
Answer Set Programs with Queries over Subprograms?

Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

redl@kr.tuwien.ac.at

Abstract. Answer-Set Programming (ASP) is a declarative programming para-
digm. In this paper we discuss two related restrictions and present a novel modeling
technique to overcome them: (1) Meta-reasoning about the collection of answer
sets of a program is in general only possible by external postprocessing, but not
within the program. This prohibits the direct continuation of reasoning based on
the answer to the query over a (sub)program’s answer sets. (2) The saturation
programming technique exploits the minimality criterion for answer sets of a
disjunctive ASP program to solve co-NP-hard problems, which typically involve
checking if a property holds for all objects in a certain domain. However, the
technique is advanced and not easily applicable by average ASP users; moreover,
the use of default-negation within saturation encodings is limited.
In this paper, we present an approach which allows for brave and cautious query
answering over normal subprograms within a disjunctive program in order to
address restriction (1). The query answer is represented by a dedicated atom
within each answer set of the overall program, which paves the way also for a
more intuitive alternative to saturation encodings and allows also using default-
negation within such encodings, which addresses restriction (2).

Keywords: Answer Set Programming, Nonmonotonic Reasoning, FLP Semantics, Meta
Programming, Saturation

1 Introduction

Answer-Set Programming (ASP) is a declarative programming paradigm based on
nonmonotonic programs and a multi-model semantics [13]. The problem at hand is
encoded as an ASP program whose models, called answer sets, correspond one-to-one
to the solutions of the problem. In this paper we discuss two reasoning resp. modeling
restrictions, which turn out to be related.

The first restriction concerns meta-reasoning about the answer sets of a (sub)program
within another (meta-)program, such as aggregation of results. This is usually done
during postprocessing, i.e., the answer sets are inspected after the reasoner terminates.
Some simple reasoning tasks, such as brave or cautious query answering, are directly
supported by some systems. However, even then the answer to a brave or cautious query
is not represented within the program but appears only as output on the command-line,

? This research has been supported by the Austrian Science Fund (FWF) project P27730.

which prohibits the direct continuation of reasoning based on the query answer. An
existing approach, which allows for meta-reasoning within a program over the answer
sets of another program, are manifold programs. They compile the calling and the
called program into a single one [8]. The answer sets of the called program are then
represented within each answer set of the calling program. However, this approach
uses weak constraints, which are not supported by all systems. Moreover, the encoding
requires a separate copy of the subprogram for each atom occurring in it, which appears
to be impractical. Another approach are nested HEX-programs. Here, dedicated atoms
access answer sets of a subprograms and their literals explicitly as accessible objects [4].
However, this approach is based on HEX-programs [6] – an extension of ASP – and not
applicable if an ordinary ASP solver is used. Moreover, the meta- and the subprogram
are evaluated by two isolated reasoner instances, which may harm efficient evaluation.

The second restriction concerns the saturation technique (cf. e.g. [3]), which is a
modeling technique that allows for solving co-NP-hard problems within disjunctive
ASP. To this end, minimality of answer sets is exploited to check if a property holds
for all objects in a certain domain. However, the technique is advanced and not easily
applicable by average ASP users. Moreover, the use of default-negation for checking
properties within saturation encodings is restricted as it may harm the support of atoms.
Then, default-negation needs to be rewritten, but it is not always obvious how this can be
done. This calls for an alternative to saturation, which hides this rewriting from the user.

In this paper, we first present an encoding which allows for deciding inconsistency
of a normal logic program within a disjunctive program. Inconsistency resp. consis-
tency of the subprogram is represented by a dedicated atom within each answer set of the
overall program. This encoding is then exploited to realize query answering over nor-
mal subprograms within disjunctive ASP; in contrast to related approaches (e.g. [1],
see Section 6), ours makes such queries more explicit, which is easier to understand for
users. While the encoding itself is based on the saturation technique, once it is defined, it
can be flexibly used for query answering without deep knowledge about the saturation
technique. This results in a new modeling technique as alternative to saturation, which
supports unrestricted use of default-negation.

We proceed as follows:

– In Section 2 we recapitulate answer set programming and the saturation technique.
– In Section 3 we discuss restrictions of saturation and point out that using default-

negation within saturation encodings would be convenient but is not easily possible.
– In Section 4 we show how inconsistency of a normal logic program can be decided

within another (disjunctive) program. To this end, we present a saturation encoding
which simulates the computation of answer sets of the subprogram and represents
the existence of an answer set by a single atom of the meta-program.

– In Section 5 we discuss query answering based on this encoding. To this end, we
first realize brave and cautious query answering over a subprogram in Section 5.1.
This feature is then further exploited in Section 5.2 for realizing a new modeling
technique as an alternative to saturation, but which supports default-negation. The
encoding can be used as a black box at this point such that the user does not need
to have deep knowledge about the underlying ideas. Instead, checking if a property
holds for all objects in a domain can be naturally expressed as a cautious query.

– In Section 6 we discuss related work.

– In Section 7 we conclude and give an outlook on future work.

Proofs are outsourced to http://www.kr.tuwien.ac.at/research/projects/inthex/qa-ext.pdf.

2 Preliminaries

We first recapitulate answer set programming and the saturation technique.

Answer Set Programming. Our alphabet consists of possibly infinite sets of constant
symbols C (including all integers), variables V , function symbols F , and predicate
symbols P . We assume that V is disjoint from all other sets, while symbols may be
shared between the other sets. We let the set of terms T be the least set such that C ⊆T ,
V ⊆ T , and f ∈F , T1, . . . ,T` ∈ T implies f (T1, . . . ,T`) ∈ T . An (ordinary) atom is
of form p(t1, . . . , t`) with predicate symbol p ∈P and terms t1, . . . , t` ∈T , abbreviated
as p(t); we write t ∈ t if t = ti for some 1≤ i≤ `. A term resp. atom is called ground if
it does not contain variables.

An interpretation over the (finite) set A of ground atoms is a set I ⊆ A , where
a ∈ I expresses that a is true and a 6∈ I that a is false. A builtin atom is of form t1 ◦ t2
with terms t1, t2 ∈ T and comparison operator ◦ ∈ {=, 6=,<,≤,≥,>}. For a ground
builtin atom t1 ◦ t2 and an interpretation I we have that I |= t1 = t2 if t1 is equal to
t2 and I 6|= t1 = t2 otherwise; conversely for I |= t1 6= t2. Operators <, ≤, ≥ and >
have the standard semantics and are defined only if t1 and t2 are integers. Similarily,
arithmetic atoms are of form t1 ◦ t2 ◦′ t3 with integer terms t1, t2,r3 ∈ T , comparison
operator ◦ ∈ {=, 6=,<,≤,≥,>} and arithmetic operator ◦′ ∈ {+,−,∗,/}, which have
the standard semantics.

We now recall disjunctive logic programs under the answer set semantics [13].

Definition 1. An answer set program P consists of rules

a1∨·· ·∨ak← b1, . . . ,bm,not bm+1, . . . ,not bn , (1)

where each ai is an atom, and each b j is an atom or a builtin atom. A program is called
normal if k ≤ 1 for all rules, and disjunctive otherwise.

A rule resp. program is ground if it contains only ground atoms. Interpretations I
are over the atoms A(P) occurring in the ground program P at hand. A ground rule r
of form (1) is satisfied under I, denoted I |= r, if ai ∈ I for some 1 ≤ i ≤ k, or bi 6∈ I
for some 1≤ i≤ m, or bi ∈ I for some m+1≤ i≤ n. A ground program P is satisfied
under I, denoted I |= P, if each r ∈ P is satisfied under I. For such a rule r we let
H(r) = {a1, . . . ,ak} be its head, B+(r) = {b1, . . . ,bm} be its positive body and B−(r) =
{bm+1, . . . ,bn} be its negative body.

The answer sets of a ground program P are defined as follows. The (GL-)reduct [13]
of P wrt. interpretation I is the set PI = {H(r)← B+(r) | r ∈Π , I 6|= b for all b∈ B−(r)}.

Definition 2. An interpretation I is an answer set of a ground program P, if I is a
⊆-minimal model of PI .

Note that for a normal program P and an interpretation I, the reduct PI is a positive
program. This allows for an alternative characterization of answer sets of normal logic
programs based on fixpoint iteration. For a positive normal program P, we let TP(S) =
{a∈H(r) | r ∈ P,B+(r)⊆ S} be the monotonic immediate consequence operator, which
derives the consequences of a set S of atoms when applying the positive rules in P. Then
the least fixpoint of TP over the empty set, denoted lfp(TP), is the unique least model of
P. Hence, an interpretation I is an answer set of a normal logic program P if I = lfp(TPI).

The answer sets of a non-ground program P are given by those of its grounding
grnd(P), which results from P if all variables are replaced by terms in all possible ways.

Saturation Technique. The saturation technique dates back to the ΣP
2 -hardness proof

of disjunctive ASP [2], but was later exploited as a modeling technique, cf. e.g. [3]. It is
applied for solving co-NP-hard problems, which typically involve checking a condition
for all objects in a domain. Importantly, such a check cannot be encoded in a normal
logic program such that the program has an answer set iff the condition holds for all
guesses (unless NP = coNP). Instead, one can only write a normal program which has
no answer set if the property holds for all guesses. This limitation inhibits that reasoning
continues within the program after checking the property. Instead, non-existence of
answer sets needs to be determined in the postprocessing.

A concrete example is checking if a given graph is not 3-colorable. Consider

P3col = F ∪ {c1(X)← node(X),notc2(X),notc3(X) | {c1,c2,c3}= {r,g,b}}
∪ {← c(X),c(Y),edge(X ,Y) | c ∈ {r,g,b}},

where the graph is supposed to be defined by facts F over predicates node and edge. Its
answer sets correspond one-to-one to valid 3-colorings. Thus, the program does not have
an answer set if and only if there is no valid 3-coloring. However, it is not possible to
define a normal program with an answer set that represents that there is no such coloring.

This is only possible with disjunctive programs and the saturation technique. To
this end, the search space is defined in a program component Pguess using disjunctions.
Another program component Pcheck checks if the current guess satisfies the property
(e.g., being not a valid 3-coloring) and derives a dedicated saturation atom sat in this
case. A third program component Psat derives all atoms from Pguess whenever sat is
true, i.e., it saturates the model. This has the following effect: if all guesses fulfill the
property, all atoms in Pguess are derived for all guesses and the so-called saturation model
Isat = A(Pguess ∪Pcheck) is an answer set of Pguess ∪Pcheck ∪Psat. On the other hand, if
there is at least one guess which does not fulfill it, then sat – and possibly further atoms –
are not derived. Then, by minimality of answer sets, Isat is not an answer set.

Example 1. The program Pnon3col = F ∪Pguess∪Pcheck ∪Psat where

Pguess = {r(X)∨g(X)∨b(X)← node(X)}
Pcheck = {sat← c(X),c(Y),edge(X ,Y) | c ∈ {r,g,b}}

Psat = {c(X)← node(X),sat | c ∈ {r,g,b}}

has the answer set Isat = A(Pnon3col) iff the graph specified by facts F is not 3-colorable.
Otherwise its answer sets are proper subsets of Isat which represent valid 3-colorings. 2

3 Restrictions of the Saturation Technique

For complexity reasons, any problem in co-NP can be polynomially reduced to brave
reasoning over disjunctive ASP (the latter is ΣP

2 -complete [7]), but the reduction is not
always obvious. In particular, the saturation technique is difficult to apply if the property
to check cannot be easily expressed without default-negation. This is because saturation
works only if Isat is an answer set of Pguess∪Pcheck ∪Psat whenever no proper subset is
one. While this is guaranteed if no default-negation occurs in Isat, it might be unstable
otherwise.

Example 2. A vertex cover of a graph 〈V,E〉 is a subset S⊆V of its nodes s.t. each edge
in E is incident with at least one node in S. Deciding if a graph has no vertex cover S
with size |S| ≤ k for some integer k is co-NP-complete. Consider Pvc consisting of facts
F over node and edge and the following parts:

Pguess = {in(X)∨out(X)← node(X)}
Pcheck = {sat← edge(X ,Y),not in(X),not in(Y); sat← in(X1), . . . , in(Xk+1),X1 6= X2, . . . ,Xk 6= Xk+1}

Psat = {in(X)← node(X),sat; out(X)← node(X),sat}

Program Pguess guesses a candidate vertex cover S, Pcheck derives sat whenever for some
edge (u,v) ∈ E neither u nor v is in S (thus S is invalid), and Psat saturates in this case. 2

Observe that for inconsistent instances F (e.g. 〈{a,b,c,d},{(a,b),(b,c),(c,d)}〉
with k = 1), this encoding does not work as desired because model Isat = A(Pvc) is
unstable. More specifically, the instances of the first rule of Pcheck are eliminated from
PIsat

vc due to default-negation. But then, the least model of the reduct does not contain sat
or any atom in(·). Then, I< = Isat \ ({sat}∪{in(x) | x ∈ V}) is a smaller model of the
reduct and Isat is not an answer set of Pvc∪F .

In this example, the problem may be fixed by replacing literals not in(X) and not in(Y)
by out(X) and out(Y), respectively. That is, instead of checking if a node is not in the
vertex cover, one explicitly checks if it is out. However, the situation is more cumbersome
if default-negation does not directly concern the guessed atoms but derived ones.

Example 3. A Hamiltonian cycle in a graph 〈V,E〉 is a cycle that visits each node in
V exactly once. Deciding if a given graph has a Hamiltonian cycle is a well-known
NP-complete problem; deciding if a graph does not have such a cycle is therefore
co-NP-complete. A natural attempt to solve the problem using saturation is as follows:

Pguess = {in(X ,Y)∨out(X ,Y)← arc(X ,Y)} (2)

Pcheck = {sat← in(Y1,X), in(Y2,X),Y 1 6= Y 2; sat← in(X ,Y1), in(X ,Y2),Y 1 6= Y 2 (3)

sat← node(X),nothasIn(X); sat← node(X),nothasOut(X) (4)

hasIn(X)← node(X), in(Y,X); hasOut(X)← node(X), in(X ,Y)} (5)

Psat = {in(X ,Y)← arc(X ,Y),sat; out(X ,Y)← arc(X ,Y),sat} (6)

Program Pguess guesses a candidate Hamiltonian cycle as a set of arcs. Program Pcheck
derives sat whenever some node in V does not have exactly one incoming and exactly
one outgoing arc, and Psat saturates in this case. The check is split into two checks for at
most (rules (3)) and at least (rules (4)) one incoming/outgoing arc. While the check if a
node has at most one incoming/outgoing arcs is possible using the positive rules (3), the
check if a node has at least one incoming/outgoing edge is more involved. In contrast

to the check in Example 2, one cannot reasonably perform it based on the atoms from
Pguess alone. Instead, auxiliary predicates hasIn and hasOut are defined by rules (5).
Unlike in(·, ·), the negation of hasIn(·) and hasOut(·) is not explicitly represented, thus
default-negation is used in rules (4) of Pcheck. However, this harms stability of Isat: the
graph 〈{a,b,c},{(a,b),(b,a),(b,c),(c,b)}〉, which does not have a Hamiltonian cycle,
causes Pguess∪Pcheck ∪Psat to be inconsistent. This is due to default-negation in Pcheck,
which eliminates rules (4) from the reduct wrt. Isat, which in turn has a smaller model. 2

Note that in the previous example, for a fixed node X the literal nothasOut(X) is
used to determine if all atoms in(X ,Y) are false (or equivalently: if all atoms out(X ,Y)
are true). Here, default-negation can be eliminated on the ground level by replacing rule
sat← node(X),nothasOut(X) by sat← node(x),out(x,y1), . . . ,out(x,yn) for all nodes
x ∈V and all nodes yi for 1≤ i≤ n such that (x,yi) ∈ E.1 But this is not always possible:

Example 4. Deciding if a ground normal ASP program P is inconsistent is co-NP-
complete. An attempt to apply the saturation technique is as follows:

P′ = {true(a)∨ false(a)|a ∈ A(P)} (7)

∪ {inReduct(r)←{false(b) | b ∈ B−(r)} | r ∈ P} (8)

∪ {leastModel(a)←inReduct(r),{leastModel(b)|b∈B+(r)}|r∈P,a ∈ H(r)} (9)

∪ {noAS← false(a), leastModel(a) | a ∈ A(P)} (10)

∪ {noAS← true(a),not leastModel(a) | a ∈ A(P)} (11)

∪ {true(a)← noAS; false(a)← noAS | a ∈ A(P)} (12)

∪ {inReduct(r)← noAS} (13)

The idea is to guess all possible interpretations I over the atoms A(P) in P (rules (7)).
Next, rules (8) identify the rules r ∈ P which are in PI (modulo B−(r)); these are all
rules r ∈ P whose atoms B−(r) are all false. Rules (9) compute the least model of the
reduct by simulating fixpoint iteration under operator TP. Rules (10) and (11) compare
the least model of the reduct to I: if this comparison fails, then I is not an answer set and
rules (12) and (13) saturate. However, the comparison of the least model of the reduct to
the original guess in rule (11) uses default-negation. In contrast to Example 3, it is not
straightforward how to eliminate the negation, even on the ground level. 2

We conclude that some problems involve checks which can easily be expressed
using negation, but such a check within a saturation encoding may harm stability of
the saturation model. In the next section, we present a valid encoding for checking
inconsistency of normal programs, as discussed in Example 4, within disjunctive ASP.

4 Deciding Inconsistency of Normal Programs in Disjunctive ASP

We reduce the check for inconsistency of a normal logic program P to brave reasoning
over a disjunctive meta-program. The major part M of the meta-program is static and
consists of proper rules which are independent of P. The concrete program P is then
specified by facts MP which are added to the static part. The overall program M∪MP

is constructed such that it is consistent for all P and its answer sets either represent the
answer sets of P, or a dedicated answer sets represents that P is inconsistent.

1 On the non-ground level, this might be simulated using conditional literals as supported by
some reasoners, cf. [9] and below.

4.1 A Meta-Program for Propositional Programs

In this subsection we restrict the discussion to ground programs P. Moreover, we assume
that all predicates in P are of arity 0. This is w.l.o.g. because any atom p(t1, . . . , t`) can
be replaced by an atom consisting only of a new predicate p′ without any parameters.
In the meta-program defined in the following, we let all atoms be new atoms which do
not occur in P. We further use each rule r ∈ P also as a new atom in the meta-program.
For simplicity, we further disallow constraints← b1, . . . ,bm,not bm+1, . . . ,not bn (rules
with empty head) in P. This is also w.l.o.g. because such a constraint can be seen as
an abbreviation for x← b1, . . . ,bm,not bm+1, . . . ,not bn,notx, where x is a new ground
atom which does not appear elsewhere in the program.

The static part consists of component Mextract for the extraction of various information
from the program encoding MP, which we call MP

gr in this section to stress that P must
be ground, and a saturation encoding Mguess∪Mcheck ∪Msat for the actual inconsistency
check. We first show the complete encoding and then discuss its components.

Definition 3. We define the meta-program M = Mextract ∪Mguess∪Mcheck ∪Msat, where:

Mextract = {atom(X)← head(R,X); atom(X)← bodyP(R,X); atom(X)← bodyN(R,X)} (14)

∪ {rule(R)← head(R,X); rule(R)← bodyP(R,X); rule(R)← bodyN(R,X)} (15)

Mguess = {true(X)∨ false(X)← atom(X)} (16)

Mcheck = {inReduct(R)← rule(R),(false(X) : bodyN(R,X))} (17)

∪ {outReduct(R)← rule(R),bodyN(R,X), true(X)} (18)

∪ {iter(X , I)∨niter(X , I)← true(X), int(I); niter(X , I)← false(X), int(I)} (19)

∪ {notApp(R)← outReduct(R)} (20)

∪ {notApp(R)← inReduct(R),bodyP(R,X), false(X)} (21)

∪ {notApp(R)← head(R,X1),bodyP(R,X2), iter(X1, I1), iter(X2, I2), I2 ≥ I1} (22)

∪ {noAS← true(X),(notApp(R) : head(R,X))} (23)

∪ {noAS← inReduct(R),head(R,X), false(X),(true(Y) : bodyP(R,Y))} (24)

∪ {noAS← true(X),(niter(X , I) : int(I))} (25)

∪ {noAS← iter(X , I1), iter(X , I2), I1 6= I2} (26)

∪ {iter<(X , I)←false(X), int(I); iter<(X , I2)←true(X), iter(X , I1), int(I2), I2>I1} (27)

∪ {notApp(R)← head(R,X1),iter(X1, I),I > 0,(iter<(X2, I) : bodyP(R,X2))} (28)

Msat = {true(X)← atom(X),noAS; false(X)← atom(X),noAS} (29)

∪ {iter(X , I)← atom(X), int(I),noAS; niter(X , I)← atom(X), int(I),noAS} (30)

∪ {inReduct(R)← rule(R),noAS; outReduct(R)← rule(R),noAS} (31)

Before we come to an explanation of M, we discuss the specification of the program-
dependent part MP

gr, which is expected to encode the rules of P as facts which are added
to M. To this end, we first set the domain of integers to |A(P)| (which is a sufficiently
high value as explained below). Then, each rule of P is represented by atoms head(r,a),
bodyP(r,a), and bodyN(r,a), where r is a rule from P (used as new atom representing
the respective rule). Here, head(r,a), bodyP(r,a) and bodyN(r,a) denote that a is an
atom that occurs in the head, positive and negative body of rule r, respectively. Rules 14
and 15 then extract for the sets of all rules and atoms in P. Formally:

Definition 4. For a ground normal logic program P we let:

MP
gr = {int(c) | 0≤ c < |A(P)|}∪{head(r,h) | r ∈ P,h ∈ H(r)}

∪ {bodyP(r,b) | r ∈ P,h ∈ B+(r)}∪{bodyN(r,b) | r ∈ P,h ∈ B−(r)}

The structure of the static programs Mguess, Mcheck and Msat follows then the basic
architecture of saturation encodings presented in Section 3. The idea is as follows.
Program Mguess guesses an answer set candidate I of program P, Mcheck simulates the
computation of the reduct PI and checks if its least model coincides with I, and Msat
saturates the model whenever this is not the case. If all guesses fail to be answer sets,
then every guess leads to saturation and the saturation model is an answer set. On the
other hand, if at least one guess represents a valid answer set of P, then the saturation
model is not an answer set due to subset-minimality. Hence, M∪MP has exactly one
(saturated) answer set if P is inconsistent, and it has answer sets which are not saturated
if P is consistent, but none of them contains noAS.

We turn to the checking part Mcheck. Rules (17) and (18) compute for the current
candidate I the rules in PI : a rule r is in the reduct iff all atoms from B−(r) are false
in I. Here, (false(X) : bodyN(R,X)) is a conditional literal which evaluates to true iff
false(X) holds for all X such that bodyN(R,X) is true, i.e., all atoms in the negative body
are false. Rules (19) simulate the computation of the least model lfp(TPI) of PI using
fixpoint iteration. To this end, each atom a ∈ I is assigned a guessed integer to represent
an ordering of derivations during fixpoint iteration under TP. We need at most |A(P)|
iterations because the least model of P contains only atoms from A(P) and the fixpoint
iteration stops if no new atoms are derivable. However, since not all instances need the
maximum of |A(P)| iterations, there can be gaps in this sequence. For instances which
need fewer than |A(P)| iterations. Rules (20)-(26) check if the current interpretation
is not an answer set of P which can be justified by the guessed derivation sequence,
and derive noAS in this case. Importantly, noAS both if (i) I is not an answer set, and if
(ii) I is an answer set, but one that cannot be reproduced using the guessed derivation
sequence. Rules (27) and (28) ensure that true atoms are derived in the earliest possible
iteration, which eliminates redundant solutions.

As a preparation for both checks (i) and (ii), rules (20)-(22) determine the rules r ∈ P
which are not applicable in the fixpoint iteration (wrt. the current derivation sequence) to
justify their head atom H(r) being true. A rule is not applicable if it is not in the reduct
(rules (20)), if at least one positive body atom is false (rules (21)), or if it has a positive
body atom which is derived in the same or a later iteration (rules (22)) because then the
rule cannot fire (yet) in the iteration the head atom was guessed to be derived.

We can then perform the actual checks (i) and (ii). (i) For checking if I is an answer
set, rules (23) check if all atoms in I are derived by some rule in PI (i.e., I ⊆ lfp(TPI)).
Conversely, rules (24) check if all rules derived by some rule in PI are also in I (i.e.,
I ⊇ lfp(TPI)). Overall, the rules (23)-(24) check if I = lfp(TPI). This check compares I
and lfp(TPI) only under the assumption that the guessed derivation sequence is valid.

(ii) This validity remains to be checked. To this end, rules (25) ensure that an iteration
number is specified for all atoms which are true in I; in order to avoid default-negation
we explicitly check if all atoms niter(a, i) for 0 ≤ i ≤ |A(P)| − 1 are true. Rules (26)
guarantee that this number is unique for each atom. If one of these conditions does not
apply, then the currently guessed derivation order does not justify that I is accepted as
an answer set, hence it is dismissed by deriving noAS, even if the same interpretation
might be a valid answer set justified by another (valid) derivation sequence. This is by
intend because all real answer sets I are justified by some valid derivation sequence.

One can show that atom noAS correctly represents inconsistency of P.

Proposition 1. For any ground normal logic program P, we have that
(1) if P is inconsistent, M∪MP

gr has exactly one answer set which contains noAS; and
(2) if P is consistent, M∪MP

gr has at least one answer set and none of the answer sets
of MP contains noAS.

4.2 A Meta-Program for Non-Ground Programs

We extend the encoding of a ground normal logic programs as facts as by Definition 4
to non-ground programs. The program-specific part is called MP

ng to stress that P can
now be non-ground. In the following, for a rule r let Vr be the vector of unique variables
occurring in r in the order of appearance.

The main idea of the following encoding is to interpret atoms with an arity > 0 as
function terms. That is, for an atom p(t1, . . . , t`) we see p as function symbol rather than
predicate (recall that Section 2 allows that P ∩F 6= /0). Then, atoms, interpreted as
function terms, can occur as parameters of other atoms.

Definition 5. For a (ground or non-ground) normal logic program P we let:

MP
ng = {int(c) | 0≤ c < |A(P)|}∪{head(r(Vr),h)←{head(R,d) | d ∈ B+(r)} | r ∈ P,h ∈ H(r)}}

∪ {bodyP(r(Vr),b)←{head(R,d) | d ∈ B+(r)} | r ∈ P,b ∈ B+(r)}

∪ {bodyN(r(Vr),b)←{head(R,d) | d ∈ B+(r)} | r ∈ P,b ∈ B−(r)}

For each possibly non-ground rule r ∈ P, we construct a unique identifier r(Vr) for
each ground instance of r. It consists of r as unique function symbol and all variables in
r as parameters. As for the ground case, the head, the positive and the negative body are
extracted from r. However, since variables may occur in any atom of r, we have to add a
body to the rules of the representation to ensure safety. To this end, we add a domain
atom head(R,d) for all positive body atoms d ∈ B+(r) to the body of the rule in the
meta-program in order to instantiate it with all derivable ground instances. Informally,
we create an instance of r for all variable substitutions such that all body atoms of the
instance are potentially derivable in the meta-program.

Example 5. Let P={ f : d(a); r1 : q(X)← d(X),not p(X); r2 : p(X)← d(X),notq(X)}.
We have:

MP
ng = {head(f ,d(a))←; head(r1(X),q(X))← head(R,d(X))}

∪ {bodyP(r1(X),d(X))← head(R,d(X)); bodyN(r1(X), p(X))← head(R,d(X))}
∪ {head(r2(X), p(X))← head(R,d(X)); bodyP(r2(X),d(X))← head(R,d(X))}
∪ {bodyN(r2(X),q(X))← head(R,d(X))}

We explain the encoding with the example of r1. Since r1 is non-ground, it may represent
multiple ground instances, which are determined by the substitutions of X . We use
r1(X) as identifier and define that, for any substitution of X , atom q(X) appears in the
head, d(X) in the positive body and p(X) in the negative body. This is denoted by
head(r1(X),q(X)), bodyP(r1(X),d(X))← head(R,d(X)) and bodyN(r1(X),d(X))←
head(R, p(X)), respectively. The domain of X is defined by all atoms d(X) which are
potentially derivable, i.e., by atoms head(R,d(X)). 2

One can show that the encoding is still sound and complete for non-ground programs:

Proposition 2. For any normal logic program P, we have that
(1) if P is inconsistent, M∪MP

ng has exactly one answer set which contains noAS; and
(2) if P is consistent, M∪MP

ng has at least one answer set and none of the answer sets
of MP contains noAS.

5 Query Answering over Subprograms

In this section we first introduce a technique for query answering over subprograms based
on the inconsistency check from the previous section. We then introduce a language
extension with dedicated query atoms which allow for easy expression of such queries
within a program. Finally we demonstrate this language extension with an example.

5.1 Encoding Query Answering

In the following, a query q is a set of ground literals (atoms or default-negated atoms)
interpreted as conjunction; for simplicity we restrict the further discussion to ground
queries. For an atom or default-negated atom l, let l̄ be its negation, i.e., l̄ = a if l = nota
and l̄ = nota if l = a. We say that an interpretation I satisfies a query q, denoted I |= q,
if a ∈ I for all atoms a ∈ q and nota 6∈ I for all default-negated atoms nota ∈ q. A logic
program P bravely entails a query q, denoted P |=b q, if I |= q for some answer set I of
P; it cautiously entails a query q, denoted P |=c q, if I |= q for all answer sets I of P.

We can reduce query answering to (in)consistency checking as follows:

Proposition 3. For a normal logic program P and a query q we have that (1) P |=b q
iff P∪{← l̄ | l ∈ q} is consistent; and (2) P |=c q iff P∪{← q} is inconsistent.

We now can exploit our encoding for (in)consistency checking for query answering.

Proposition 4. For a normal logic program P and query q we have that

(1) M∪MP∪{←l̄|l∈q}
ng is consistent and each answer set contains noAS iff P 6|=b q; and

(2) M∪MP∪{←q}
ng is consistent and each answer set contains noAS iff P |=c q.

Based on the previous proposition, we introduce a new language feature which allows
for expressing queries more conveniently.

Definition 6. A query atom is of form S `t q, where t ∈ {b,c} determines the type of the
query, S is a normal logic (sub)program, and q is a query over S.

We allow query atoms to occur in bodies of ASP programs in place of ordinary
atoms (in implementations, S may be specified by its filename). The intuition is that for
a program P containing a query atom, we have that S `b q resp. S `c q is true (wrt. all
interpretations I of P) if S |=b q resp. S |=c q.

Formally we define the semantics of such a program P using the following translation
to an ordinary ASP program, based on Proposition 4. We let the answer sets of a program

P with query atoms be given by the answer sets of the program [P] defined as follows:

[P] = P|S`t q→noASS`t q∪
⋃

S`bq in P

(
M∪MS∪{←l̄|l∈q}

ng
)∣∣

a→aS`bq

∪
⋃

S`cq in P

(
M∪MS∪{←q}

ng
)∣∣

a→aS`cq

Here, we let P|S`t q→noASS`t q denote program P after replacing every query atom of
kind S `t q (for some t, S and q) by the new ordinary atom noASS`t q. Moreover, in
the unions, expression |a→aS`bq denotes that each atom a is replaced by aS`bq (likewise
for S `c q). This ensures that for every query atom S `b q resp. S `c q in P, a separate
copy of M and MS∪{←l̄|l∈q}

ng resp. MS∪{←q}
ng

)∣∣
a→aS`cq

is generated whose vocabularies
are disjoint. In particular, each such copy uses a separate atom noASS`bq resp. noASS`cq
which represents by Proposition 4 the answer to query q. Thus, after replacing each
S `t q in the original program P by the respective atom noASS`cq, the program behaves
as desired. One can show that [P] resembles the aforementioned intuition:

Proposition 5. For a logic program P with query atoms we have that the answer sets of
P and [P], projected to the atoms in P, coincide.

Note that, while the definition of the above construction of [P] may not be trivial,
this does not harm usability from user’s perspective. This is because the above rewriting
needs to be implemented only once, while the user can simply use query atoms.

Example 6. Consider the check for Hamiltonian cycles in Example 3. As observed, the
presented attempt does not work due to default-negation. For P = {noHamiltonian←
Pguess∪Pcheck `c sat} (and thus for [P]) we have that there is an answer set which contains
noHamiltonian if and only if the graph at hand does not contain a Hamiltonian cycle.
On the other hand, if there are Hamiltonian cycles, then the program has at least one
answer set but none of the answer sets contains atom noHamiltonian.

Note that the subprogram S, over which query answering is performed, can access
atoms from program P. Thus, it is possible to perform computations both before and
after query answering. For instance, in the previous example the graph which is checked
for Hamiltonian cycles may be the result of preceding computations in P.

5.2 Checking Conditions with Default-Negation

Query answering over subprograms can be exploited as a modeling technique to check a
criterion for all objects in a domain. As observed in Section 3, saturation may fail in such
cases. Moreover, saturation is an advanced technique which might be not intuitive for less
experienced ASP users (it was previously called ‘hardly usable by ASP laymen’ [10]).
Thus, even for problems whose conditions can be expressed by positive rules, an encoding
based on query answering might be easier to understand. To this end, one starts with a
program Pguess which spans a search space of all objects to check. As with saturation,
Pcheck checks if the current guess satisfies the criteria and derives a dedicated atom ok

in this case. However, instead of saturating the interpretation whenever ok is true, one
now checks if ok is cautiously entailed by Pguess ∪Pcheck. To this end, one constructs
the program [{allOk← Pguess∪Pcheck `c ok}]. This program is always consistent, has a
unique answer set containing allOk whenever the property holds for all guesses in the
search space, and has other answer sets none of which contains allOk otherwise.

6 Discussion and Related Work

Related to our approach are nested HEX-programs, which allow for accessing answer sets
of subprograms using dedicated external atoms [4]. However, HEX is beyond plain ASP
and requires a more sophisticated solver. Similar extensions of ordinary ASP exist [15],
but unlike our approach, they did not come with a compilation approach into a single
program. Instead, manifold programs compile both the meta and the called program into
a single one, similarly to our approach [8]. But this work depends on weak constraints,
which are not supported by all systems. Moreover, the encoding requires a separate copy
of the subprogram for each atom. The idea of representing a subprogram by atoms in
the meta-program is similar to approaches for ASP debugging (cf. [12, 14]). But the
actual computation (as realized by program M) is different: while debugging approaches
explain why a particular interpretation is not an answer set (and print the explanation to
the user), we aim at detecting the inconsistency and continuing reasoning afterwards.
Also the stable-unstable semantics supports an explicit interface to (possibly even nested)
oracles [1]. However, there are no query atoms but the relation between the guessing and
checking programs is realized via an extension of the semantics.

Our encoding is related to a technique towards automated integration of guess and
check programs [5], but based on a different characterization of answer sets. Also, their
approach can only handle ground programs. Moreover and most importantly, they focus
on integrating programs, but does not discuss inconsistency checking or query answering
over subprograms. We go a step further and introduce a language extension towards
query answering over general subprograms, which is more convenient for average users.

7 Conclusion and Outlook

Saturation is an advanced modeling technique in ASP, which allows for exploiting
disjunctions for solving co-NP-hard problems that involve checking a property all
objects in a given domain. The use of default-negation in saturation encodings turns
out to be problematic and a rewriting is not always straightforward. On the other hand,
complexity results imply that any co-NP-hard problem can be reduced to brave reasoning
over disjunctive ASP. In this paper, based on an encoding for consistency checking for
normal programs, we realized query answering over subprograms.

Future work includes the application of the extension to non-ground queries. Cur-
rently, a separate copy of the subprogram is created for every query atom. However, it
might be possible, at least in some cases, to answer multiple queries simultaneously.
Another possible starting point for future work is the application of our encoding for
more efficient evaluation of nested HEX-programs. Currently, nested HEX-programs are
evaluated by separate instances of the reasoner for the calling and the called program.

While this approach is strictly more expressive (and thus the evaluation also more ex-
pensive) due to the possibility to nest programs up to an arbitrary depth, it is possible in
some cases to apply the technique from the paper as an evaluation technique (e.g. if the
called program is normal and does not contain further nested calls).

Another issue is that if the subprogram is satisfiable, then the meta-program has
multiple answer sets, each of which representing an answer set of the subprogram. If only
consistency resp. inconsistency of the subprogram is relevant for the further reasoning in
the meta-program, this leads to the repetition of solutions. In an implementation, this
problem can be tackled using projected solution enumeration [11].

References
1. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Stable-unstable semantics: Beyond NP

with normal logic programs. TPLP 16(5-6), 570–586 (2016), http://dx.doi.org/10.1017/
S1471068416000387

2. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Ann. Math. Artif. Intell. 15(3-4), 289–323 (1995)

3. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: 5th International
Reasoning Web Summer School (RW 2009), Brixen/Bressanone, Italy, August 30–September
4, 2009. LNCS, vol. 5689, pp. 40–110. Springer (2009)

4. Eiter, T., Krennwallner, T., Redl, C.: HEX-programs with nested program calls. In: Tompits,
H. (ed.) Proceedings of the 19th Intl Conference on Applications of Declarative Programming
and Knowledge Management (INAP 2011). LNAI, vol. 7773, pp. 1–10. Springer (2013)

5. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs in answer
set programming: a meta-interpreter and applications. TPLP 6(1-2), 23–60 (2006)

6. Eiter, T., Redl, C., Schüller, P.: Problem solving using the HEX family. In: Computational
Models of Rationality. pp. 150–174. College Publications (2016)

7. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

8. Faber, W., Woltran, S.: Manifold answer-set programs and their applications. In: Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in
Computer Science, vol. 6565, pp. 44–63. Springer (2011)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthe-
sis Lectures on AI and Machine Learning, Morgan and Claypool Publishers (2012)

10. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming.
CoRR abs/1107.5742 (2011)

11. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search
problems. In: van Hoeve, W.J., Hooker, J.N. (eds.) Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, 6th International
Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27-31, 2009.

12. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging
answer-set programs. In: AAAI. pp. 448–453. AAAI Press (2008)

13. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9(3–4), 365–386 (1991)

14. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-ground answer-
set programs. TPLP 10(4-6), 513–529 (2010)

15. Tari, L., Baral, C., Anwar, S.: A language for modular answer set programming: Application
to ACC tournament scheduling. In: Vos, M.D., Provetti, A. (eds.) Answer Set Programming,
Advances in Theory and Implementation, Proceedings of the 3rd Intl. ASP’05 Workshop,
Bath, UK, September 27-29, 2005. CEUR Workshop Proceedings, vol. 142. (2005)

