistent there is a (positive) support set of form {p(x), p′(x′)}.
Then, each support set is of one of only three different forms, which are all at most binary.

Moreover, Lembo et al. (2011) have proven that the number of different constants ap-

pearing in x resp. x′ in these support sets is limited by three. The limited cardinality and

number of constants also limit the number of possible support sets required to describe

the overall ontology to a quadratic number in the size of the program and the Abox.

Moreover, as one can see, the support sets are easy to construct by a syntactic analysis

of the ontology and the DL-atoms. For details regarding the construction of support sets

for DL-LiteA we refer to Eiter et al. (2014).

3 External source inlining

In this section, we present a rewriting which compiles hex-programs into equivalent or-

dinary ASP (modulo auxiliary atoms) based on support sets, and thus embeds external

sources into the program; we call the technique inlining. Due to nonmonotonic behavior

of external atoms, inlining is not straightforward. In particular, it is not sufficient to sub-

stitute external atoms by ordinary replacement atoms and derive their truth values based

on their support sets, which is surprising at first glance. Intuitively, this is because rules

that define replacement atoms can be missing in the reduct and it is not guaranteed any

longer that the replacement atoms resemble the original semantics; we will demonstrate

this in more detail in Section 3.1. Afterwards we present a sound and complete encoding

based on the saturation technique (cf., e.g., Eiter et al. (2009)) in Section 3.2.

3.1 Observations

We start with observations that can be made when attempting to inline external sources

in a straightforward way. The first intuitive attempt to inline an external atom e might be

to replace it by an ordinary atom xe and add rules of kind xe ← L, where L is constructed

from a positive support set ST of e by adding S+
T as positive atoms and S−T as default-

negated ones. However, this alone is in general incorrect even if repeated for all ST ∈ ST
for a complete family of support sets ST, as the following example demonstrates.

Example 6

Consider P = {a← &true[a]()} where e = &true[a]() is always true; a complete family of

positive support sets is ST = {{a}, {¬a}}. The program is expected to have the answer

2 This is often written as DL[ont ;Person�p, childOf �c;OnlyChild ](X) using a more convenient syntax
tailored to DL-atoms, where additions to concepts and rules are expressed by operator �, and p and
c are unary and binary (instead of binary and ternary) predicates, respectively.
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set Y = {a}. However, the translated program P ′ = {xe ← a; xe ← not a; a← xe} has
no answer set because the only candidate is Y ′ = {a, xe} and fP ′Y = {xe ← a; a← xe}
has the smaller model ∅.
In the example, P ′ fails to have an answer set because the former external atom

&true[a]() is true also if not a holds, but the rule xe ← not a, which represents this case,

is dropped from the reduct w.r.t. Y ′ because its body not a is unsatisfied by Y ′. Hence,
although the external atom e holds both under Y ′ and under the smaller model ∅ of the
reduct which dismisses Y ′, this is not detected since the representation of the external

atom in the reduct is incomplete. In such a case, the value of xe and e under a model of

the reduct can differ.

An attempt to fix this problem might be to explicitly guess the value of the external

atom and represent both when it is true and when it is false. Indeed, P ′′ = {xe∨xe←; ←
a, not xe; ← not a, not xe; a ← xe} is a valid rewriting of the previous program (Y ′ is
an answer set). However, this rewriting is also incorrect in general, as the next example

shows.

Example 7

Consider P = {a ← &id [a]()} where e = &id [a]() is true iff a is true. The program is

expected to have the answer set Y = ∅. However, the translated program P ′ = {xe ∨
xe←; ← a, not xe; ← not a, xe; a← xe} has not only the intended answer set {xe} but
also Y ′ = {a, xe} because fP ′Y

′
= {xe ∨ xe←; a← xe} has no smaller model.

While the second rewriting attempt from Example 7 works for Example 6, and, con-

versely, the one applied in Example 6 works for Example 7, a general rewriting schema

must be more elaborated.

In fact, since hex-programs with recursive nonmonotonic external atoms are on the

second level of the polynomial hierarchy, we present a rewriting which involves head-

cycles. Before we start, let us first discuss this aspect in more detail. Faber et al. (2011)

reduced 2QBF polynomially to a program without disjunctions but with nonmonotonic

aggregates, which are special cases of external atoms. This, together with a membership

proof, shows that programs with external atoms are complete for the second level, even

in the disjunction-free case. Since ordinary ASP without head-cycles are only complete

for the first level, this implies that a further polynomial reduction to ordinary ASP must

introduce disjunctions with head-cycles.

Interestingly, all aggregates used by Faber et al. (2011) depend only on two input atoms

each, which implies that they can be described by a complete family of support sets of

constant size (at most two support sets are needed if an optimal encoding is used). This

shows that hex-programs are already on the second level even if they are disjunction-free

and all external atoms can be described by families of support sets with constant size.

The size of the encoding we are going to present depends linearly on the size of the

given complete family of support sets; since there can be exponentially many support

sets even for polynomial external sources (e.g., for the parity function), this can lead to

an exponential encoding. However, for polynomial families of support sets our encoding

remains polynomial as well. Because hex-programs are already on the second level even

if they are disjunction-free and all external atoms can be described by families of support

sets with constant size (as discussed above), this is only possible because our rewriting

to ordinary ASP uses head-cycles.
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3.2 Encoding in disjunctive ASP

In this section we present a general rewriting for inlining external atoms. In the following,

for an external atom e in a program P , let I(e, P ) be the set of all ordinary atoms in P

whose predicate occurs as a predicate parameter in e, that is, the set of all input atoms

to e. Furthermore, let ST(e, P ) be an arbitrary but fixed complete positive support set

family over atoms in P .

For a simpler presentation we proceed in two steps. We first restrict the discussion to

positive external atoms, and then extend the approach to negative ones in Section 3.2.2.

3.2.1 Inlining positive external atoms

We present the encoding for inlining single positive external atoms into a program and

explain it rule by rule afterwards. In the following, a new atom is an atom that does not

occur in the program P at hand and such that its predicate does not occur in the input

list of any external atom in P (but its building blocks occur in the vocabulary). This

insures that inlining does not introduce any undesired interference with existing parts of

the program.

Definition 6 (External atom inlining)

For a hex-program P and external atom e that occurs only positively in P , let

P[e] = {xe ← S+
T ∪ {a | ¬a ∈ S−T} | ST ∈ ST(e, P )}, (1)

∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ I(e, P )}, (2)

∪ {xe ← not xe}, (3)

∪ P |e→xe, (4)

where a is a new atom for each a, xe, and xe are new atoms for external atom e, and

P |e→xe
=

⋃
r∈P r|e→xe

, where r|e→xe
denotes rule r with every occurrence of e replaced

by xe.

The rewriting works as follows. The atom xe represents the former external atom,

that is, that e is true, while xe represents that it is false. The rules in equation (1)

represent all input assignments that satisfy xe (resp. e). More specifically, each rule in

{xe ← S+
T ∪ {a | ¬a ∈ S−T} | S ∈ ST(e, P )} represents one possibility to satisfy the

former external atom e, using the complete positive family of support sets ST; in each

such case xe is derived. Next, for an input atom a, the atom a represents that a is false

or that xe (resp. e) is true, as formalized by the rules [equation (2)]. The latter is in

order to ensure that for an assignment Y , all relevant rules in equation (1), that is, those

that might apply to subsets of Y , are contained in the reduct w.r.t. Y (because a could

become false in a smaller model of the reduct); recall that in Example 6 the reason for

incorrectness of the rewriting was exactly that these rules were dropped. The derivation

of a despite a being true is only necessary if xe is true w.r.t. Y ; if xe is false, then all rules

containing xe are dropped from the reduct anyway. The idea amounts to a saturation

encoding (Eiter et al. 2009). Next, rule (3) enforces xe to be true whenever xe is false.

Finally, rules in equation (4) resemble the original program with xe in place of e.

For the following Proposition 1 we first assume that the complete family of support

sets ST(e, P ) contains only support sets that contain all input atoms of e in P explicitly
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in positive or negative form. That is, for all ST ∈ ST(e, P ) we have that S+
T ∪ ¬S−T =

I(e, P ). Note that each complete family of support sets can be modified to fulfill this

criterion: replace each ST ∈ ST(e, P ) with S+
T ∪ ¬S−T � I(e, P ) by all of the support

sets C = {S+
T ∪ S−T ∪ R | R ⊆ U ∪ ¬U,R consistent} where U = I(e, P )\(S+

T ∪ ¬S−T).

These are all the support sets constructible by adding “undefined atoms” (those which

occur neither positively nor negatively in ST) either in positive or negative form in all

possible ways. The intuition is that ST encodes the following condition for satisfaction

of e: all of S+
T but none of S−T must be true, while the value of the atoms U is irrelevant

for satisfaction of e. Thus, adding the atoms from U in all combinations of positive and

negative polarities makes it only explicit that e is true in all of these cases. Formally, this

means that for any Y ⊆ I(e, P ) we have that Y ⊇ S+
T and Y ∩¬S−T = ∅ iff Y ⊇ C+

T and

Y ∩ ¬C−T = ∅ for some C ∈ C. This might lead to an exponential blowup of the size of

the family of support sets, but is made in order to simplify the first result and its proof;

however, we show below that the result still goes through without this blowup.

We show now that for such families of support sets the rewriting is sound and complete.

Here, we say that the answer sets of programs P and Q are equivalent modulo a set of

atoms A, if there is a one-to-one correspondence between their answer sets in the sense

that every answer set of P can be extended to one of Q in a unique way by adding atoms

from A, and every answer set of Q can be shrinked to one of P by removing atoms that

are also in A.

Proposition 1

For all hex-programs P , external atoms e in P and a positive complete family of support

sets ST(e, P ) such that S+
T ∪ ¬S−T = I(e, P ) for all ST ∈ ST(e, P ), the answer sets of P

are equivalent to those of P[e], modulo the atoms newly introduced in P[e].

Next, we show that the idea still works for arbitrary complete positive families of

support sets ST(e, P ). To this end, we first show that two rules xe ← B, b and xe ← B, b

in the above encoding, stemming from two support sets that differ only in b resp. b, can

be replaced by a single rule xe ← B without affecting the semantics of the program.

Intuitively, this corresponds to the case where two support sets {a ∈ B} ∪ {¬a | a ∈
B} ∪ {b} and {a ∈ B} ∪ {¬a | a ∈ B} ∪ {¬b} imply that e is true whenever all of

B and one of b or b hold, which might be also be expressed by a single support set

{a ∈ B} ∪ {¬a | a ∈ B} that encodes that B suffices as a precondition; this idea is

similar to resolution.

Proposition 2

Let X be a set of atoms and P be a hex-program such that

P ⊇ {r1 : xe ← B, b; r2 : xe ← B, b}
∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ X}
∪ {xe ← not xe},

where B ⊆ {a, a | a ∈ X}, b ∈ X, and xe occur only in the rules explicitly shown above.

Then P is equivalent to P ′ = (P\{r1, r2}) ∪ {r : xe ← B}.
The idea of the next corollary is then as follows. Suppose we start with a rewriting based

on a positive complete family of support sets ST(e, P ) such that S+
T ∪¬S−T = I(e, P ) for

all ST ∈ ST(e, P ). We know by Proposition 1 that this rewriting is sound and complete.
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Any other positive complete family of support sets can be constructed by iteratively

combining support sets in ST(e, P ) which differ only in the polarity of a single atom.

Since the likewise combination of the respective rules in the rewriting does not change

the semantics of the resulting program as shown by Proposition 2, the rewriting can be

constructed from an arbitrary positive complete family of support sets right from the

beginning.

Corollary 1

For all hex-programs P , external atoms e in P and a positive complete family of support

sets ST(e, P ), the answer sets of P are equivalent to those of P[e], modulo the atoms newly

introduced in program P[e].

We demonstrate the rewriting with an example.

Example 8

Consider P = {a← &aOrNotB [a, b]()}, where e = &aOrNotB [a, b]() evaluates to true if

a is true or b is false. Let ST(e, P ) = {{a}, {¬b}}. Then, we have

P[e] = {xe ← a; xe ← b

a← not a; a← xe; b← not b; b← xe; a ∨ a← not xe; b ∨ b← not xe

xe ← not xe

a← xe}.
The program has the unique answer set Y ′ = {a, xe, a, b}, which represents the answer

set Y = {a} of P .

Multiple external atoms can be inlined by iterative application. For a program P and

a set E of external atoms in P we denote by P[E] the program after all external atoms

from E have been inlined. Importantly, separate auxiliaries must be introduced for atoms

that are input to multiple external atoms.

3.2.2 Inlining negated external atoms

Until now we restricted the discussion to positive external atoms based on positive sup-

port sets. One can observe that the rewriting from Definition 6 does indeed not work for

external atoms e that occur (also) in form not e because programs P and P [e] are in this

case not equivalent in general.

Example 9

Consider P = {p ← not &neg [p]()}, where &neg [p]() is true if p is false and vice versa.

The only answer set of P is Y = ∅ but the rewriting from Definition 6 yields

P[&neg[p]()] = {xe ← p

p← not p; p← xe; p ∨ p← not xe

xe ← not xe

p← not xe},
which has the answer sets Y ′1 = {xe, p} and Y ′2 = {xe, p} that represent the assignments

Y1 = ∅ and Y2 = {p} over P . However, only Y1 (= Y ) is an answer set of P .
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Intuitively, the rewriting does not work for negated external atoms because their input

atoms may support themselves. More precisely, due to rule (3), an external atom is false

by default if none of the rules in equation (1) apply. If one of the external atom’s input

atoms depends on falsehood of the external atom, as in Example 9, then the input atom

might be supported by falsehood of the external atom, although this falsehood itself

depends on the input atom.

In order to extend our approach to the inlining of negated external atoms not e in

a program P , we make use of an arbitrary but fixed negative complete family SF(e, P )

of support sets as by Definition 5. The idea is then to replace a negated external atom

not e by a positive one e′ that is defined such that Y |= e′ iff Y �|= e for all assignments

Y ; obviously, the resulting program has the same answer sets as before. This reduces the

case for negated external atoms to the case for positive ones. The semantics of e′ is fully
described by the negative complete family of support sets of e and we may apply the

rewriting of Definition 6.

The idea is formalized by the following definition:

Definition 7 (Negated External Atom Inlining)

For a hex-program P and negated external atom not e in P , let

P[not e]={xe ← S+
F ∪ {a | ¬a ∈ S−F }|SF ∈ SF(e, P )}, (5)

∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ I(e, P )}, (6)

∪ {xe ← not xe}, (7)

∪ P |not e→xe, (8)

where a is a new atom for each a, xe, and xe are new atoms for external atom e, and

P |not e→xe
=

⋃
r∈P r|not e→xe

, where r|not e→xe
denotes rule r with every occurrence of

not e replaced by xe.

Informally, the effects of changing a negated external atom to a positive one and using

a negative family of support sets cancel each other out. One can show that this rewriting

is sound and complete.

Proposition 3

For all hex-programs P , negated external atoms not e in P and a negative complete

family of support sets SF(e, P ), the answer sets of P are equivalent to those of P[not e],

modulo the atoms newly introduced in program P[not e].

As before, iterative application allows for inlining multiple negated external atoms.

In the following, for a program P and a set E of either positive or negated external

atoms in P , we denote by P[E] the program after all external atoms from E have been

inlined.

Transforming complete families of support sets. For the sake of completeness we

show that one can change the polarity of complete families of support sets:

Proposition 4

Let Sσ be a positive resp. negative complete family of support sets for some external atom

e in a program P , where σ ∈ {T,F}. Then Sσ = {Sσ ∈
∏

Sσ∈Sσ ¬Sσ | Sσ is consistent}
is a negative resp. positive complete family of support sets, where T = F and F = T.
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Intuitively, since a complete family of positive support sets ST fully describes under

which conditions the external atom is true, one can construct a negative support set by

picking an arbitrary literal from each ST ∈ ST and changing its sign. Then, whenever

the newly generated set is contained in the assignment, none of the original support sets

in ST can match. The case for families of negative support sets is symmetric.

However, similarly to the transformation of the formula from conjunctive normal form

to disjunctive normal form or vice versa, this may result in an exponential blowup. In

the spirit of our initial assumption that compact complete families of support sets exist,

it is suggested to construct families of support sets of the required polarity right from

the beginning, which we will also do in our experiments.

4 Exploiting external source inlining for performance boosts

An application of the techniques from the previous section are algorithmic improvements

by skipping explicit verification calls for the sake of performance gains. As stated in

Section 2, learning techniques may reduce the number of required verification calls, and

– alternatively – using support sets for verification instead of explicit calls may lead to an

efficiency improvement when checking external source guesses, but neither of these tech-

niques eliminates the checks altogether (Eiter et al. 2014). In contrast, inlining embeds

the semantics of external sources directly in the logic program. Thus, no more checks are

needed; the resulting program can actually be evaluated by an ordinary ASP solver.

4.1 Implementation

We implemented this approach in the dlvhex3 system, which is based on gringo and clasp

from the Potassco suite.4 External sources are supposed to provide a complete set of

support sets. The system allows also for using universally quantified variables in the spec-

ification of support sets, which are automatically substituted by all constants occurring

in the program. After external source inlining during preprocessing, the hex-program is

evaluated entirely by the backend without any external calls.

The rewriting makes both the compatibility check (cf. Definition 3) and the minimality

check w.r.t. the reduct and external sources (cf. Section 2 and Eiter et al. (2014)) obsolete.

With the traditional approach, compatible sets are not necessarily answer sets. This

is because cyclic support of atoms that involves external sources is not detected by

the ordinary ASP solver when evaluating P̂ . But after inlining, due to soundness and

completeness of our rewriting, the minimality check performed by the ordinary ASP

solver suffices.

We evaluated the approach using the experiments described in the following.

4.2 Experimental setup

We present several benchmarks with 100 randomly generated instances each, which were

run on a Linux server with two 12-core AMD 6176 SE CPUs and 128GB RAM us-

3 www.kr.tuwien.ac.at/research/systems/dlvhex.
4 https://potassco.org.
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ing a 300 s timeout. The instances are available from http://www.kr.tuwien.ac.at/

research/projects/inthex/inlining, while the program encodings and scripts used

for running the benchmarks are included in the source code repository of the dlvhex

system, which is available from https://github.com/hexhex. Although some of the

benchmark problems are similar to those used by Eiter et al. (2014) and in the con-

ference versions of this paper, the runtime results are not directly comparable because

of technical improvements in the implementation of support set generation and other

(unrelated) solver improvements. Moreover, for the taxi benchmark we use a different

scenario since the previous one was too easy in this context. However, for the pre-existing

approaches the fundamental trend that the approach based on support sets outperforms

the traditional approach is the same.

In our tables we compare three evaluation approaches (configurations), which we eval-

uate for computing both all and the first answer set only. The runtimes specify the

wall-clock time needed for the whole reasoning task including grounding, solving, and

side tasks; the observed runtime differences, however, stem only from the solving tech-

nique since grounding and other reasoning tasks are the same for all configurations. The

numbers in parentheses indicate the number of timeout instances, which were counted as

300 s when computing the average runtime of the instances; otherwise timeout instances

could even decrease the average runtime compared to instances which finish shortly before

the deadline.5 The traditional evaluation algorithm guesses the truth values of external

atoms and verifies them by evaluation. In our experiments we use the learning technique

EBL (Eiter et al. 2012) to learn parts of the external atom’s behavior, that is, there

is a tight coupling of the reasoner with external sources. The second approach as by

Eiter et al. (2014) is based on support sets (sup.sets), which are provided by the external

source and learned at the beginning of the evaluation process. It then guesses external

atoms as in the traditional approach, but verifies them by matching candidate compat-

ible sets against support sets rather than by evaluation. While we add learned support

sets as nogoods at the beginning, which exclude some but not all wrong guesses, recall

that on-the-fly learning as by EBL is not done in this approach since external sources

are only called at the beginning; this may be a drawback compared to traditional. The

new inlining approach, based on the results from this paper, also learns support sets at

the beginning similar to sup.sets, but uses them for rewriting external atoms as demon-

strated in Section 3. Then, all answer sets of the rewritten ASP are accepted without

the necessity for additional checks. Wrong guesses that are not detected by the ordinary

ASP solver backend cannot occur here.

Note that our goal is to show improvements compared to previous hex-algorithms,

but not to compare hex to other formalisms or encodings in ordinary (disjunctive) ASP,

which might be feasible for some of the benchmark programs. Compact (i.e., polyno-

mial) complete families of support sets exist for all scenarios considered in the following;

we make the statement about the sizes more precise when we discuss the individual

benchmarks below.

Our hypothesis is that inlining outperforms both traditional and sup.sets for external

sources with compact complete support set families. More precisely, we expect that in-

5 Due to this it might happen in few cases that two configurations behave similar w.r.t. runtime but
the number of timeout instances is different. This is explained by instances which terminate shortly
before the deadline with one configuration and do not terminate in time with the other.
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Table 1. House configuration

All answer sets First answer set

n Traditional sup.sets Inlining Traditional sup.sets Inlining

5 99.88 (17) 5.81 (0) 3.57 (0) 5.17 (0) 0.39 (0) 0.40 (0)
6 193.56 (35) 19.40 (1) 11.51 (0) 13.03 (0) 0.75 (0) 0.77 (0)
7 252.61 (81) 35.72 (3) 22.04 (2) 23.68 (2) 1.50 (0) 1.54 (0)
8 267.01 (85) 93.39 (13) 59.25 (11) 64.89 (10) 3.06 (0) 3.14 (0)
9 274.23 (85) 129.37 (29) 85.85 (13) 79.52 (13) 6.15 (0) 6.34 (0)
10 281.55 (83) 154.29 (42) 120.66 (16) 107.86 (12) 11.80 (0) 12.17 (0)
11 297.28 (86) 206.15 (53) 166.84 (45) 160.25 (49) 21.84 (0) 22.55 (0)
12 300.00 (100) 246.40 (57) 179.59 (41) 162.33 (47) 39.31 (0) 40.62 (0)
13 297.43 (99) 281.02 (91) 239.08 (69) 214.30 (65) 68.07 (0) 70.43 (0)
14 300.00 (100) 287.11 (91) 253.58 (65) 213.63 (63) 114.56 (0) 118.81 (0)
15 300.00 (100) 296.36 (92) 287.66 (75) 240.21 (75) 187.94 (0) 195.09 (0)

lining leads to a further speedup over sup.sets in many cases, especially when there are

many candidate answer sets. Moreover, we expect that in cases where inlining cannot

yield further improvements over sup.sets, then it does at least not harm much. This is

because with inlining (i) no external calls and (ii) no additional minimality checks are

needed, which potentially leads to speedups. On the other hand, the only significant

costs when generating the rewriting are caused by support set learning; however, this is

also necessary with sup.sets, which was already shown to outperform traditional if small

complete families of support sets exist. Hence, we expect further benefits but negligible

additional costs.

House problem. We first consider an abstraction of configuration problems, consisting

of sets of cabinets, rooms, objects, and persons (Mayer et al. 2009). The goal is to assign

cabinets to persons, cabinets to rooms, and objects to cabinets, such that there are

no more than four cabinets in a room or more than five objects in a cabinet. Objects

belonging to a person must be stored in a cabinet belonging to the same person, and a

room must not contain cabinets of more than one person. We assume that we have already

a partial assignment to be completed. We use an existing guess-and-check encoding6

which implements the check as external source. Instances of size n have n persons, n+2

cabinets, n+1 rooms, and 2n objects randomly assigned to persons; 2n−2 objects are

already stored.

The number and size of support sets are polynomially bounded by (2n)5; this is due

to the constraints that no more than four cabinets can be in a room and no more than

five objects can be in a cabinet.

Table 1 shows the results. As expected, we have that sup.sets clearly outperforms

traditional when computing both all answer sets and the first answer set only, which is

because of faster candidate checking as already observed by Eiter et al. (2014). When

computing all answer sets, the new inlining approach leads to a further speedup as it

eliminates wrong guesses and the checking step altogether, while the additional initial-

ization overhead is negligible. This is consistent with our hypothesis. When computing

6 The encoding was taken from http://143.205.174.183/reconcile/tools.
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Table 2. Driver–customer assignment

All answer sets First answer set

n Traditional sup.sets Inlining Traditional sup.sets Inlining

4 0.54 (0) 0.47 (0) 0.22 (0) 0.19 (0) 0.16 (0) 0.16 (0)
5 5.40 (0) 5.92 (0) 1.10 (0) 0.82 (0) 0.21 (0) 0.18 (0)
6 88.93 (9) 63.24 (2) 8.92 (0) 8.86 (0) 0.28 (0) 0.21 (0)
7 295.94 (98) 277.64 (84) 149.56 (19) 154.71 (42) 0.90 (0) 0.26 (0)
8 300.00 (100) 299.99 (99) 290.00 (94) 249.79 (81) 3.55 (1) 0.32 (0)
9 300.00 (100) 300.00 (100) 300.00 (100) 281.35 (92) 2.77 (0) 0.39 (0)
10 300.00 (100) 300.00 (100) 300.00 (100) 289.54 (96) 3.33 (1) 0.49 (0)

only a single answer set, inlining does not yield a further visible speedup, which can be

explained by the fact that only few candidates must be checked before an answer set is

found. In this case the additional initialization overhead compared to sup.sets is slightly

visible, but as can be seen it is little such that the new technique does in fact not harm,

as expected.

Taxi assignment. We consider a program which uses external atoms to access a

DL-LiteA-ontology, called a DL-atom (Eiter et al. 2008). As discussed in Section 2,

Calvanese et al. (2007) have proven that for this type of description logic at most one

assertion is needed to derive an instance query from a consistent ontology. Moreover,

at most two added ABox assertions are needed to make such an ontology inconsistent.

Hence, the support sets required to describe the ontology are of only few different and

small forms, which limits also the number of possible support sets to a quadratic number

in the size of the program and the Abox. Moreover, the support sets are easy to con-

struct by a syntactic analysis of the ontology and the DL-atoms; for details we refer to

Eiter et al. (2014).

The task in this benchmark is to assign taxi drivers to customers. Each customer and

driver is in a region. A customer may only be assigned to a driver in the same region. Up

to four customers may be assigned to a driver. We let some customers be e-customers

who use only electronic cars, and some drivers be e-drivers who drive electronic cars. The

ontology stores information about individuals such as their locations (randomly chosen

but balanced among regions). The encoding is taken from http://www.kr.tuwien.ac.

at/research/projects/inthex/partialevaluation. An instance of size 4 ≤ n ≤ 9

consists of n drivers, n customers including n/2 e-customers and n/2 regions.

Table 2 shows the results. The sup.sets approach is faster than the traditional one.

When computing all answer sets, the difference is still clearly visible but less dramatic

than when computing only the first answer set or in other benchmarks. This is because

there is a large number of candidates and answer sets in this benchmark, which allow the

learning techniques used in traditional to learn the behavior of the external sources well

over time. The reasoner can then prevent wrong guesses and verification calls effectively,

such that the advantage of improved verification calls as in sup.sets decreases the longer

the solver runs. However, the inlining approach leads to a significant speedup since wrong

guesses are impossible from the beginning and all verification calls are spared.
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Table 3. Default rules over LUBM in DL-LiteA

All answer sets First answer set

n Traditional sup.sets inlining Traditional sup.sets Inlining

20 1.17 (0) 0.33 (0) 0.30 (0) 0.34 (0) 0.31 (0) 0.30 (0)
30 30.05 (3) 0.98 (0) 0.33 (0) 6.29 (0) 0.61 (0) 0.33 (0)
40 148.57 (40) 16.66 (2) 0.37 (0) 86.69 (22) 8.88 (0) 0.37 (0)
50 250.26 (75) 80.51 (15) 0.44 (0) 214.68 (65) 51.94 (4) 0.43 (0)
60 286.58 (89) 183.79 (47) 0.52 (0) 265.91 (87) 153.05 (36) 0.52 (0)
70 297.94 (99) 253.66 (73) 0.65 (0) 297.16 (99) 225.54 (65) 0.65 (0)
80 300.00 (100) 282.01 (91) 0.81 (0) 300.00 (100) 271.19 (84) 0.81 (0)
90 300.00 (100) 298.71 (99) 1.04 (0) 300.00 (100) 296.06 (97) 1.04 (0)
100 300.00 (100) 300.00 (100) 1.27 (0) 300.00 (100) 298.45 (99) 1.27 (0)
110 300.00 (100) 300.00 (100) 1.59 (0) 300.00 (100) 300.00 (100) 1.58 (0)
120 300.00 (100) 300.00 (100) 2.00 (0) 300.00 (100) 300.00 (100) 2.00 (0)

LUBM diamond. While description logics correspond to fragments of first-order logic

and are monotonic, their cyclic interactions with rules allow for default reasoning, that

is, making assumptions which might have to be withdrawn if more information becomes

available (such as classifying an object based on absence of information). We consider

default reasoning over the LUBM DL-LiteA ontology (http://swat.cse.lehigh.edu/

projects/lubm/). Defaults express that assistants are normally employees and students

are normally not employees. The ontology entails that assistants are students, resembling

Nixon’s diamond. The instance size is the number of persons who are randomly marked

as students, assistants, or employees. The task is to classify all persons in the ontology.

Due to incomplete information the result is not unique.

Table 3 shows the results. As already observed by Eiter et al. (2014), sup.sets outper-

forms traditional. Compared to the taxi benchmark there is a significantly smaller number

of model candidates, which makes learning in the traditional approach less effective. This

can in particular be seen when computing all answer sets, since when computing the first

answer set only, learning is less effective anyway (as described in the previous bench-

mark). The decreased effectiveness of learning from external calls is then more easily

compensated by the more efficient compatibility check as by sup.sets, which is why the

relative speedup is larger now. However, inlining is again the most efficient approach

due to elimination of the compatibility check. Thanks to the existence of a quadratic

family of support sets for DL-LiteA-ontologies (see previous benchmark), the speedup is

dramatic.

Non-3-colorability. We consider the problem of deciding if a given graph is not

3-colorable, that is, if it is not possible to color the nodes such that adjacent nodes

have different colors. To make the problem more challenging, we want to represent the

answer by a dedicated atom within the program. That is, we do not simply want to

compute all valid 3-colorings and leave the program inconsistent in case there is no valid

3-coloring, but the program should rather be consistent in this case and a dedicated

atom should represent that there is no 3-coloring; this allows, for instance, continuing

reasoning based on the result.
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We use a saturation encoding which splits the guessing part Pcol from the checking

part Pcheck . The latter, which is itself implemented as logic program

Pcheck = {inv ← inp(col , U, C), inp(col , V, C), inp(edge, U, V )},
is used as an external source from the guessing part. For a color assignment, given by facts

of kind inp(col , v, c) where v is a vertex and c is a color, Pcheck derives the atom inv in its

only answer set, otherwise it has an empty answer set. We then use the following program

Pcol to guess a coloring and check it using the external atom &query [Pcheck , inp, inv ]()

for query answering over subprograms. We let &query [Pcheck , inp, inv ]() evaluate to true

iff program Pcheck , extended with facts over predicate inp, delivers an answer set that

contains inv .7 In this case we saturate the model. We add a constraint that eliminates

answer sets other than the saturated one, thus each instance has either no or exactly one

answer set. The size of the instances is the number of nodes n.

A compact complete family of support sets for &query [Pcheck , inp, inv ]() exists: the

number of edges to be checked is no greater than quadratic in the number of nodes and

the number of colors is constant, which allows the check to be encoded by a quadratic

number of binary support sets.

The encoding is as follows:

Pcol =
{
col(V, r) ∨ col(V, g) ∨ col(V, b)← node(V )

inp(p, X, Y )← p(X,Y ) | p ∈ {col , edge}
inval ← &query [Pcheck , inp, inv ]()

col(V, c)← inval ,node(V ) | c ∈ {r, g, b}
← notinval

}
.

The results are shown in Table 4. While sup.sets already outperforms traditional, in-

lining leads to a further small speedup when computing all answer sets. Compared to

previous benchmarks, there are significantly fewer support sets, which makes candidate

checking in sup.sets inexpensive. This explains the large speedup of sup.sets over tradi-

tional, and that avoiding the check in inlining does not lead to a large further speedup.

However, due to a negligible additional overhead, inlining does at least not harm, which

is in line with our hypothesis.

Interestingly, the runtimes when computing all and the first answer set only are almost

the same. Although this effect occurs with all configurations and is not related to our new

approach, we briefly discuss it. Each instance has either one or no answer set. Despite

this, computing all answer sets can in principle be slower than computing the first answer

set since the reasoner has to determine that there are no further ones. However, in this

case, the instances terminate almost immediately after the (only) answer set has been

found. Since the only answer set of a non-3-colorable instance is the saturated one, which

is also the only classical model, the reasoner needs to perform only a single minimality

check.

Nonexistence of a vertex covering. Next, we consider the coNP-complete problem

of checking whether for a given undirected graph there is no vertex covering of a certain

7 Here, the parameter inv ∈ P is a predicate symbol, whose purpose is to inform the external source
about the propositional atom it should look for in the answer sets of the subprogram.
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Table 4. Non-3-colorability

All answer sets First answer set

n Traditional sup.sets Inlining Traditional sup.sets Inlining

20 298.94 (99) 0.19 (0) 0.16 (0) 298.96 (99) 0.19 (0) 0.16 (0)
60 300.00 (100) 1.61 (0) 1.35 (0) 300.00 (100) 1.61 (0) 1.35 (0)
100 300.00 (100) 8.45 (0) 7.81 (0) 300.00 (100) 8.44 (0) 7.83 (0)
140 300.00 (100) 28.18 (0) 27.30 (0) 300.00 (100) 28.17 (0) 27.34 (0)
180 300.00 (100) 73.03 (0) 72.32 (0) 300.00 (100) 72.88 (0) 72.43 (0)
220 300.00 (100) 148.87 (20) 147.98 (20) 300.00 (100) 149.16 (19) 148.35 (20)
260 300.00 (100) 200.16 (44) 199.02 (45) 300.00 (100) 200.20 (45) 198.96 (46)
300 300.00 (100) 230.51 (60) 228.65 (60) 300.00 (100) 230.54 (60) 228.76 (60)
340 300.00 (100) 250.51 (70) 248.46 (70) 300.00 (100) 250.64 (70) 248.50 (70)
380 300.00 (100) 264.10 (80) 262.12 (80) 300.00 (100) 264.23 (80) 262.10 (80)
420 300.00 (100) 275.91 (80) 273.07 (80) 300.00 (100) 276.02 (80) 273.17 (80)
460 300.00 (100) 282.03 (90) 280.20 (90) 300.00 (100) 282.11 (90) 280.14 (90)

maximal size. More precisely, given a graph 〈V,E〉, a vertex covering is a node selection

C ⊆ V such that for each edge {v, u} ∈ E we have {v, u} ∩ C �= ∅. As before we want

the program to be consistent in case there is no vertex covering of the given maximum

size, and a dedicated atom should represent this. Our instances consist of such a graph

〈V,E〉, given by atoms of kind node(·) and edge(·, ·), and a positive integer L (limit),

given by limit(L). The task is to decide whether there is no vertex covering containing

at most L nodes. The size of the instances is the number of nodes n = |V |.
Similarly as for the previous benchmark, we use an encoding which splits the guessing

part PnonVC from the checking part, where the latter is realized as an external source.

An important difference to the previous benchmark is that the checking component must

now aggregate over the node selection to check the size constraint. Since we want the

program to be consistent whenever there is no vertex covering, we need again a saturation

encoding. However, the size check requires aggregate atoms, which means that aggregate

atoms must be used in a cycle; many reasoners do not support this. However, hex-

programs, which inherently support cyclic external atoms, allow for pushing the check

into an external source.

The number and size of support sets is polynomial in the size of the graph, but expo-

nential in the limit L. In this benchmark we consider L to be a constant number that

is for each instance randomly chosen from the range 1 ≤ L ≤ 20. We exclude instances

with graphs 〈V,E〉 and limits L such that L ≥ |V | as in such cases the final answer to

the considered problem is trivially false (since V is trivially a vertex covering of size no

greater than L).

The encoding is as follows. The guessing part is similar as before and constructs a

candidate vertex covering given by atoms of kind in(n) or out(n) for nodes n. In the

checking part, the external atom &checkVC [in, out , edge, L]() is true iff in and out encode

an invalid vertex covering of the graph specified by edge of size no greater than limit L.

A complete family of support sets for &checkVC [in, out , edge, L]() is of size at most nL,

where L is bounded in our scenario.
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Table 5. Nonexistence of a vertex covering

All answer sets First answer set

n Traditional sup.sets Inlining Traditional sup.sets Inlining

8 15.45 (0) 4.13 (0) 0.61 (0) 15.42 (0) 4.12 (0) 0.61 (0)
9 62.89 (11) 31.23 (8) 7.72 (0) 62.81 (11) 31.26 (8) 7.64 (0)
10 102.15 (22) 80.65 (24) 36.09 (8) 102.17 (22) 80.57 (24) 36.11 (8)
11 181.35 (55) 89.87 (26) 47.42 (13) 181.41 (55) 89.96 (26) 47.45 (13)
12 222.05 (66) 135.79 (43) 89.43 (25) 222.05 (66) 135.82 (43) 89.36 (25)
13 256.16 (82) 158.63 (50) 110.26 (32) 256.16 (82) 158.71 (51) 110.19 (32)
14 288.93 (96) 189.18 (62) 152.59 (50) 288.94 (96) 189.24 (62) 152.60 (50)
15 284.97 (93) 178.66 (59) 145.46 (47) 284.96 (93) 178.66 (59) 145.42 (47)
16 294.77 (98) 219.03 (72) 191.25 (62) 294.74 (98) 218.98 (72) 191.21 (62)
17 300.00 (100) 219.19 (73) 175.57 (56) 300.00 (100) 219.19 (73) 175.45 (56)
18 300.00 (100) 231.10 (77) 195.14 (63) 300.00 (100) 231.10 (77) 195.13 (63)
19 300.00 (100) 243.12 (81) 220.70 (71) 300.00 (100) 243.11 (81) 220.72 (71)
20 300.00 (100) 237.07 (79) 217.87 (70) 300.00 (100) 237.07 (79) 217.86 (70)

PnonVC =
{
in(V ) ∨ out(V )← node(V )

inval ← &checkVC [in, out , edge, L](), limit(L)

in(V )← inval ,node(V )

out(V )← inval ,node(V )

← notinval
}
.

The results are shown in Table 5. Note that although L is bounded and the size of

the family of support sets nL is therefore polynomial in the size of the graph, it is in

general still much larger than in the previous benchmark. This is because the order L of

the polynom is randomly chosen such that 1 ≤ L ≤ min(20, |V |), where |V | is the size of

the respective instance, while for non-3-colorability the family of support sets is always

quadratic in the size of the input graph. The benchmark shows that the approach is still

feasible in such cases. configuration is then more expensive than for non-3-colorability,

which makes the relative speedup of sup.sets over traditional smaller (but still clearly vis-

ible). Thus, there is now more room for further improvement by eliminating this check as

in the inlining configuration. Once more, eliminating the compatibility check altogether

yields a further speedup. Here, checking guesses based on support sets in the sup.sets

configuration is more expensive than for non-3-colorability because the verification of

guesses requires a significantly larger number of comparisons to support sets. This makes

the relative speedup of sup.sets over traditional smaller (but still clearly visible). On the

other hand, there is now more room for further improvement by the inlining configura-

tion. Eliminating the (more expensive) check against support sets altogether yields now

a larger further speedup.

Discussion and summary. As stated above, this paper focuses on external sources that

possess a compact complete family of support sets. For the sake of completeness we still

discuss also the case where a complete family of support sets is not small. As an extreme

case, consider P = {p(n+ 1)← p&even[p]()} ∪ {p(i)← | 1 ≤ i ≤ n} for a given integer
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n, where &even[p]() is true iff the number of true atoms over p is even. The program has

a single answer set Y = {p(i) | 1 ≤ i ≤ n} if n is odd, and no answer set if n is even.

This is because p(n+1) would be derived based on &even[p](), which makes the number

of p-atoms odd and destroys support of p(n+1). In any case, P̂ has only two candidates

which are easily checked in the traditional approach, while exponentially many support

sets must be generated to represent the semantics of &even[p]() (one for each subset of

{p(i)← | 1 ≤ i ≤ n} with an even number of elements). In such cases, traditional might

be exponentially faster than sup.sets and inlining.

However, this is not the case for many realistic types of external sources, where the

existence of a compact family of support sets is often even provable, such as the ones we

used in our experiments. The size of the inlining encoding is directly linked to the size of

the complete family of support sets, and if this size is small, then the inlining approach

is clearly superior to sup.sets as it eliminates the compatibility check and minimality

check w.r.t. external sources altogether, while it has only slightly higher initialization

overhead. This overhead can be neglected even in cases where there is no further speedup

by inlining. Sup.sets is in turn superior to traditional (even with learning technique EBL)

as already observed by Eiter et al. (2014). We can therefore conclude that inlining is a

significant improvement over sup.sets and, for the considered types of external sources,

also over traditional.

5 Equivalence of hex-programs

In this section, we present another application of the technique of external source inlin-

ing from Section 3. Two programs P and Q are considered to be equivalent if P ∪ R

and Q ∪ R have the same answer sets for all programs R of a certain type, which de-

pends on the notion of equivalence at hand. Most importantly, for strongly equivalent

programs we have that P ∪R and Q ∪R have the same answer sets for any program R

(Lifschitz et al. 2001), while uniformly equivalent programs guarantee this only if R is a

set of facts (Eiter and Fink 2003). Later, these notions were extended to the non-ground

case (Eiter et al. 2005). We will use the more fine-grained notion of 〈H,B〉-equivalence
by Woltran (2008), where R can contain rules other than facts, but the sets of atoms that

can occur in rule heads and bodies are restricted by sets of atoms H and B, respectively.
This notion generalizes both strong and uniform equivalence. Formal criteria allow for

semantically characterizing equivalence of two programs.

We extend a characterization of 〈H,B〉-equivalence from ordinary ASP- to hex-

programs. Due to the support for external atoms, which can even be nonmono-

tonic, and the use of the FLP-reduct (Faber et al. 2011) instead of the GL-reduct

(Gelfond and Lifschitz 1988) in the semantics of hex-programs, this result is not

immediate. Since well-known ASP extensions such as programs with aggregates

(Faber et al. 2011) and constraint ASP (Gebser et al. 2009; Ostrowski and Schaub 2012)

are special cases of hex-programs, the results carry over.

We proceed as follows. In the first step (Section 5.1), only the programs P and Q

can be hex-programs, but the added program R must be ordinary. This amounts to a

generalization of the results by Woltran (2008) from ordinary ASP to hex-programs. In

the second step (Section 5.2), we allow also the added program R to contain external

atoms. For this purpose, we exploit the possibility to inline external atoms.
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5.1 Generalizing equivalence results

In the following, for sets H and B of atoms we let P〈H,B〉 = {P is an ASP |H(P ) ⊆
H, B+(P ) ∪ B−(P ) ⊆ B} be the set of ordinary programs whose head and body atoms

come only from H and B, respectively. Ordinary ASP P and Q are called 〈H,B〉-
equivalent, if the answer sets of P ∪ R and Q ∪ R are the same for all ordinary ASP

R that use only head atoms from H and only body atoms from B, that is, R ∈ P〈H,B〉.
We first lift this definition to the case where P and Q are general hex-programs which

possibly contain external atoms, while R remains an ordinary ASP. Formally:

Definition 8

hex-programs P and Q are equivalent w.r.t. a pair 〈H,B〉 of sets of atoms, or 〈H,B〉-
equivalent, denoted P ≡〈H,B〉 Q, if AS(P ∪R) = AS(Q ∪R) for all R ∈ P〈H,B〉.

Similarly, we write P ⊆〈H,B〉 Q if AS(P ∪R) ⊆ AS(Q ∪R) for all R ∈ P〈H,B〉.
Toward a characterization of equivalence of hex-programs, one can first show that if

there is a counterexample R for P ≡〈H,B〉 Q, that is, an R ∈ P〈H,B〉 such that AS(P ∪
R) �= AS(Q ∪ R), then there is also a simple counterexample in the form of a positive

program R′ ∈ P〈H,B〉.

Proposition 5

Let P and Q be hex-programs, R be an ordinary ASP, and Y be an assignment s.t. Y ∈
AS(P ∪R) but Y �∈ AS(Q∪R). Then there is also a positive ordinary ASP R′ such that

Y ∈ AS(P ∪R′) but Y �∈ AS(Q ∪R′) and B(R′) ⊆ B(R) and H(R′) ⊆ H(R).

The idea of the constructive proof is to show for given programs P , Q, and R and an

assignment Y that the GL-reduct (Gelfond and Lifschitz 1988) RY , which is a positive

program, is such a simple counterexample.

Next, we show that the concepts on equivalence generalize from ordinary ASP to hex-

programs. In the following, for an assignment Y and a set of atoms A we write Y |A for

for the projection Y ∩A of Y to A. Moreover, for sets of atoms X, Y we write X ≤BH Y if

X|H ⊆ Y |H and X|B ⊇ Y |B. Intuitively, if X ≤BH Y then Y satisfies all positive programs

from P〈H,B〉 that are also satisfied by X because it satisfies no fewer heads and no more

bodies than X. We write X <BH Y if X ≤BH Y and X|H∪B �= Y |H∪B.
We use the following concept for witnessing that AS(P ∪ R) ⊆ AS(Q ∪ R) does not

hold.

Definition 9

A witness for P �⊆〈H,B〉 Q is a pair (X,Y ) of assignments with X ⊆ Y such that8:

(i) Y |= P and for each Y ′ � Y with Y ′ |= fPY we have Y ′|H � Y |H; and
(ii) if Y |= Q then X � Y , X |= fQY and for all X ′ with X ≤BH X ′ � Y we have

X ′ �|= fPY .

The idea is that a witness represents a counterexample to the containment. To this

end, X characterizes a program R and Y is an assignment that is an answer set of P ∪R
but not of Q ∪R. One can show that the existence of a witness and the violation of the

containment are equivalent.

8 Note that Woltran (2008) called this a witness for P ⊆〈H,B〉 Q, but since it is actually a witness for

the violation of the containment, we change the terminology.
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384 C. Redl

Because some steps in the according considerations for ordinary ASP depend on the

fact that GL-reducts of programs w.r.t. assignments are positive programs (cf. ≤BH), it
is an interesting result that the following propositions still hold in its generalized form.

Because we use FLP-reducts instead, and P and Q might even contain nonmonotonic

external atoms, the results do not automatically carry over. However, a closer analysis

reveals that the property of being a positive program is only required for the reduct

of R but not the reducts of P or Q. Since we restricted R to ordinary ASP for now,

and Proposition 5 allows us to further restrict it to positive programs, the use of the

FLP-reduct does not harm: if R is positive from the beginning, then also its FLP-reduct

(w.r.t. any assignment) is positive. Hence, the main idea is that due to restrictions of

the input program, the reduct is still guaranteed to be positive despite the switch from

the GL- to the FLP-reduct. This allows for lifting the proof of the following proposition

from ordinary ASP to hex.

Proposition 6

For hex-programs P and Q and sets H and B of atoms, there is a program R ∈ P〈H,B〉
with AS(P ∪R) �⊆ AS(Q ∪R) iff there is a witness for P �⊆〈H,B〉 Q.

While witnesses compare the sets of answer sets of two programs directly, the next

concept of 〈H,B〉-models can be used to characterize a single program. In the following,

for two sets of atoms H and B, a pair (X,Y ) of assignments is called ≤BH-maximal for P

if X |= fPY and for all X ′ with X <BH X ′ � Y, we have X ′ �|= fPY .

Definition 10

Given sets H, B of atoms, a pair (X,Y ) of assignments is an 〈H,B〉-model of a program

P if

(i) Y |= P and for each Y ′ � Y with Y ′ |= fPY we have Y ′|H � Y |H; and
(ii) if X � Y then there exists an X ′ � Y with X ′|H∪B = X such that (X ′, Y ) is

≤BH-maximal for P .

Intuitively, 〈H,B〉-models (X,Y ) characterize potential answer sets Y of a program P

and the models of its reducts fPY . More precisely, the assignments Y represent classical

models of a program which can potentially be turned into an answer set by adding

a program from R ∈ P〈H,B〉 (which can be empty if Y is already an answer set of P ).

Turning Y into an answer set requires that smaller models of the reduct fPY (if existing)

can be eliminated, which is only possible if they contain fewer atoms from H since these

are the only atoms which can get support by adding R (cf. Condition (i)). Furthermore,

for such a classical model Y , different models of the reduct fPY that coincide on H and

B behave the same over f(P ∪ R)Y for any R ∈ P〈H,B〉: either all or neither of them

are models of the extended reduct; such different models are represented by a single

〈H,B〉-model (X,Y ) as formalized by Condition (ii).

One can show that 〈H,B〉-equivalence of two programs can be reduced to a compar-

ison of their 〈H,B〉-models. We denote the set of all 〈H,B〉-models of a program P by

σ〈H,B〉(P ).

Proposition 7

For sets H and B of atoms and hex-programs P and Q, we have P ≡〈H,B〉 Q iff

σ〈H,B〉(P ) = σ〈H,B〉(Q).
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We demonstrate the lifted results using three examples.

Example 10

Consider the programs P = {a ← &aOrNotB [a, b]()} and Q = {a ← a; a ← not b}
where &aOrNotB [a, b]() evaluates to true whenever a is true or b is false, and to

false otherwise. Let H = B = {a, b}. We have that σ〈H,B〉(P ) = σ〈H,B〉(Q) =

{(∅, {b}), ({a}, {a}), ({b}, {b}), ({a}, {a, b}), ({b}, {a, b}), ({a, b}, {a, b})}, and thus P and

Q are 〈H,B〉-equivalent.
It is easy to see that for any of the 〈H,B〉-models of form (Y, Y ), Y is a model both of

P and Q, and for any Y ′ �⊆ Y we have Y ′|H � Y |H; for the fourth candidate (∅, ∅) one
can observe that ∅ is neither a model of P nor a model of Q.

For the 〈H,B〉-models of form ({a}, {a, b}) resp. ({b}, {a, b}), one can observe that

X ′ = {a} resp. X ′ = {b} satisfies Condition (ii) of Definition 10 both for P and Q,

while for (∅, {a, b}) the only candidate for X ′ � {a, b} with X ′|H∪B = X is X ′ = ∅, but
(∅, {a, b}) is neither ≤BH-maximal for P nor for Q because ∅ �|= fP {a,b} and ∅ �|= fQ{a,b}.

For unary Y , the only 〈H,B〉-model (X,Y ) with X �= Y of P or Q is (∅, {b}) because
for X ′ = ∅, we have ∅ |= fP {b} and ∅ |= fQ{b}, and (∅, {b}) is also ≤BH-maximal for

P and for Q. On the other hand, (∅, {a}) fails to be an 〈H,B〉-model because the only

candidate for X ′ is ∅, but ∅ �|= fP {a} and ∅ �|= fQ{a}.

Example 11

Consider the programs P = {a ← &neg [b](); b ← &neg [a](); a ← b} and Q = {a ∨
b←; a← b} where &neg [x]() evaluates to true whenever x is false and to true otherwise.

For H = {a, b} and B = {b} we have that σ〈H,B〉(P ) = σ〈H,B〉(Q) = {({a}, {a}),
({a}, {a, b}), ({a, b}, {a, b})}, and thus the programs are 〈H,B〉-equivalent. The most in-

teresting candidate which fails to be an 〈H,B〉-model of either program is (∅, {a, b}).
For P we have that fP {a,b} = {a ← b}, of which ∅ is a model, but for {a} we have

∅ ≤BH {a} � Y and {a} |= fP {a,b}, thus ∅ is not ≤BH-maximal for P ; for Q we have that

fQ{a,b} = {a ∨ b; a← b}, which is unsatisfied under ∅.

Example 12

Consider the programs P and Q from Example 11 and H = {a, b} and B = {a, b}.
We have that σ〈H,B〉(P ) = {({a}, {a}), (∅, {a, b}), ({a}, {a, b}), ({a, b}, {a, b})}. Note that
(∅, {a, b}) is now an 〈H,B〉-model of P because ∅ is a model of fP {a,b} = {a ← b} and
there is no X ′ with ∅ ≤BH X ′ � Y with X ′ |= fP {a←b} (because now ∅ �≤BH {a}); thus ∅
is ≤BH-maximal for P . On the other hand, σ〈H,B〉(Q) = {({a}, {a}), ({a}, {a, b}), ({a, b},
{a, b})}. That is, (∅, {a, b}) is still not an 〈H,B〉-model of Q because ∅ is not a model of

fQ{a,b} = {a ∨ b←; a← b}. And thus the programs are not 〈H,B〉-equivalent.
Indeed, for R = {b ← a} ∈ P〈H,B〉 we have that Y = {a, b} is an answer set of Q ∪ R

but not of P ∪R.

5.2 Adding general hex-programs

Up to this point we allowed only the addition of ordinary ASP R ∈ P〈H,B〉. As a prepa-

ration for the addition of general hex-programs, we show now that if programs P and Q

are 〈H,B〉-equivalent, then sets B and H can be extended by atoms that do not appear in

P and Q and the programs are still equivalent w.r.t. the expanded sets. Intuitively, this
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allows introducing auxiliary atoms without harming their equivalence. This possibility is

needed for our extension of the results to the case where R can be a general hex-program.

Expanding sets B and H. If programs P and Q are 〈H,B〉-equivalent, then they are

also 〈H′,B′〉-equivalent whenever H′\H and B′\B contain only atoms that do not appear

in P or Q. This is intuitively the case because such atoms cannot interfere with atoms

that are already in the program.

Formally, one can show the following result:

Proposition 8

For sets H and B of atoms, hex-programs P and Q, and an atom a that does not occur

in P or Q, the following holds:

(i) P ≡〈H,B〉 Q iff P ≡〈H∪{a},B〉 Q; and

(ii) P ≡〈H,B〉 Q iff P ≡〈H,B∪{a}〉 Q.

The proof is done by contraposition. The main idea of the (⇒)-direction of Property (i)

is to assume w.l.o.g. that P �⊆〈H∪{a},B〉 Q and start with a witness thereof. One can

then construct also a witness for P �⊆〈H,B〉 Q. The (⇐)-direction is trivial because

P ≡〈H∪{a},B〉 Q is a stronger condition than P ≡〈H,B〉 Q. The proof for Property (ii) is

analogous.

By iterative applications of this result we get the desired result:

Corollary 2

Let H, B, H′, and B′ be sets of atoms and let P and Q be programs such that the atoms

in H′ ∪ B′ do not occur in P or Q. Then we have P ≡〈H,B〉 Q iff P ≡〈H∪H′,B∪B′〉 Q.

Addition of general hex-programs. In the following, for sets H, B of atoms we define

the set

Pe
〈H,B〉 =

{
hex-program P

∣∣ H(P ) ⊆ H, B+(P ) ∪B−(P ) ⊆ B,
only B are input to external atoms

}

of general hex-programs whose head atoms come only from H and whose body atoms

and input atoms to external atoms come only from B.9 We then extend Definition 8 as

follows.

Definition 11

hex-programs P and Q are e-equivalent w.r.t. a pair 〈H,B〉 of sets of atoms, or 〈H,B〉e-
equivalent, denoted P ≡e

〈H,B〉 Q, if AS(P ∪R) = AS(Q ∪R) for all R ∈ Pe
〈H,B〉.

Toward a characterization of 〈H,B〉e-equivalence, we make use of external atom inlining

as by Definition 6 without changing the answer sets of a program, cf. Proposition 1.

We start with a technical result which allows for renaming a predicate input parameter

pi ∈ p of an external atom e = &g [p](c) in a program P to a new predicate q that does

not occur in P . This allows us to rename predicates such that inlining does not introduce

rules that derive atoms other than auxiliaries, which is advantageous in the following.

The idea of the renaming is to add auxiliary rules that define q such that its extension

represents exactly the former atoms over pi, that is, each atom pi(d) is represented by

9 Input atoms to external atoms must also be in B as they appear in bodies of our rewriting by Lemma 1.
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q(pi,d). Then, external predicate &g is replaced by a new &g ′ whose semantics is adopted

to this encoding of the input atoms.

For the formalization of this idea, let p|pi→q be vector p after replacement of its ith

element pi by q. Moreover, for an assignment Y let Y q = Y ∪ {pi(d) | q(pi,d) ∈ Y }
be the extended assignment which “extracts” from each atom q(pi,d) ∈ Y the original

atom pi(d). One can then show that for any program P , renaming input predicates of

an external atom does not change the semantics of P (modulo auxiliary atoms):

Lemma 1

For an external atom e = &g [p](c) in program P , pi ∈ p, a new predicate q, let e′ =
&g ′[p|pi→q](c) s.t. f&g′(Y,p|pi→q, c) = f&g(Y

q,p, c) for all assignments Y .

For P ′ = P |e→e′ ∪ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )}, AS(P ) and AS(P ′) coincide,

modulo atoms q(·).
We now come to the actual inlining. Observe that Definitions 6 and 7 are modular

in the sense that inlining external atoms E in a program P affects only the rules of P

containing some external atom from E and adds additional rules, but does not change

the remaining rules (i.e., our transformation performs only changes that are “local” to

rules that contain some external atom from E). One can formally show:

Lemma 2

For a hex-program P and a set of (positive or negative) external atoms E in P , we have

P∩P[E] = {r ∈ P | none of E occur in r}.
This equips us to turn to our main goal of characterizing equivalence of hex-programs.

If programs P and Q are 〈H,B〉-equivalent, then P ∪R and Q∪R have the same answer

sets for all ordinary ASP R ∈ P〈H,B〉. We will show that equivalence holds in fact even

for hex-programs R ∈ Pe
〈H,B〉. To this end, assume that P and Q are 〈H,B〉-equivalent

for some H and B and let R ∈ Pe
〈H,B〉.

We want to inline all (positive or negative) occurrences of external atoms from E in

P ∪R and Q ∪R that appear in the R part, but not the occurrences in the P part or Q

part. However, since the application of the transformation as by Definition 6 to P ∪ R

resp. Q∪R would inline all occurrences of E, we first have to standardize occurrences in

R apart from those in P resp. Q. This can be done by introducing a copy of the external

predicate; we assume in the following that external atoms have been standardized apart

as needed, that is, the external atoms E appear only in R but not in P and Q. Note that

although external atoms from E appear only in program part R, the transformation is

formally still applied to P ∪R and Q ∪R and not just to R. The overall transformation

is then given as follows:

(1) rename their input parameters using Lemma 1; and

(2) subsequently inline them by applying Definition 6 to P ∪R and Q ∪R.

Note that neither of the two steps modifies the program parts P or Q: for (1) this is

by construction of the modified program in Lemma 1, for (2) this follows from Lemma 2.

Hence, what we get are programs of form P ∪ R′ and Q ∪ R′, where R′ consists of

modified rules from R and some auxiliary rules. As observable from Lemma 1 and

Definition 6, head atoms H(R′) in R′ come either from H(R) or are newly introduced

auxiliary atoms; the renaming as by Lemma 1 prohibits that H(R′) contains input atoms
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to external atoms in R. Body atoms B(R′) in R′ come either from B(R), from input

atoms to external atoms in R (see rule (2)), or are newly introduced auxiliary atoms.

Since R ∈ Pe
〈H,B〉, this implies that H(R′) ⊆ H ∪H′ and B(R′) ⊆ B ∪ B′, where H′ and

B′ are newly introduced auxiliary atoms. Since the auxiliary atoms do not occur in P

and Q, by Corollary 2 they do not harm equivalence, that is, 〈H,B〉-equivalence implies

〈H ∪ H′,B ∪ B′〉-equivalence. Thus, 〈H,B〉-equivalence of P and Q implies that P ∪ R′

and Q ∪R′ have the same answer sets.

The claim follows then from the observation that, due to Lemma 1 and soundness and

completeness of inlining (cf. Proposition 1), P ∪R and Q∪R have the same answer sets

whenever P ∪R′ and Q ∪R′ have the same answer sets.

Example 13

Consider the programs

P = {a← &neg [b](); b← &neg [a](); a← b}
Q = {a ∨ b←; a← b}

and let H = {a, c} and B = {b}. Note that P ≡〈H,B〉 Q. To observe this result, recall that

we know P ≡〈{a,b},{b}〉 Q from Example 11, which implies P ≡〈{a},{b}〉 Q. As c �∈ A(P ),

c �∈ A(Q), Proposition 8 further implies that P ≡〈{a,c},{b}〉 Q.

Let R = {c ← &neg [b]()} ∈ Pe
〈H,B〉. Renaming the input predicate of &neg [b]() by

step (1) yields the program {q(b)← b; c← &neg ′[q]()}. After step (2) we have

R′ = {q(b)← b; c← xe; xe ← q(b); xe ← not xe

q(b)← not q(b); q(b)← xe; q(b) ∨ q(b)← xe}.
Here, rule q(b) ← b comes from step (1), c ← xe represents the rule in R, and the

remaining rules from inlining in step (2). Except for new auxiliary atoms, we have that

H(R′) use only atoms from H and B(R′) only atoms from B(R′). One can check that

P ∪R′ and Q ∪R′ have the same (unique) answer set {a, c, xe, q(b)}, which corresponds

to the (same) unique answer set {a, c} of P ∪R and Q ∪R, respectively.

One can then show that equivalence w.r.t. program extensions that contain external

atoms are characterized by the same criterion as extensions with ordinary ASP only.

Proposition 9

For sets H and B of atoms and hex-programs P and Q, we have P ≡e
〈H,B〉 Q iff

σ〈H,B〉(P ) = σ〈H,B〉(Q).

The idea of the proof is to reduce the problem to the case where R is free of ex-

ternal atoms and apply Proposition 7. To this end, we inline the external atoms in

R. This reduction is possible thanks to the fact that inlining introduces only auxiliary

atoms that do not appear in P and Q, which do not affect equivalence as stated by

Corollary 2.

For the Herbrand base HBC(P ) of all atoms constructible from the predicates in P

and the constants C, strong equivalence (Lifschitz et al. 2001) corresponds to the special

case of 〈HBC(P ),HBC(P )〉-equivalence, and uniform equivalence (Eiter and Fink 2003)

corresponds to 〈HBC(P ), ∅〉-equivalence; this follows directly from definition of strong

resp. uniform equivalence.
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6 Inconsistency of hex-programs

We turn now to inconsistency of hex-programs. Similarly to equivalence, we want to

characterize inconsistency w.r.t. program extensions. Inconsistent programs are programs

without answer sets. Observe that due to nonmonotonicity, inconsistent hex-program can

become consistent under program extensions.

Example 14

Consider the program P = {p ← &neg [p]()}, which resembles P ′ = {p ← not p} in

ordinary ASP. The program is inconsistent because Y1 = ∅ violates the (only) rule of the
program, while Y2 = {p} is not a minimal model of the reduct fPY2 = ∅. However, the
extended program P ∪ {p←} has the answer set Y2.

Some program extensions preserve inconsistency of a program, and it is a natural

question under which program extensions this is the case. Akin to equivalence, sets H
and B constrain the atoms that may occur in rule heads, rule bodies, and input atoms

to external atoms of the added program, respectively. In contrast to equivalence, the

criterion naturally concerns only a single program. However, we are still able to derive

the criterion from the above results.

Deriving a criterion for inconsistency. We formalize our envisaged notion of incon-

sistency from above as follows:

Definition 12

A hex-program P is called persistently inconsistent w.r.t. sets of atoms H and B if P ∪R
is inconsistent for all R ∈ Pe

〈H,B〉.

Example 15

The program P = {p ← &neg [p]()} is persistently inconsistent w.r.t. all H and B such

that p �∈ H. This is because any model Y of P , and thus of P ∪R for some R ∈ Pe
〈H,B〉,

must set p to true due to the rule p← &neg [p](). However, Y \{p} is a model of f(P ∪R)Y

if no rule in R derives p, hence Y is not a subset-minimal model of f(P ∪R)Y .

We now want to characterize persistent inconsistency of a program w.r.t. sets of atoms

H and B in terms of a formal criterion. We start deriving the criterion by observing that

a program P⊥ is persistently inconsistent w.r.t. any H and B whenever it is classically

inconsistent. Then P⊥ ∪ R does not even have classical models for any R ∈ Pe
〈H,B〉, and

thus it cannot have answer sets. For such a P⊥, another program P is persistently incon-

sistent w.r.t. H and B iff it is 〈H,B〉e-equivalent to P⊥; the latter can by Proposition 7 be

checked by comparing their 〈H,B〉-models. This allows us to derive the desired criterion

in fact as a special case of the one for equivalence.

Classically inconsistent programs do not have 〈H,B〉-models due to violation of Prop-

erty (i) of Definition 10. Therefore, checking for persistent inconsistency works by check-

ing whether P does not have 〈H,B〉-models either. To this end, it is necessary that

each classical model Y of P violates Property (i) of Definition 10, otherwise (Y, Y ) (and

possibly (X,Y ) for some X � Y ) would be 〈H,B〉-models of P . Formally:

Proposition 10

A hex-program P is persistently inconsistent w.r.t. sets of atoms H and B iff for each

classical model Y of P there is an Y ′ � Y such that Y ′ |= fPY and Y ′|H = Y |H.
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Example 16 (cont’d)

For the program P from Example 15 we have holds that Y ⊇ {p} holds for each

classical model Y of P . However, for each such Y we have that Y ′ = Y \{p} is a model

of fPY , Y ′ � Y , and Y |H = Y ′|H, which proves that P ∪ R is inconsistent for all

R ∈ P〈H,B〉.

Example 17

Consider the program P = {a← &aOrNotB [a, b](); ← a}. It is persistently inconsistent

w.r.t. allH and B such that b �∈ H. This is the case because the rule a← &aOrNotB [a, b]()

derives a whenever b is false, which violates the constraint← a. Formally, one can observe

that we have a �∈ Y and b ∈ Y for each classical model Y of P . But then Y ′ = Y \{b} is
a model of fPY , Y ′ � Y , and Y |H = Y ′|H.

The criterion for inconsistency follows therefore as a special case from the criterion for

program equivalence.

Applying the criterion using unfounded sets. Proposition 10 formalizes a condition

for deciding persistent inconsistency based on models of the program’s reduct. However,

practical implementations usually do not explicitly generate the reduct, but are often

based on unfounded sets (Faber 2005). For a model Y of a program P , smaller models

Y ′ � Y of the reduct fPY and unfounded sets of P w.r.t. Y correspond to each other

one by one. This allows us to transform the above decision criterion such that it can be

directly checked using unfounded sets.

We use unfounded sets for logic programs as introduced by Faber (2005) for programs

with arbitrary aggregates.

Definition 13 (Unfounded set)

Given a program P and an assignment Y , let U be any set of atoms appearing in P .

Then U is an unfounded set for P w.r.t. Y if, for each r ∈ P with H(r)∩U �= ∅, at least
one of the following holds:

(i) some literal of B(r) is false w.r.t. Y ; or

(ii) some literal of B(r) is false w.r.t. Y \ U ; or

(iii) some atom of H(r) \ U is true w.r.t. Y .

Lemma 3

For a hex-program P and a model Y of P , a set of atoms U is an unfounded set of P

w.r.t. Y iff Y \U |= fPY .

The lemma is shown for all rules of the program one by one. By contraposition, the

lemma implies that for a model Y of P and a model Y ′ ⊆ Y of fPY we have that Y \Y ′
is an unfounded set of P w.r.t. Y . This allows us to restate our decision criterion as

follows:

Corollary 3

A hex-program P is persistently inconsistent w.r.t. sets of atoms H and B iff for each

classical model Y of P there is a nonempty unfounded set U of P w.r.t. Y s.t. U ∩Y �= ∅
and U ∩H = ∅.
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Fig. 1. Evaluation of P from Example 19 based on program splitting.

Example 18 (cont’d)

For the program P from Example 17 we have that U = {b} is an unfounded set of P

w.r.t. any classical model Y of P ; by assumption b �∈ H we have U ∩H = ∅.

Application. We now want to discuss a specific use-case of the decision criterion for

program inconsistency. However, we stress that this section focuses on the study of the

criterion, which is interesting by itself, while a detailed realization of the application is

beyond its scope and discussed in more detail by Redl (2017a).

The state-of-the-art evaluation approach for hex-programs makes use of program split-

ting for handling programs with variables. That is, the overall program is partitioned into

components that are arranged in an acyclic graph. Then, beginning from the components

without predecessors, each component is separately grounded and solved, and each an-

swer set is one by one added as facts to the successor components. The process is repeated

in a recursive manner such that eventually the leaf components will yield the final answer

sets, cf. Eiter et al. (2016).

The main reason for program splitting is value invention, which is supported by non-

ground hex-programs, that is, the introduction of constants by external sources that do

not occur in the input program. In general, determining the set of relevant constants

is computationally expensive and may incur a grounding bottleneck if evaluated as a

monolithic program. This is because the grounder needs to evaluate external atoms un-

der all possible inputs in order to ensure that all possible outputs are respected in the

grounding, as demonstrated by the following example.

Example 19

Consider the program

P = {r1 : in(X) ∨ out(X)← node(X)

r2 : ← in(X), in(Y ), edge(X,Y )

r3 : size(S)← &count [in](S)

r4 : ←size(S), S<limit},
where facts over node(·) and edge(·) define a graph. Then r1 and r2 guess an independent

set and r3 computes its size, that is limited to a certain minimum size limit in r4. The

grounder must evaluate &count under all exponentially many possible extensions of in

in order to instantiate rule r3 for all relevant values of variable S.

In this example, program splitting allows for avoiding unnecessary evaluations. To this

end, the program might be split into P1 = {r1, r2} and P2 = {r3, r4} as illustrated in

Figure 1. Then the state-of-the-art algorithm grounds and solves P1, which computes all

independent sets, and for each of them P2 is grounded and solved.

Since the number of independent sets can be exponentially smaller than the set of all

node selections, the grounding bottleneck can be avoided. However, program splitting

has the disadvantage that nogoods learned from conflict-driven algorithms (Gebser et al.

2012) cannot be effectively propagated through the whole program, but only within a

component.
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Fig. 2. Exploiting persistent inconsistency for search space pruning.

The results from Section 6 can be used to identify a program component as persistently

inconsistent w.r.t. possible input facts from the predecessor component. This information

might be used to construct a constraint that describes the reason R for this inconsistency

in terms of the input facts, which can be added as constraint cR to predecessor compo-

nents in order to eliminate assignments earlier, that would make a successor component

inconsistent anyway. The idea is visualized in Figure 2.

For details about the computation of inconsistency reasons, exploiting them for the

evaluation, and experiments we refer to Redl (2017a).

7 Discussion and conclusion

Applying the results to special cases of hex. The results presented in this paper

carry over to special cases of hex, which, however, often use a specialized syntax. Con-

sidering the example of constraint ASP we briefly sketch how the results can still be

applied using another rewriting.

Constraint ASP allows for using constraint atoms in place of ordinary atoms, which

are of kind a1 ◦a2, where a1 and a2 are arithmetic expressions over (constraint) variables

and constants, and ◦ is a comparison operator. A concrete example is work(lea)$ +

work(john)$ > 10, which expresses that the sum of the working hours of lea and john,

represented by constraint variables work(lea) and work(john), is greater than 10.

Consider the program

P = {project1 ∨ project2 ←
work(lea)$ + work(john)$ > 10← project1

work(lea)$ + work(john)$ > 15← project2

← work(lea)$ > 6

← work(john)$ > 6},
which represents that either project1 or project2 is to be realized. If project1 is chosen,

then lea and john together have to spend more than 10 h working on the project, for

project2 they have to work more than 15 h. However, neither of them wants to spend

more than 6 h on the project.

Here, the ASP solver assigns truth values to the ordinary and to the constraint atoms,

while a constraint solver at the backend ensures that these truth values are consistent

with the semantics of the constraint theory, that is, that there is an assignment of integers

to all constraint variables that witnesses the truth values of the constraint atoms assigned
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by the ASP solver. For instance, the ASP solver may assign project1 and work(lea)$ +

work(john)$ > 10 to true, and work(lea)$ + work(john)$ > 15, work(lea)$ > 6 and

work(john)$ > 6 to false in order to satisfy all rules of the program. This assignment is

consistent with the constraint solver since assigning both work(lea) and work(john) to 6

is consistent with the truth values of the constraint atoms. In contrast, if the ASP solver

assigns project2 and work(lea)$+work(john)$ > 15 to true and both work(lea)$ > 6 and

work(john)$ > 6 to false, then one cannot assign integers to work(lea) and work(john)

that are each smaller or equal to 6 but whose sum is greater than 15. Thus, as expected,

the only solution is to realize project1 .

Although the syntax is tailored and different from hex, constraint ASP is in fact a

special case and can be rewritten to a standard hex-program. To this end, one may

introduce a guessing rule of kind ctrue(“work(lea)$ > 6′′) ∨ cfalse(“work(lea)$ > 6′′)←
for each constraint atom and feed the guesses as input to a special external atom of

kind &constraintSolverOk [ctrue, cfalse](), which interfaces the constraint solver. We as-

sume that &constraintSolverOk [ctrue, cfalse]() evaluates to true iff the guess is consis-

tent with the constraint solver and to false otherwise. Then an ASP-constraint of form

← not &constraintSolverOk [ctrue, cfalse]() in the hex-program can check the guesses.

For details of this rewriting we refer to De Rosis et al. (2015).

One way to apply the results in this paper to special cases of hex is therefore to first

translate dedicated syntax to standard hex-syntax using a rewriting whose correctness

was shown. This allows for making use of the inlining technique also when evaluating

programs or when checking equivalence of programs that belong to such special cases.

For instance, one can use the inlining technique for evaluating programs with constraint

theories or check equivalence of DL-programs. Conversely, using such a rewriting as a

starting point, one may also translate the results of this paper to the language of special

cases of hex.

Related work. Our external source inlining approach is related to inlining-based evalu-

ation approaches for DL-programs (Eiter et al. 2008), that is, programs with ontologies,

cf. Heymans et al. (2010), Xiao and Eiter (2011), and Bajraktari et al. (2017), but it is

more general. The former approaches are specific for embedding (certain types of) de-

scription logic ontologies. In contrast, ours is generic and can handle arbitrary external

sources as long as they are decidable and have finite output for each input (cf. Sec-

tion 2). Note that DL-programs can be seen as hex-programs with a tailored syntax, cf.

Eiter et al. (2008) for formal rewritings of DL-programs to hex. When abstracting from

these syntactic differences, one can say that our rewriting is correct for a larger class of

input programs compared to existing rewritings.

Our rewriting uses the saturation technique, similar to the one by Alviano et al. (2015)

(cf. also Alviano (2016)), who translated nonmonotonic (cyclic) aggregates to disjunc-

tions. However, an important difference to our approach is that they support only a

fixed set of traditional aggregates (such as minimum, maximum, etc.) whose semantics

is directly exploited in a hard-coded fashion in their rewriting, while our approach is

generic and thus more flexible. Our approach can be seen as a generalization of previous

approaches for specialized formalisms to an integration of ASP with arbitrary sources.

Another important difference is that existing rewritings still use simplified (monotonic)

aggregates in the resulting rewritten program while we go a step further and eliminate ex-

ternal atoms altogether. Hence, our rewriting not only supports a larger class of input pro-
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grams, but also rewrites this larger class to programs from a narrower class. This allows

the resulting program to be directly forwarded to an ordinary ASP solver, while support

for aggregates of any kind or additional compatibility checks of guesses are not required.

Based on this inlining approach, we further provided a characterization of equivalence

of hex-programs. The criteria generalize previous results for ordinary ASP by Woltran

(2008). Strong (Lifschitz et al. 2001) and uniform equivalence (Eiter and Fink 2003) are

well-known and important special cases thereof and carry over as well.

Woltran (2004) also discussed the special cases of head-relativized equivalence (H =

HBC(P ) while B can be freely chosen), and body-relativized equivalence (B = HBC(P )

while H can be freely chosen). Also the cases where B ⊆ H and H ⊆ B were analyzed.

Corollaries have been derived that simplify the conditions to check for these special

cases. They all follow directly from an analogous version of Proposition 9 for plain ASP

by substituting H or B by a fixed value. Since we established by Proposition 9 that the

requirements hold also for hex-programs, their corollaries, as summarized in Section 5

by Woltran (2008), hold analogously.

The work is also related to the one by Truszczyński (2010), who extended strong equiv-

alence to propositional theories under FLP-semantics. However, the relationship concerns

only the use of the FLP-semantics, while the notion of equivalence and the formalism

for which the equivalence is shown are different. In particular, 〈H,B〉-equivalence and

external sources were not considered.

Conclusion and outlook. We presented an approach for external source inlining based

on support sets. Due to nonmonotonicity of external atoms, the encoding is not triv-

ial and requires a saturation encoding. We note that the results are interesting be-

yond hex-programs since well-known ASP extensions, such as programs with aggregates

(Faber et al. 2011) or with specific external atoms such as constraint atoms (Gebser et al.

2009), are special cases of hex, and thus, the results are applicable in such cases.

One application of the technique can be found in an alternative evaluation approach,

which is intended to be used for external sources that have a compact representation

as support sets. Previous approaches had to guess the truth values of external atoms

and verify the guesses either by explicit evaluation (as in the traditional approach) or by

matching guesses against support sets (as in the approach by Eiter et al. (2014)). Instead,

the new inlining-based approach compiles external atoms away altogether such that the

program can be entirely evaluated by an ordinary ASP solver. For the considered class

of external sources, our experiments show a clear and significant improvement over the

previous support-set-based approach by Eiter et al. (2014), which is explained by the

fact that the slightly higher initialization costs are exceeded by the significant benefits of

avoiding external calls altogether, and for the considered types of external sources also

over the traditional approach.

Another application is found in the extension of previous characterizations of program

equivalence from ordinary ASP to hex-programs. We generalizes such characterizations

from ordinary ASP to hex-programs. Since this is a theoretical result, compact represen-

tation of external sources is not an issue here. From the criterion for program equivalence

we derive further criteria for program inconsistency w.r.t. program extensions, which have

applications in context of evaluation algorithms for hex-programs.

Potential future work includes refinements of the rewriting. Currently, a new auxiliary

variable a is introduced for all input atoms a of all external atoms. Thus, a quadratic num-
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ber of auxiliary atoms is required. While the reuse of the auxiliary variables is not always

possible, the identification of cases were auxiliary variables can be shared among multiple

inlined external atoms is interesting. For the equivalence criterion, future work may also

include the extension of the results to nonground programs, cf. Eiter et al. (2005).

Moreover, currently we do not distinguish between body atoms and input atoms to

external atoms when we define which programs are allows to be added. A more fine-

grained approach that supports this distinction may allow for identifying programs as

equivalent that are not equivalent w.r.t. to the current notion. Also allowing only exter-

nal atoms with specific properties, such as monotonicity, may lead to more fine-grained

criteria.

Furthermore, a recent alternative notion of equivalence is rule equivalence

(Bliem and Woltran 2016). Here, not the set of atoms that can occur in the added pro-

gram is constrained, but the type of the rules. In particular, proper rules may be added,

while the addition of facts is limited to certain atoms; generalizing this notion to hex-

programs is a possible starting point for future work.
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Appendix Proofs

Proposition 1

For all hex-programs P , external atoms e in P and a positive complete family of support

sets ST(e, P ) such that S+
T ∪ ¬S−T = I(e, P ) for all ST ∈ ST(e, P ), the answer sets of P

are equivalent to those of P[e], modulo the atoms newly introduced in P[e].

Proof

(⇐) Let Y ′ be an answer set of P[e]. We show that its restriction Y to ordinary atoms

in P is an answer set of P .
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• We first show that Y is a model of P . It suffices to show that Y ′ |= xe iff Y |= e. Since

Y and Y ′ coincide on the input atoms of e (they coincide on all ordinary atoms in P ),

we have that Y |= e iff Y ′ |= e, and thus it further suffices to show that Y ′ |= xe iff

Y ′ |= e.

The if-direction is obvious as the rules in equation (1) force xe to be true whenever e

is. For the only-if-direction, observe that if Y ′ �|= e but xe ∈ Y ′, then Y ′\({xe} ∪ {a |
a ∈ Y ′}) � Y ′ is a model of fPY ′

[a] because it does not satisfy any body in equation

(1), which contradicts the assumption that Y ′ is an answer set of P[e].

• Suppose there is a smaller model Y< � Y of fPY . We show by case distinction that

also fPY ′
[e] has a smaller model than Y ′.

(a) Case xe ∈ Y ′:
We show that Y ′< = Y< ∪ {a | a ∈ I(e, P )\Y<} ∪ {a | a ∈ I(e, P ), Y< |= e} ∪ {xe |
Y< |= e} is a model of fPY ′

[e] and that Y ′< � Y ′. For the rules in equation (1), if

Y<∪{a | a ∈ I(e, P )\Y<} satisfies one of their bodies, then we have that Y< |= e and

we set xe to true, thus the rules are all satisfied. If Y< ∪ {a | a ∈ I(e, P )\Y<} does
not satisfy one of their bodies but Y ′< does, then the additional atoms in Y ′< can

only come from {a | a ∈ I(e, P ), Y< |= e}, which implies Y< |= e (by construction)

and thus xe ∈ Y< also in this case. Hence, the rules in equation (1) are all satisfied.

The construction satisfies also the rules in equation (2) because we set a to true

whenever a is false or xe is true in Y ′< (due to Y ′< |= e). Rule (3) is not in fPY ′
[e]

because xe ∈ Y ′ by assumption. For the rules P |e→xe
in equation (4) satisfaction

is given because r ∈ fPY iff r|e→xe
∈ fPY ′

[e] (since Y |= e iff Y ′ |= xe), and by

construction of Y ′<, we set xe to true iff Y ′< |= e.

Now suppose Y ′< �� Y ′. We have that Y< � Y ⊆ Y ′ and that Y ′\Y contains only

atoms from S = {a | a ∈ I(e, P )} ∪ {xe, xe}, and therefore, Y ′\Y< contains some

atom not in S. But then Y ′< �� Y ′ is only possible if Y ′< adds an atom from S to Y<

that is not in Y ′, that is, Y ′<\Y ′ contains an atom from S. But this is impossible

since xe ∈ Y ′, thus we also have a ∈ Y ′ for all a ∈ I(e, P ), while xe �∈ Y ′< by

construction.

Moreover, Y ′< � Y ′ because they differ in an atom other than {a | a ∈ I(e, P )} ∪
{xe, xe} due to Y< � Y .

(b) Case xe ∈ Y ′:
We show that Y ′< = Y< ∪ {a | a ∈ I(e, P )\Y ′} ∪ {xe} is a model of fPY ′

[e] and that

Y ′< � Y ′.
The rules in equation (1) are all eliminated from fPY ′

[e] because xe �∈ Y ′ implies

Y ′ �|= e and thus Y ′ does not satisfy any body of the rules in equation (1); this is

because due to minimality of Y ′ and falsehood of xe, no a is set to true if a is already

true in Y ′. The rules in equation (2) are satisfied because for every a ∈ I(e, P ) we

have that either a ← not a is not in fPY ′
[e] (if a ∈ Y ′) or a ∈ Y ′< by construction

(each such a is also in Y ′). We further have xe ∈ Y ′< by construction and thus

rule (3) is satisfied. For the rules r′ ∈ f(P |e→xe
)Y

′
in equation (4), observe that

there are corresponding rules r ∈ fPY , and that Y ′< coincides with Y< on atoms

other than xe. If Y< |= r because Y< |= H(r) or Y< �|= B(r)\{e}, then this implies

Y ′< |= r′. If Y< |= r because Y< �|= e, then Y ′< |= r′ because Y ′< �|= xe by construction

of Y ′<.
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Moreover, Y ′< � Y ′ because they differ in an atom other than {a | a ∈ I(e, P )} ∪
{xe, xe} due to Y< � Y .

(⇒) Let Y be an answer set of P . We show that

Y ′ = Y ∪ {a | a ∈ I(e, P )\Y } ∪ {a | a ∈ I(e, P ), Y |= e}
∪ {xe | Y |= e} ∪ {xe | Y �|= e}

is an answer set of P[e]; afterwards we show that Y ′ is actually the only extension of Y

to an answer set of P[e].

• We first show that Y ′ is a model of P[e]. If Y ∪ {a | a ∈ I(e, P )\Y } satisfies one of

the rule bodies in equation (1), then S+
T ⊆ Y and (I(e, P )\S−T) ∩ Y = ∅ (if some

a ∈ I(e, P )\S−T would be in Y , then a would not be in Y ∪{a | a ∈ I(e, P )\Y } and the

rule body would not be satisfied) for some ST ∈ ST(e, P ); this implies Y |= e and, by

construction, xe ∈ Y ′. If only Y ′ but not Y ∪ {a | a ∈ I(e, P )\Y } satisfies one of the

rule bodies in equation (1), then additional atoms of kind a must be in Y ′, which are

only added if Y |= e; this also implies, by construction, xe ∈ Y ′. Thus we have xe ∈ Y ′

whenever Y ′ satisfies one of the rule bodies in equation (1), and thus these rules are

all satisfied. We further add a whenever a �∈ Y or xe is added (due to Y |= e) for all

a ∈ I(e, P ), which satisfies rules (2), and we add xe whenever xe is not added (due to

Y �|= e), thus the rule (3) is satisfied. Moreover, the rules in equation (4) are satisfied

because Y is a model of P and the value of xe under Y ′ coincides with the value of e

under Y by construction.

• Suppose there is a smaller model Y ′< � Y ′ of fPY ′
[e] and assume that this Y ′< is subset-

minimal. We show that then, for the restriction Y< of Y ′< to the atoms in P it holds

that (i) Y< is a model of fPY and (ii) Y< � Y , which contradicts the assumption that

Y is an answer set of P .

(i) Suppose there is a rule r ∈ fPY such that Y< �|= r. Observe that for r′ = r|e→xe

we have r′ ∈ fPY ′
[e] because we have Y |= B(r) (since r ∈ fPY ) and Y ′ |= xe iff Y |= e

(by construction of Y ′), which implies Y ′ |= B(r′). Moreover, since Y ′< |= r′, we either

have Y ′< |= H(r′) or Y ′< �|= B(r′). In the former case we also have Y< |= H(r), and

thus Y< |= r, because the two assignments resp. rules coincide on ordinary atoms in

P ; with the same argument Y< |= r holds also in the latter case if a body atom in

B(r′)\{xe} is unsatisfied under Y ′<. Hence, Y
′
< |= r′ and Y< �|= r are only possible if

e ∈ B(r), Y ′< �|= xe, and Y< |= e; the latter implies Y ′< |= e as Y< and Y ′< coincide

on I(e, P ). Moreover, Y ′ |= B(r′) implies Y ′ |= xe; by construction of Y ′ this further
implies xe �∈ Y ′.
Since xe could not be false in Y ′< if (at least) one of the rules r1, . . . , rn in (1) would be

in PY ′
[e] and had a satisfied body, for each ri, 1 ≤ i ≤ n, one of Y ′ �|= B(ri) (then ri is

not even in PY ′
[e] ) or Y

′
< �|= B(ri) must hold; but since Y ′< � Y ′ and B(ri) consists only

of positive atoms, the former case in fact implies the latter, thus Y ′< �|= B(ri) must

hold for all 1 ≤ i ≤ n.

Moreover, we have that a ∈ Y ′< whenever a �∈ Y ′< for all a ∈ I(e, P ). This is because

xe �∈ Y ′ and thus a ∨ a ← not xe ∈ PY ′
[e] for all a ∈ I(e, P ) (cf. rules in equation (2))

and xe �∈ Y ′<; a �∈ Y ′< and a �∈ Y ′< would violate this rule. But then Y ′< does not fulfill

any of the cases in which e is true, hence Y ′< �|= e, which contradicts our previous

observation, thus the initial assumption that Y< �|= r is false and we have Y< |= PY .
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(ii) Finally, we show that Y< � Y , that is, Y ′\Y ′< contains not only atoms from

{a | a ∈ I(e, P )} ∪ {xe, xe}. We first consider the case xe ∈ Y ′. Then Y ′\Y ′< cannot

contain xe (because it is not even in Y ′ by construction) or xe (because it would leave

rule (3) unsatisfied). It further cannot contain any a because Y ′< is assumed to be

subset-minimal and thus contains a only if a �∈ Y ′ (and thus a �∈ Y ′<); this is because
xe �∈ Y ′ and thus all rules in equation (2) which force a to be true, except a← not a,

are dropped from fPY ′
[e] ; but then removal of any a would leave the rule a← not a in

equation (2), which is contained in fPY ′
[e] , unsatisfied.

In case xe ∈ Y ′, if Y ′\Y ′< contains only atoms from {a | a ∈ I(e, P )} ∪ {xe, xe}, then
it contains xe (because xe �∈ Y ′ and all a for a ∈ I(e, P ) must be true whenever xe is

due to the rules in equation (2), which are all also in PY ′
[e] ). Moreover, we have that

a ∈ Y ′< whenever a �∈ Y ′< because a∨a← not xe ∈ fPY ′
[e] for all a ∈ I(e, P ) (cf. rules in

equation (2)); a �∈ Y ′< and a �∈ Y ′< would violate this rule. But then Y ′< does not fulfill

any of the cases in which e is true (otherwise Y ′< would satisfy a body of equation

(1), which would also be satisfied by Y ′ � Y ′<, such that the rule would be in PY ′
[e]

and xe could not be false in Y ′<), hence Y ′< �|= e; since xe ∈ Y ′ implies that Y ′ |= e

we have that Y ′\Y ′< must contain at least one of I(e, P ) such that the truth values

of e can differ under the two assignments, thus it does not only contain atoms from

{a | a ∈ I(e, P )} ∪ {xe, xe}.
It remains to show that Y ′ is the only extension of Y that is an answer set of P[e].

To this end, consider an arbitrary answer set Y ′′ of P[e] which coincides with Y ′ on the

atoms in P (i.e., they are both extensions of Y ); we have to show that Y ′′ = Y ′. Since
the only rules in the encoding which support xe are the rules in equation (1), minimality

of answer sets implies that Y ′ |= e iff Y ′ |= xe and Y ′′ |= e iff Y ′′ |= xe; since the value

of e depends only on atoms in P and is thus the same under Y ′ and Y ′′, this further

implies Y ′ |= xe iff Y ′′ |= xe, that is, the value of xe under Y ′ and Y ′′ is the same.

Then the value of xe, which is only defined in rule (3), is also the same in Y ′ and Y ′′.
Finally, since Y ′ and Y ′′ coincide on each atom a in P , and the value of a, which is

defined only in rules (2), depends only on atoms which have already been shown to be

the same under Y ′ and Y ′′, we have that also the value of a is the same under Y ′ and Y ′′.
Thus Y ′ = Y ′′.

Proposition 2

Let X be a set of atoms and P be a hex-program such that

P ⊇ {r1 : xe ← B, b; r2 : xe ← B, b}
∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ X}
∪ {xe ← not xe},

where B ⊆ {a, a | a ∈ X}, b ∈ X, and xe occur only in the rules explicitly shown above.

Then P is equivalent to P ′ = (P\{r1, r2}) ∪ {r : xe ← B}.
Proof

We have to show that an assignment Y is an answer set of P iff it is an answer set of

P ′. It suffices to restrict the discussion to r1, r2 ∈ P and the corresponding rule r ∈ P ′

because the other rules in P versus P ′ and their reducts PY versus P ′Y w.r.t. a fixed

assignment Y coincide.
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(⇒) Let Y be an answer set of P . We first show that Y |= P ′. It suffices show that

Y |= r. Toward a contradiction, suppose Y �|= xe and Y |= B. Since we have (at least)

one of b ∈ Y or b ∈ Y (otherwise Y could not satisfy the rule b ← not b ∈ P ), we also

have Y �|= r1 or Y �|= r2, which is impossible because Y is an answer set of P .

Thus Y |= P ′. Toward a contradiction, suppose there is a smaller model Y< � Y of

fP ′Y . If r �∈ fP ′Y then Y �|= B(r), which implies that Y �|= B(r1) and Y �|= B(r2), and

thus neither r1 nor r2 is in fPY . Otherwise, since Y< |= fP ′Y we have Y< |= r and thus

either Y< |= xe or Y< �|= B. But in both cases also Y< |= r1 and Y< |= r2, thus Y< |= PY ,

which contradicts the assumption that Y is an answer set of P .

(⇐) Let Y be an answer set of P ′. We immediately get Y |= P because Y |= r and r1
and r2 are even easier to satisfy than r.

Toward a contradiction, suppose there is a smaller model Y< � Y of fPY . If Y �|= B

we have that r �∈ fP ′Y and thus Y< |= fP ′Y , which contradicts the assumption that Y

is an answer set of P ′.
Then Y |= B and we have that r ∈ fP ′Y and have to show that Y< |= r.

If Y |= xe then Y �|= xe (otherwise Y \{xe} |= fP ′Y , contradicting our assumption

that Y is an answer set of P ′). Moreover, due to the rule b ← not b, one of b or b must

be true in Y . But then Y cannot not satisfy both r1 and r2, hence Y �|= xe.

Then Y |= xe (since Y |= xe ← not xe). If Y< |= xe or Y< �|= B then also Y< |= r and

we are done. Otherwise, since Y< |= fPY , we have (i) either Y �|= b (thus r1 �∈ fPY ) or

Y< �|= b (thus Y< |= r1), where the former case implies the latter since Y< � Y and (ii)

either Y �|= b (thus r2 �∈ fPY ) or Y< �|= b (thus Y< |= r2), where the former case implies

the latter since Y< � Y . Thus, we have in any case both Y< �|= b and Y< �|= b. But then

Y< �|= b ∨ b← not xe, and since this rule is in fPY because Y �|= xe, we get Y< �|= fPY .

This contradicts our initial assumption that fPY has a smaller model than Y , hence Y

is an answer set.

Corollary 1

For all hex-programs P , external atoms e in P and a positive complete family of support

sets ST(e, P ), the answer sets of P are equivalent to those of P[e], modulo the atoms

newly introduced in program P[e].

Proof

A support set of kind ST with S+
T ∪ ¬S−T � I(e, P ) is equivalent to the set C = {S+

T ∪
S−T ∪R | R ⊆ U ∪ ¬U,R consistent} of support sets, where U = I(e, P )\(S+

T ∪ ¬S−T), in

the sense that ST is applicable if one of C is applicable. Conversely, each such support set

can be retrieved by recursive resolution-like replacement of support sets in C which differ

only in the polarity of a single atom. According to Proposition 2, such a replacement

in ST(e, P ) does not change the semantics of the program P[e] constructed based on

ST(e, P ). Thus the encoding can be constructed from an arbitrary positive complete

family of support sets right from the beginning.

Proposition 3

For all hex-programs P , negated external atoms not e in P and a negative complete

family of support sets SF(e, P ), the answer sets of P are equivalent to those of P[not e],

modulo the atoms newly introduced in program P[not e].
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Proof

Using a negative complete family of support sets for defining the auxiliary variable xe in

the rules in equation (5), and replacing not e by xe amounts to the replacement of not e

by a new external atom e′, and applying the rewriting from Definition 6 afterwards.

Proposition 4

Let Sσ be a positive resp. negative complete family of support sets for some external atom

e in a program P , where σ ∈ {T,F}. Then Sσ = {Sσ ∈
∏

Sσ∈Sσ ¬Sσ | Sσ is consistent}
is a negative resp. positive complete family of support sets, where T = F and F = T.

Proof

We restrict the proof to the case σ = T; the case σ = F is symmetric.

If ST is a positive complete family of support sets, then the support sets ST ∈ ST
describe the possibilities to satisfy e exhaustively. Thus, in order to falsify e, at least one

literal of each ST ∈ ST must be falsified, that is, at least one literal in ¬ST must be

satisfied. Thus amounts to the Cartesian product of all sets ¬ST with ST ∈ ST.
Proposition 5

Let P and Q be hex-programs, R be an ordinary ASP, and Y be an assignment s.t. Y ∈
AS(P ∪R) but Y �∈ AS(Q∪R). Then there is also a positive ordinary ASP R′ such that

Y ∈ AS(P ∪R′) but Y �∈ AS(Q ∪R′) and B(R′) ⊆ B(R) and H(R′) ⊆ H(R).

Proof

Let P and Q be hex-programs, R be an ordinary ASP, and Y be an assignment such that

Y ∈ AS(P ∪ R) but Y �∈ AS(Q ∪ R). We have to show that there is a positive R′ such
that Y ∈ AS(P ∪R′) but Y �∈ AS(Q∪R′). As Woltran (2008), we show this in particular

for R′ = RY , where RY = {H(r) ← B+(r) | r ∈ R, (r)Y �|= b for all b ∈ B−(r)} is the

GL-reduct (Gelfond and Lifschitz 1988), not to be confused with the FLP-reduct which

is used in the definition of the hex-semantics. Obviously we have B(R′) ⊆ B(R) and

H(R′) ⊆ H(R).

• We first show that Y ∈ AS(P ∪ R′). For modelhood, we know that Y is a model of

P , thus it suffices to discuss R′. Let r′ ∈ R′. Then there is a corresponding rule r ∈ R

such that r′ is the only rule in {r}Y . We have that Y �|= B−(r), otherwise r′ would
not be in {r}Y . But then, since Y |= r (because Y |= R since Y ∈ AS(P ∪ R) by

assumption), we have that Y |= H(r) or Y �|= B+(r), which implies that Y |= r′.
It remains to show that there is no Y ′ � Y such that Y ′ |= f(P ∪ R′)Y . Toward a

contradiction, suppose there is such an Y ′; we show that it is also a model of f(P∪R)Y ,

which contradicts the assumption that Y is an answer set of P ∪R. Obviously, we have

Y ′ |= fPY . Now consider r ∈ fRY . Then Y |= B+(r) and Y �|= B−(r). But then

H(r) ← B+(r) ∈ R′ and H(r) ← B+(r) ∈ fR′Y . Since Y ′ |= fR′Y , we have that

Y ′ |= H(r) or Y ′ �|= B+(r) and thus Y ′ |= r. Since this holds for all r ∈ fRY this

implies Y ′ |= f(P ∪R)Y , which contradicts the assumption that Y is an answer set of

P ∪R, thus Y ′ cannot exist and Y is an answer set of P ∪R′.
• We now show that Y �∈ AS(Q ∪ R′). If Y �|= Q ∪ R then also Y �|= Q ∪ R′ because
for each r ∈ R we either have that Y |= B−(r) (and thus r is not relevant for the

inconsistency of Q∪R) or R′ contains H(r)← B+(r) instead, which is even harder to

satisfy (i.e., is violated whenever r is).
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If Y |= Q∪R then there is an Y ′ � Y such that Y ′ |= f(Q∪R)Y . We show that Y ′ is also
a model of f(Q ∪ R′)Y . Toward a contradiction, suppose there is an r′ ∈ f(Q ∪ R′)Y

such that Y ′ �|= r′. Then r′ must be in fR′Y because if it would be in fQY then

Y ′ could not be a model of f(Q ∪ R)Y . Then Y ′ �|= H(r′) but Y ′ |= B+(r′). But
then there is a rule r ∈ fRY with H(r) = H(r′) and B+(r) = B+(r′) such that

Y ′ �|= B−(r) (otherwise Y |= B−(r) and r′ could not be in R′ and thus also not in

f(Q ∪R′)Y ). However, then Y ′ �|= r and thus Y ′ �|= f(Q ∪R)Y , which contradicts our

assumption.

Proposition 6

For hex-programs P and Q and sets H and B of atoms, there is a program R ∈ P〈H,B〉
with AS(P ∪R) �⊆ AS(Q ∪R) iff there is a witness for P �⊆〈H,B〉 Q.

Proof

(⇒) If AS(P ∪ R) �⊆ AS(Q ∪ R) for a program R, then there is an assignment Y such

that Y ∈ AS(P ∪ R) but Y �∈ AS(Q ∪ R). Due to Proposition 5 we can assume that R

is a positive program.

We show that Y satisfies Condition (i) of Definition 9. Since Y ∈ AS(P ∪R) we have

Y |= P . Toward a contradiction, suppose there is an Y ′ � Y such that Y ′ |= fPY and

Y ′|H �� Y |H. Then, since Y ′ ⊆ Y , we have Y ′|H = Y |H. We further have Y ′|B ⊆ Y |B,
that is, Y ≤BH Y ′. Since R is positive, Y |= R implies Y ′ |= R, and since fRY ⊆ R this

further implies Y ′ |= fRY . Since we further have Y ′ |= fPY this gives Y ′ |= f(P ∪R)Y

and thus Y cannot be an answer set of P ∪ R, which contradicts our assumption, and

therefore, Condition (i) is satisfied.

We show now that there is an X such that (X,Y ) satisfies also Condition (ii), that

is, is a witness as by Definition 9. If Y �|= Q then Condition (ii) is trivially satisfied for

any X ⊆ Y and, for example, (Y, Y ) is a witness. Otherwise (Y |= Q), note that we have

Y |= R since Y ∈ AS(P ∪ R). Together with the precondition that Y �∈ AS(Q ∪ R)

this implies that there is an X � Y such that X |= f(Q ∪ R)Y , which is equivalent to

X |= fQY and X |= fRY . We show that for this X, Condition (ii) is satisfied, hence

(X,Y ) is a witness. As we already have X � Y and X |= fQY , it remains to show

that for any X ′ with X ≤BH X ′ � Y we have X ′ �|= fPY . If there would be an X ′ with
X ≤BH X ′ � Y with X ′ |= fPY , then, since we also have X ′ |= fRY (because X |= fRY

and fRY is positive), this implies X ′ |= f(P ∪R)Y and contradicts the precondition that

Y ∈ AS(P ∪R). Thus such an X ′ cannot exist and Condition (ii) is satisfied by (X,Y ).

(⇐) Let (X,Y ) be a witness for AS(P ∪R) �⊆ AS(Q∪R). We make a case distinction:

either Y �|= Q or Y |= Q.

• Case Y �|= Q:

We show for the following R ∈ P〈H,B〉 that Y ∈ AS(P ∪R) but Y �∈ AS(Q ∪R):

R = {a← | a ∈ Y |H}.
Since (X,Y ) is a witness, by Property (i) we have Y |= P . We further have Y |= R,

thus Y |= P ∪R. Moreover, we obviously have fRY = R, which contains all atoms from

Y |H as facts. Suppose there is a Y ′ � Y such that Y ′ |= f(P ∪ R)Y ; then Y ′ |= fPY

and by Property (i) we have Y ′|H � Y |H, that is, at least one atom from Y |H is

unsatisfied under Y ′. But then Y ′ �|= fRY and thus Y ′ �|= f(P ∪R)Y , that is, Y is an
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answer set of P ∪R. On the other hand, Y �|= Q implies Y �|= Q ∪R, and therefore, Y

cannot be an answer set of Q ∪R.

• Case Y |= Q:

We show for the following R ∈ P〈H,B〉 that Y ∈ AS(P ∪R) but Y �∈ AS(Q ∪R):

R ={a← | a ∈ X|H} ∪
{a← b | a ∈ (Y \X)|H, b ∈ (Y \X)|B}.

We first show that Y ∈ AS(P ∪ R). Since (X,Y ) is a witness as by Definition 9, we

have Y |= P . We further have Y |= R by construction of R because all heads of its

rules are in Y .

Thus it remains to show that it is also a subset-minimal model of f(P ∪R)Y . Toward

a contradiction, assume that there is a Z � Y such that Z |= f(P ∪ R)Y , which is

equivalent to Z |= fPY and Z |= fRY , where fRY = R (by construction of R).

By construction of R, Z |= R implies that X|H ⊆ Z|H. Property (i) of Definition 9

implies that Z|H � Y |H and thus X|H ⊆ Z|H � Y |H. This implies that there is an

a ∈ (Y \X)|H which is not in Z|H. Since Y |= Q, Z � Y , Z |= fPY and X|H ⊆ Z|H,
Property (ii) further implies Z|B �⊆ X|B (since violating X ≤BH Z is the only remaining

option to satisfy the property). As we also have Z|B ⊆ Y |B (because Z � Y ), there

is a b ∈ (Y \X)|B which is also in Z. Hence, we have an a ∈ (Y \X)|H and a b ∈
(Y \X)|B such that only b is also in Z, hence the rule a ← b ∈ R (and a ← b ∈
fRY ) is violated by Z, thus Z �|= fRY and Z �|= f(P ∪ R)Y , which contradicts our

assumption.

It remains to show that Y �∈ AS(Q ∪ R). We already know that Y |= Q ∪ R and

must show that f(Q ∪ R)Y has a smaller model than Y . Since (X,Y ) is a witness,

we have X � Y and X |= fQY by Property (ii). As X |= R (it satisfies all facts

{a ← | a ∈ X|H} and no other rules of R are applicable as their bodies contain only

atoms that are not in X), we get X |= fRY and have X |= f(Q ∪ R)Y . Therefore

Y �∈ AS(Q ∪R).

Toward a characterization of equivalence in terms of 〈H,B〉-models we introduce the

following lemma.

Lemma 4

For sets H and B of atoms and programs P , Q, (Y, Y ) ∈ σ〈H,B〉(P )\σ〈H,B〉(Q) iff there

is a witness (X,Y ) for P ⊆〈H,B〉 Q with X|H = Y |H.

Proof

(⇒) Since (Y, Y ) ∈ σ〈H,B〉(P ), Property (i) of Definition 9 holds because Property (i) of

Definition 10 is the same and holds. For Property (ii) of Definition 9, (Y, Y ) �∈ σ〈H,B〉(Q)

implies that either Y �|= Q or there is a Y ′ � Y such that Y ′ |= fQY and Y ′|H = Y |H.
In the former case, Property (ii) of Definition 9 holds trivially for all X ⊆ Y and, for

example, (Y, Y ) is witness for P ⊆〈H,B〉 Q, for which Y |H = Y |H clearly holds. In case

Y |= Q, we have that there is some X � Y with X |= fQY and X|H = Y |H. In

order to show that (X,Y ) satisfies Property (ii), it remains to show that for all X ′ with
X ≤BH X ′ � Y we have X ′ �|= fPY . If there would be an X ′ with X ≤BH X ′ � Y

and X ′ |= fPY , then X|H = Y |H would imply X ′|H = Y |H, and thus Property (i) of
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Definition 10 would be violated by (Y, Y ) w.r.t. P , which contradicts the assumption

that (Y, Y ) ∈ σ〈H,B〉(P ).

(⇐) For a witness (X,Y ) for P ⊆〈H,B〉 Q with X|H = Y |H, Property (i) of Definition 9

implies that (Y, Y ) ∈ σ〈H,B〉(P ) and it remains to show that (Y, Y ) �∈ σ〈H,B〉(Q). Since

(X,Y ) is a witness with X|H = Y |H, we have either Y �|= Q or X � Y and X |= fQY . In

the former case (Y, Y ) cannot be an 〈H,B〉-model of Q due to violation of Property (i)

of Definition 10. In the latter case (Y, Y ) cannot be an 〈H,B〉-model of Q since our

assumption X|H = Y |H also contradicts Property (i) of Definition 10.

Proposition 7

For sets H and B of atoms and hex-programs P and Q, we have P ≡〈H,B〉 Q iff

σ〈H,B〉(P ) = σ〈H,B〉(Q).

Proof

(⇒) We make a proof by contraposition. W.l.o.g. assume there is an (X,Y ) ∈
σ〈H,B〉(P )\σ〈H,B〉(Q) (the case (X,Y ) ∈ σ〈H,B〉(Q)\σ〈H,B〉(P ) is symmetric). We have

to show that then P ≡〈H,B〉 Q does not hold.

Since (X,Y ) ∈ σ〈H,B〉(P ), we also have (Y, Y ) ∈ σ〈H,B〉(P ) (cf. Definition 10). If

(Y, Y ) �∈ σ〈H,B〉(Q) then by Lemma 4 there is a witness (X,Y ) for P �⊆〈H,B〉 Q, and thus,

by Proposition 6 there is a program R ∈ P〈H,B〉 with AS(P ∪ R) �⊆ AS(Q ∪ R), hence

P ≡〈H,B〉 Q does not hold.

In case (Y, Y ) ∈ σ〈H,B〉(Q), we have X � Y (X and Y cannot be equal because

(X,Y ) �∈ σ〈H,B〉(Q)). We make a case distinction.

• Case 1: There exists an X ′ with X ≤BH X ′ � Y such that (X ′, Y ) ∈ σ〈H,B〉(Q):

Since (Y, Y ) ∈ σ〈H,B〉(Q) but (X,Y ) �∈ σ〈H,B〉(Q), the latter fails to satisfy

Definition 10 due to Property (ii). Then X <BH X ′ must hold (rather than X|H∪B =

X ′|H∪B) because only in this case satisfaction of Property (ii) of Definition 10 w.r.t. X

can differ from satisfaction w.r.t. X ′. Then there is a Z � Y with Z|H∪B = X ′ such
that (Z, Y ) is ≤BH-maximal for Q and thus Z |= fQY . We show that (Z, Y ) is a witness

for P �⊆〈H,B〉 Q. Since (Y, Y ) ∈ σ〈H,B〉(P ), Property (i) of Definition 9 holds for (Z, Y ).

Moreover, we have Z |= fQY and, since (X,Y ) ∈ σ〈H,B〉(P ), we have by Property (ii)

of Definition 10 for all X ′′ with X <BH X ′′ � Y that X ′′ �|= fPY . Since X <BH Z (as a

consequence of Z|H∪B = X ′ and X <BH X ′), Property (ii) of Definition 9 holds for Z

and thus (Z, Y ) is a witness for P �⊆〈H,B〉 Q.

• Case 2: For each X ′ with X ≤BH X ′ � Y we have (X ′, Y ) �∈ σ〈H,B〉(Q):

We already have (X,Y ) ∈ σ〈H,B〉(P ) and thus there is a Z � X with Z|H∪B = X such

that Z |= fPY . We show that (Z, Y ) is a witness for the reverse problem Q �⊆〈H,B〉 P .

Since (Y, Y ) ∈ σ〈H,B〉(Q) we have that Property (i) of Definition 9 is satisfied. We

have Y |= P (due to Property (i) of Definition 10 w.r.t. (X,Y ) ∈ σ〈H,B〉(P )), thus

for satisfaction of Property (ii) of Definition 9 recall that we have Z |= fPY and it

remains to show that for each X ′′ with X ≤BH X ′′ � Y we have X ′′ �|= fQY . If there

would be such an X ′′ with X ′′ |= fQY , then there would also a ≤BH-maximal one X ′′′

and (X ′′′, Y ) would be an 〈H,B〉-model of Q, which contradicts our assumption that

(X ′, Y ) �∈ σ〈H,B〉(Q) for each X ′ with X ≤BH X ′ � Y .

(⇐) We make a proof by contraposition. Suppose P �≡〈H,B〉 Q, then either P ⊆〈H,B〉 Q
or Q ⊆〈H,B〉 P does not hold; we assume w.l.o.g. that P ⊆〈H,B〉 Q does not hold (the
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other case is symmetric). We have to show that σ〈H,B〉(P ) = σ〈H,B〉(Q) does not hold

either.

By Proposition 6, there is a witness (X,Y ) for P �⊆〈H,B〉 Q. Then by Property (i) of

Definition 9, we have Y |= P and for all Y ′ � Y with Y ′ |= fPY we have Y ′|H = Y |H,
which implies that (Y, Y ) ∈ σ〈H,B〉(P ).

If (Y, Y ) �∈ σ〈H,B〉(Q), it is proven that σ〈H,B〉(P ) �= σ〈H,B〉(Q).

Otherwise we have (Y, Y ) ∈ σ〈H,B〉(Q). By Property (i) of Definition 9, we then have

Y |= Q and by Lemma 4 we have X|H �= Y |H and thus X � Y . Since (X,Y ) is a

witness for P �⊆〈H,B〉 Q we have X |= fQY and for all X ′ with X ≤BH X ′ � Y we have

X ′ �|= fPY . Take an arbitrary pair (Z, Y ) of assignments with Z � Y for which X ≤BH Z

holds and which is ≤BH-maximal for Q (such a pair exists because we already know that

X |= fQY ). Moreover, (Y, Y ) ∈ σ〈H,B〉(Q) implies that Property (i) of Definition 10

holds for (Z|H∪B, Y ). Therefore (Z|H∪B, Y ) ∈ σ〈H,B〉(Q).

On the other hand, (Z|H∪B, Y ) �∈ σ〈H,B〉(P ) because (X,Y ) is a witness for P �⊆〈H,B〉
Q, and therefore, for all X ′ with X ≤BH X ′ � Y we have X ′ �|= fPY . Since X ≤BH Z � Y

we also have that X ′′ �|= fPY for all X ′′ such that Z|H∪B ≤BH X ′′ � Y . But then there

cannot be an X ′′ with X ′′|H∪B = Z|H∪B such that X ′′ |= fPY . Therefore Property (ii)

of Definition 10 cannot be satisfied due to failure to find a pair (X ′′, Y ) with X ′′ � Y

and X ′′|H∪B = Z|H∪B that is ≤BH-maximal for P .

Proposition 8

For sets H and B of atoms, hex-programs P and Q, and an atom a that does not occur

in P or Q, the following holds:

(i) P ≡〈H,B〉 Q iff P ≡〈H∪{a},B〉 Q; and

(ii) P ≡〈H,B〉 Q iff P ≡〈H,B∪{a}〉 Q.

Proof

Property (i) (⇒) We make a proof by contraposition. If P ≡〈H∪{a},B〉 Q does not hold,

then either P ⊆〈H∪{a},B〉 Q or Q ⊆〈H∪{a},B〉 P ; as the two cases are symmetric it suffices

to consider the former. If P ⊆〈H∪{a},B〉 Q does not hold then by Proposition 6 there is

a witness (X,Y ) for P �⊆〈H∪{a},B〉 Q. We show that we can also construct a witness for

P �⊆〈H,B〉 Q, which implies by another application of Proposition 6 that P ⊆〈H,B〉 Q and

thus P ≡〈H,B〉 Q do not hold.

In particular, (X\{a}, Y \{a}) is a witness for P �⊆〈H,B〉 Q. We show this separately

depending on the type of (X,Y ).

• If neither X nor Y contains a, then (X,Y ) itself is also a witness for P �⊆〈H,B〉 Q.

Property (i) of Definition 9 holds because we know that Y |= P and for each Y ′ � Y

with Y ′ |= fPY we have that Y ′|H∪{a} � Y |H∪{a}; the latter implies Y ′|H � Y |H
since a �∈ Y and thus Y ′ and Y must differ in an atom from H.
For Property (ii), if Y �|= Q we are done. Otherwise we know thatX � Y andX |= fQY

and that for all X ′ with X ≤BH∪{a} X ′ we have X ′ �|= fPY (since (X,Y ) satisfies

Property (ii) w.r.t. H ∪ {a} and B). We have to show that X ′ �|= fPY holds also for

all X ′ with X ≤BH X ′ � Y . However, each X ′ such that X ≤BH X ′ has to satisfy

X ′|H ⊇ X|H and X ′|B ⊆ X|B; the former implies X ′|H∪{a} ⊇ X|H∪{a} because

a �∈ Y , X � Y and X ′ � Y . Then for this X ′ also X ≤BH∪{a} X ′ holds, and therefore,
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satisfaction of Property (ii) w.r.t. H∪{a} and B implies X ′ �|= fPY . Thus Property (ii)

holds also w.r.t. H and B.
• If only Y but not X contains a, then (X,Y \{a}) is also a witness for P �⊆〈H,B〉 Q. For

Property (i), Y |= P implies Y \{a} |= P because a does not occur in P . Now suppose

there is a Y ′ � Y \{a} such that Y ′ |= fPY and Y ′|H = Y |H. Then Y ′ and Y differ in

an atom other than a and we have that Y ′ ∪ {a} � Y and Y ′ ∪ {a}|H∪{a} = Y |H∪{a};
this contradicts the assumption that Property (i) holds w.r.t. H ∪ {a} and B.
For Property (ii), if Y �|= Q then also Y \{a} �|= Q because a does not occur in Q and

we are done. Otherwise we know that X � Y and X |= fQY and that for all X ′ with
X ≤BH∪{a} X ′ we have X ′ �|= fPY (since (X,Y ) satisfies Property (ii) w.r.t. H ∪ {a}
and B). In this case, X and Y must in fact differ in more atoms than just a: otherwise

Y |= P would imply X |= fPY (because a does not occur in P and fPY ⊆ P );

since X ≤BH∪{a} X ′ � Y for any X ′ with X ′|H∪B = X|H∪B this would contradict

the assumption that Property (ii) holds w.r.t. H ∪ {a} and B. But then X � Y \{a}.
Moreover, each X ′ such that X ≤BH X ′ � Y \{a} has to satisfy X ′|H ⊇ X|H and

X ′|B ⊆ X|B; the former implies X ′|H∪{a} ⊇ X|H∪{a} because a �∈ Y \{a}, X � Y and

X ′ � Y . Then for this X ′ also X ≤BH∪{a} X ′ � Y holds, and therefore, satisfaction of

Property (ii) w.r.t. H ∪ {a} and B implies X ′ �|= fPY . Thus Property (ii) holds also

w.r.t. H and B.
• If both X and Y contain a, then (X\{a}, Y \{a}) is also a witness for P �⊆〈H,B〉 Q. For

Property (i), Y |= P implies Y \{a} |= P because a does not occur in P . Now suppose

there is a Y ′ � Y \{a} such that Y ′ |= fPY and Y ′|H = (Y \{a})|H. Then Y ′ and
Y \{a} differ in an atom other than a and we have that Y ′∪{a} � Y , Y ′∪{a} |= fPY

(since a does not occur in P ) and Y ′ ∪ {a}|H∪{a} = Y |H∪{a}; this contradicts the

assumption that Property (i) holds w.r.t. H ∪ {a} and B.
For Property (ii), if Y �|= Q then also Y \{a} �|= Q because a does not occur in Q and we

are done. Otherwise we know that X � Y (and thus X\{a} � Y \{a}) and X |= fQY

and that for all X ′ with X ≤BH∪{a} X ′ � Y we have X ′ �|= fPY (since (X,Y ) satisfies

Property (ii) w.r.t. H ∪ {a} and B). We have to show that X ′ �|= fPY holds also for

all X ′ with X\{a} ≤BH X ′ � Y \{a}. Consider such an X ′, then X ′|H ⊇ (X\{a})|H,
X ′|B ⊆ (X\{a})|B, and X ′ � Y \ {a}. Now let X ′′ = X ′ ∪ {a}. Then X ′′|H∪{a} ⊇
X|H∪{a} because a is added to X ′′ and the superset relation is already known to hold

for all other atoms from H. Moreover, X ′′|B ⊆ X|B still holds because X ′|B ⊆ X|B and

the only element a added to X ′′ is also in X. Moreover, we still have X ′′ � Y because

a ∈ Y and X ′ and Y differ in at least one atom other than a due to X ′ � Y \{a}. These
conditions together imply X ≤BH∪{a} X ′′ � Y , and thus satisfaction of Property (ii)

w.r.t. H ∪ {a} and B implies X ′′ �|= fPY . Since X ′′ and X ′ differ only in a, that does

not appear in fPY , this further implies X ′ �|= fPY . Hence Property (ii) holds also

w.r.t. H and B.
Property (i) (⇐) Trivial because P ≡〈H∪{a},B〉 Q is a stronger condition than P ≡〈H,B〉

Q since it allows a larger class of programs to be added.

Property (ii) (⇒) We make a proof by contraposition. If P ≡〈H,B∪{a}〉 Q does not hold,

then either P ⊆〈H,B∪{a}〉 Q or Q ⊆〈H,B∪{a}〉 P ; as the two cases are symmetric it suffices

to consider the former. If P ⊆〈H,B∪{a}〉 Q does not hold then by Proposition 6 there is
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a witness (X,Y ) for P �⊆〈H,B∪{a}〉 Q. We show that we can also construct a witness for

P �⊆〈H,B〉 Q, which implies by another application of Proposition 6 that P ⊆〈H,B〉 Q and

thus P ≡〈H,B〉 Q does not hold.

We show in particular that (X,Y ) is also a witness for P �⊆〈H,B〉 Q. Property (i) of

Definition 9 is also satisfied w.r.t. H and B (instead of H and B ∪ {a}) as this condition
is independent of B.

If Y �|= Q then Property (ii) is also satisfied and we are done. Otherwise we know,

that X � Y , X |= fQY and for all X ′ with X ≤B∪{a}H X ′ � Y we have X ′ �|= fPY . We

have to show that X ′ �|= fPY holds also for all X ′ with X ≤BH X ′ � Y . Consider such

an X ′, then X ′|H ⊇ X|H, X ′|B ⊆ X|B and X ′ � Y . Now let X ′′ = X ′ \ {a} if a ∈ X ′

and a �∈ X, and X ′′ = X ′ otherwise. We have then X ′′|B∪{a} ⊆ X|B∪{a} because a is

removed from X ′′ whenever it is not in X, and the subset relation is known for all other

atoms from B. Moreover, X ′′|H ⊇ X|H still holds because X ′|H ⊇ X|H and the only

element a which might be missing in X ′′ compared to X is only removed if it is not in

X anyway. These conditions together imply X ≤B∪{a}H X ′ � Y , and thus satisfaction of

Property (ii) w.r.t. H and B ∪ {a} implies X ′′ �|= fPY . Since X ′′ and X ′ may only differ

in a, which does not appear in fPY , this implies X ′ �|= fPY . Hence Property (ii) holds

also w.r.t. H and B.
Property (ii) (⇐) Trivial because P ≡〈H,B∪{a}〉 Q is a stronger condition than P ≡〈H,B〉

Q since it allows a larger class of programs to be added.

Corollary 2

Let H, B, H′, and B′ be sets of atoms and let P and Q be programs such that the atoms

in H′ ∪ B′ do not occur in P or Q. Then we have P ≡〈H,B〉 Q iff P ≡〈H∪H′,B∪B′〉 Q.

Proof

The claim follows immediately by applying Proposition 8 iteratively to each element in

H′ resp. B′.
Lemma 1

For an external atom e = &g [p](c) in program P , pi ∈ p, a new predicate q, let e′ =
&g ′[p|pi→q](c) s.t. f&g′(Y,p|pi→q, c) = f&g(Y

q,p, c) for all assignments Y .

For P ′ = P |e→e′ ∪ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )}, AS(P ) and AS(P ′) coincide,

modulo atoms q(·).
Proof

(⇒) For an answer set Y of P we show that Y ′ = Y ∪{q(pi,d) | pi(d) ∈ Y } is an answer

set of P ′.
Since input parameter q in e′ behaves like pi in e, Y ′ |= q(pi,d) iff Y |= pi(d) for all

pi(d) ∈ A(P ) by construction, and Y ′ satisfies all rules r ∈ {q(pi,d) ← pi(d) | pi(d) ∈
A(P )} by construction, we have that Y ′ is a model of P ′.
Now suppose toward a contradiction that there is a smaller model Y ′< � Y ′ of fP ′Y

′
and

let this model be subset-minimal. Then Y ′<\Y ′ must contain at least one atom other than

over q because switching an atom q(pi,d) to false is only possible if the respective atom

pi(d) is also switched to false, otherwise a rule r ∈ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )}
(which is contained in the reduct fP ′Y

′
because Y ′ |= B(r)) would remain unsatisfied.

But then for Y< = Y ′< ∩A(P ) we have that Y< � Y . Now consider some r ∈ fPY : then

there is a respective r′ ∈ fP ′Y
′
with e′ in place of e and such that Y ′< |= r′. Observe that
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pi(d) ∈ Y< implies q(pi,d) ∈ Y ′< (otherwise a rule in fP ′Y
′
remains unsatisfied under

Y ′<) and that q(pi,d) ∈ Y ′< implies pi(d) ∈ Y< due to assumed subset-minimality of Y ′<
(there is no reason to set q(pi,d) to true if pi(d) is false). This gives in summary that

q(pi,d) ∈ Y ′< iff pi(d) ∈ Y< for all atoms pi(d) ∈ A(P ). But then we have also Y< |= r

because the only possible difference between r and r′ is that r might contain e while r′

contains e′, but since q(pi,d) ∈ Y ′< iff pi(d) for all atoms pi(d) ∈ A(P ), we have that

Y ′< |= r′ implies Y< |= r. That is, Y< � Y is a smaller model of fPY , which contradicts

the assumption that Y is an answer set.

(⇐) For an answer set Y ′ of P ′ we show that Y = Y ′ ∩ A(P ) is an answer set of

P . First, observe that for any pi(d) ∈ A(P ) we have that q(pi,d) ∈ Y ′ iff pi(d) ∈ Y :

the if-direction follows from satisfaction of the rules in P ′ under Y ′, the only-if direction

follows from subset-minimality of Y ′.
Then the external atoms e in P behave under Y like the respective e′ in P ′ under Y ′,

which implies that Y |= P .

Now suppose toward a contradiction that there is a smaller model Y< � Y of fPY .

We show that then for Y ′< = Y< ∪ {q(pi,d) | pi(d) ∈ Y<} we have Y ′< |= fP ′Y
′
. But this

follows from the observation that fP ′Y
′
consists only of (i) rules that correspond to rules

in fPY but with e′ in place of e and (ii) the rule q(pi,d) ← pi(d) for all pi(d) ∈ Y ′.
Satisfaction of (i) follows from the fact that Y |= e iff Y ′ |= e′, satisfaction of (ii) is

given by construction of Y ′<. Moreover, we have that Y ′< � Y ′: we have Y< � Y ⊆ Y ′

and all atoms q(pi,d) added to Y< are also in Y ′ because it satisfies the rule q(pi,d)←
pi(d) ∈ P ′; properness of the subset-relation follows from Y< � Y . Therefore we have

Y ′< � Y ′ and Y ′< |= fP ′Y
′
, which contradicts the assumption that Y ′ is an answer

set of P ′.

Lemma 2

For a hex-program P and a set of (positive or negative) external atoms E in P , we have

P∩P[E] = {r ∈ P | none of E occur in r}.
Proof

For a single external atom e ∈ E observe that all rules r ∈ P[e], which were constructed

by equations (1)–(3) in Definition 6, contain at least one atom that does not appear in

P . Thus these rules can only be in P[e] but not in P and thus not in P∩P[e]. For the

rules r ∈ P[e] constructed by equation (4) in Definition 6, note that r ∈ P iff e does not

appear in r. This is further the case iff r ∈ P∩P[e]. In summary, P∩P[e] contains all and

only the rules from P that do not contain e.

By iteration of the argument, one gets the same result for the set E of external

atoms.

Proposition 9

For sets H and B of atoms and hex-programs P and Q, we have P ≡e
〈H,B〉 Q iff

σ〈H,B〉(P ) = σ〈H,B〉(Q).

Proof

(⇒) If AS(P ∪ R) = AS(Q ∪ R) for all R ∈ Pe
〈H,B〉, then this holds in particular

for all programs R ∈ P〈H,B〉 without external atoms. Then by Proposition 7, we have

σ〈H,B〉(P ) = σ〈H,B〉(Q).
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(⇐) Suppose σ〈H,B〉(P ) = σ〈H,B〉(Q), then by Proposition 7 we have P ≡〈H,B〉 Q and

by Corollary 2 we have P ≡〈H∪H′,B∪B′〉 Q for all sets H′, B′ of atoms that do not occur

in P or Q. Now consider R ∈ Pe
〈H,B〉. We have to show that AS(P ∪R) = AS(Q ∪R).

Let R′ be the ordinary ASP after standardizing input atoms to external atoms apart

from the atoms in P and Q (using Lemma 1) and subsequent inlining all external atoms

in R using Definition 6. Note that R′ uses only atoms from H in its heads, atoms from

B in its bodies, and newly introduced atoms A(R′) \ A(R); the latter are selected such

that they do not occur in P or Q. We further have that R′ is free of external atoms, thus

R′ ∈ P〈H∪H′,B∪B′〉 for H′ = B′ = A(R′) \A(R).

We then have P ≡〈H∪H′,B∪B′〉 Q (by Corollary 2, as discussed above). By definition

of ≡〈H∪H′,B∪B′〉 this gives AS(P ∪ R′) = AS(Q ∪ R′). Then by Proposition 1, we have

that AS(P ∪R) = AS(Q ∪R).

Proposition 10

A hex-program P is persistently inconsistent w.r.t. sets of atoms H and B iff for each

classical model Y of P there is an Y ′ � Y such that Y ′ |= fPY and Y ′|H = Y |H.
Proof

Let P⊥ be a program without classical models (e.g., {a←; ← a}). Then, by monotonicity

of classical logic, P⊥ ∪ R is inconsistent (w.r.t. the hex-semantics) for all R ∈ Pe
〈H,B〉,

that is, we have that AS(P⊥ ∪R) = ∅ for all R ∈ Pe
〈H,B〉.

We have to show that AS(P ∪ R) = ∅ for all R ∈ Pe
〈H,B〉 iff for each model Y of

P there is an Y ′ � Y such that Y ′ |= fPY and Y ′|H = Y |H. Due to Proposition 1,

each program with external atoms may be replaced by an ordinary ASP such that the

answer sets correspond to each other one-by-one; therefore the former statement holds

iff AS(P ∪R) = ∅ for all R ∈ P〈H,B〉, that is, it suffices to consider ordinary ASP R. The

claim is proven if we can show that AS(P ∪R) ⊆ AS(P⊥ ∪R) for all R ∈ P〈H,B〉.
This corresponds to deciding P ⊆〈H,B〉 P⊥. By Proposition 6, P ⊆〈H,B〉 P⊥ is the case

iff no witness for P �⊆〈H,B〉 P⊥ exists. Since P⊥ does not have any classical models, each

pair (X,Y ) of assignments trivially satisfies Condition (ii) because Y �|= P⊥, thus a pair

(X,Y ) is not a witness iff it violates Property (i). This condition is violated by (X,Y )

iff Y �|= P or there exists a Y ′ � Y such that Y ′ |= fPY and Y ′|H = Y |H; this is exactly
the stated condition.

Lemma 3

For a hex-program P and a model Y of P , a set of atoms U is an unfounded set of P

w.r.t. Y iff Y \U |= fPY .

Proof

(⇒) We have to show that any rule r ∈ fPY is satisfied under Y \U . First observe that

Y |= H(r) because otherwise we also had Y �|= B(r) (since Y is a model of P ) and thus

r �∈ fPY . If Y \U |= H(r) we are done (Y \U |= r). Otherwise we have H(r) ∩ U �= ∅
and thus one of the conditions of Definition 13 holds for r. This cannot be Condition (i)

because otherwise we had r �∈ fPY . If it is Condition (ii) then Y \U �|= B(r) and thus

Y \U |= r. If it is Condition (iii) then Y \U |= H(r) and thus Y \U |= r.

(⇐) Let Y ′ ⊆ Y be a model of fPY . We have to show that U = Y \Y ′ is a unfounded

set of P w.r.t. Y . To this end we need to show that for all r ∈ P with H(r)∩U �= ∅ one of
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the conditions of Definition 13 holds. If r �∈ fPY then Y �|= B(r) and thus Condition (i)

holds. If r ∈ fPY then we either have Y ′ �|= B(r) or Y ′ |= H(r). If Y ′ �|= B(r) then

Y \U �|= B(r) because Y \U = Y ′, that is, Condition (ii) holds. If Y ′ |= H(r) then there

is an h ∈ H(r) s.t. h ∈ Y and h ∈ Y ′ and thus h �∈ U . Then we have h ∈ Y \U and thus

Y |= h, that is, Condition (iii) holds.

Corollary 3

A hex-program P is persistently inconsistent w.r.t. sets of atoms H and B iff for each

classical model Y of P there is a nonempty unfounded set U of P w.r.t. Y s.t. U ∩Y �= ∅
and U ∩H = ∅.
Proof

By Proposition 10, we know that P ∪ R is inconsistent for all R ∈ P〈H,B〉 iff for each

model Y of P there is an Y ′ � Y such that Y ′ |= fPY and Y ′|H = Y |H. Each such

model Y ′ corresponds one by one to a nonempty unfounded set U = Y \Y ′ of P w.r.t. Y ,

for that we obviously have U ∩ Y �= ∅ and Y ′|H = Y |H iff U ∩H = ∅.
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