"hexequivalence" — 2017/2/11 — 22:28 — page 1 — #1

 FAKULTÄT

 FÜR !NFORMATIK

 Faculty of Informatics

nowledge-Based

Systems Group

31st AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, California, USA, February 4–9, 2017

On Equivalence and Inconsistency of Answer Set Programs with External Sources

Christoph Redl

redl@tuwien.ac.at

1. Answer Set Programs and HEX-Programs	3. The Equivalence Criterion		
An Answer Set (ASP)-Program is a set of rules of kind	The following result is a generalization of the one by Woltran:		
$a_1 \lor \cdots \lor a_k \leftarrow b_1, \ldots, b_m, \text{ not } b_{m+1}, \ldots, \text{ not } b_n,$ where a_i for $1 \le i \le k$ and b_i for $1 \le i \le n$ are classical atoms.	Definition		
An answer set of such a program P is an interpretation I (a set of atoms),	Given sets \mathcal{H} \mathcal{B} of atoms a pair (X, Y) of interpretations is an		

which is a subset-minimal model of the GL-reduct P^{I} .

HEX-programs extend ASP by external sources:

Rule bodies may contain external atoms of the form

 $\&p[q_1,\ldots,q_k](t_1,\ldots,t_l),$

where

p ... external predicate name,

 q_i ... predicate names or constants: $au(\&p,i) \in \{\text{pred}, \text{const}\}, t_j$... terms.

Semantics:

 $\begin{array}{l} 1+k+l \text{-ary Boolean oracle function } f_{\&p}:\\ \&p[q_1,\ldots,q_k](t_1,\ldots,t_l) \text{ is true under assignment } A\\ &\text{iff } f_{\&p}(A,q_1,\ldots,q_k,t_1,\ldots,t_l)=\mathrm{T}.\\ &\text{Answer sets are defined similarly as for ordinary ASP, but using the}\\ &\mathrm{FLP-reduct}\, fP^I \, [\text{Faber et al., 2011] instead of the GL-reduct } P^I. \end{array}$

Example: Set Partitioning

$$P = \left\{ \begin{array}{l} d(a_1) \dots d(a_n) \\ r_1 : p(X) \leftarrow d(X), \& diff[d, q](X) \end{array} \right\}$$

 $\langle \mathcal{H}, \mathcal{B} \rangle$ -model of a program P if (i) $Y \models P$ and for each $Y' \subsetneq Y$ with $Y' \models fP^Y$ we have $Y'|_{\mathcal{H}} \subsetneq Y|_{\mathcal{H}}$; and (ii) if $X \subsetneq Y$ then there exists an $X' \subsetneq Y$ with $X'|_{\mathcal{H} \cup \mathcal{B}} = X$ such that (X', Y) is $\leq_{\mathcal{H}}^{\mathcal{B}}$ -maximal for P. We denote the set of all $\langle \mathcal{H}, \mathcal{B} \rangle$ -models of a program P by $\sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$.

Theorem (Equivalence of HEX-Programs)

For sets \mathcal{H} and \mathcal{B} of atoms and HEX-programs P and Q, we have $P \equiv_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ iff $\sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P) = \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$.

Proof idea: A technique for external source inlining [Redl, 2017] can be exploited to apply proof ideas by Woltran.

4. The Inconsistency Criteria

We provide two criteria based on models of the reduct and unfounded sets (UFSs) [Faber, 2005], respectively. Let *P* be a HEX-program. Then:

Theorem (Inconsistency of a Program based on its Reduct)

	' ' ' ' ' '	'''''''	

 $(r_2: q(X) \leftarrow d(X), &diff[d,p](X).)$

2. Motivation

Equivalence of ASP-programs:

- Deciding equivalence of ASP-programs under program extensions received attention in the past.
- Possible application: program transformations and optimizations.

Existing equivalence notions: programs *P* and *Q* are called

- strongly equivalent [Lifschitz et al., 2001]
 - if $P \cup R$ and $Q \cup R$ have the same answer sets for any program R;
- uniformly equivalent [Eiter and Fink, 2003]
 - if $P \cup R$ and $Q \cup R$ have the same answer sets for any set of facts R;
- $\langle \mathcal{H}, \mathcal{B} \rangle$ -equivalent [Woltran, 2007]
 - if $P \cup R$ and $Q \cup R$ have the same answer sets for all programs
- $R \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B} \rangle}$ whose head resp. body atoms come only from \mathcal{H} resp. \mathcal{B} . (The latter subsumes the former ones.)

Question 1: How do these notions generalize to HEX-programs? **Question 2:** What can be said about inconsistency of HEX-programs? Program $P \cup R$ is inconsistent for all $R \in \mathcal{P}^{e}_{\langle \mathcal{H}, \mathcal{B} \rangle}$ iff for each model Y of P there is an $Y' \subsetneq Y$ such that $Y' \models fP^{Y}$ and $Y'|_{\mathcal{H}} = Y|_{\mathcal{H}}$.

Theorem (Inconsistency of a Program based on Unfounded Sets)

Program $P \cup R$ is inconsistent for all $R \in \mathcal{P}^{e}_{\langle \mathcal{H}, \mathcal{B} \rangle}$ iff for each model Y of P there is a UFS $U \neq \emptyset$ of P wrt. Y s.t. $U \cap Y \neq \emptyset$ and $U \cap \mathcal{H} = \emptyset$.

The latter theorem is especially useful for solver development since implementations do usually not explicitly construct the reduct.

5. Conclusion and Outlook

Main results:

- Decision criteria for
 - (1) equivalence and
- (2) inconsistency of HEX-programs.

Future work:

- Extension of the results to non-ground programs.
- Applications: program transformations for solver optimizations.

Challenge: The support for external atoms and the use of the FLPinstead of the GL-reduct make the extension non-trivial.

Contributions:

- A generalization of the notion of (H, B)-equivalence to HEX-programs, i.e., a formal criterion for deciding if two HEX-programs are (H, B)-equivalent.
- ► This subsumes strong and uniform equivalence.
- ► A related criterion for deciding inconsistency of a HEX-program.
- Notably, the notion is also applicable to special cases of HEX-programs, such as well-known ASP extensions, e.g., aggregates, DL-programs and constraint ASP.

6. References

Eiter, T. and Fink, M. (2003).

Uniform equivalence of logic programs under the stable model semantics.

In Logic Programming, 19th International Conference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings, pages 224–238.

► Faber, W. (2005).

Unfounded sets for disjunctive logic programs with arbitrary aggregates.

In Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005), Diamante, Italy, September 5-8, 2005, volume 3662, pages 40–52. Springer.

- Faber, W., Leone, N., and Pfeifer, G. (2011). Semantics and complexity of recursive aggregates in answer set programming. *Artificial Intelligence*, 175(1):278–298.
- Lifschitz, V., Pearce, D., and Valverde, A. (2001). Strongly equivalent logic programs. ACM Trans. Comput. Logic, 2(4):526–541.

Redl, C. (2017). Efficient evaluation of answer set programs with external sources using inlining. In Proceedings of the Thirty-First AAAI Conference (AAAI 2017), February, 2017, San Francisco, California, USA. AAAI Press. Accepted for publication.

Woltran, S. (2007).

A common view on strong, uniform, and other notions of equivalence in answer-set programming.

In Proceedings of the LPNMR'07 Workshop on Correspondence and Equivalence for Nonmonotonic Theories (CENT2007), Tempe, AZ, May 14, 2007.

FШF

Der Wissenschaftsfonds.