"extinlining" — 2017/2/11 — 22:29 — page 1 — #1

nowledge-Based

Systems Group

31st AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, California, USA, February 4–9, 2017

Efficient Evaluation of Answer Set Programs with External Sources Based on External Source Inlining

Christoph Redl

redl@tuwien.ac.at

1. Motivation	3. Inlining of External Atoms – Our Encoding				
 HEX-programs extend ASP by external sources: ▶ Rule bodies may contain external atoms of the form	 Due to cyclic and nonmonotonic external atoms, inlining is not trivial (the formalism is on the second level of the polynomial hierarchy). Our encoding is based on the saturation technique. 				
$p \dots$ external predicate name,	A positive external atom e in a program P with a complete family of positive				

 q_i ... predicate names or constants: $\tau(\&p, i) \in \{\text{pred}, \text{const}\},\$ $t_i \dots$ terms.

Semantics:

1 + k + l-ary Boolean oracle function $f_{\mathcal{R}_p}$: $p[q_1,\ldots,q_k](t_1,\ldots,t_l)$ is true under assignment A iff $f_{\&p}(A, q_1, \ldots, q_k, t_1, \ldots, t_l) = \mathbf{T}$.

Example: Set Partitioning

$$P = \begin{cases} d(a_1) \dots d(a_n). \\ r_1 : p(X) \leftarrow d(X), & diff[d,q](X). \\ r_2 : q(X) \leftarrow d(X), & diff[d,p](X). \end{cases}$$

Problem:

- Calling external sources during solving is expensive.
- This is in particular the case for cyclic external sources.
- Reasons include both algorithmic and technical overhead (e.g. caching effects).

Our solution:

support sets $S_{\rm T}$ is inlined as follows (negative ones are handled similarly): $P_{[e]} = \{x_e \leftarrow S_{\mathrm{T}}^+ \cup \{\bar{a} \mid \neg a \in S_{\mathrm{T}}^-\} \mid S_{\mathrm{T}} \in \mathcal{S}_{\mathrm{T}}\}$ (1) $\cup \left\{ \begin{array}{l} \bar{a} \leftarrow \operatorname{not} a; \bar{a} \leftarrow x_e \\ a \lor \bar{a} \leftarrow \operatorname{not} \bar{x_e} \end{array} \middle| a \in I(e, P) \right\}$ (2) $\cup \{\bar{x_e} \leftarrow \operatorname{not} x_e\}$ (3) $\cup P|_{e \to x_e}$ (4)

where \bar{a} is a new atom for each a, x_e and $\bar{x_e}$ are new atoms for e, and $P|_{e \to x_e} = \bigcup_{r \in P} r|_{e \to x_e}$ where $r|_{e \to x_e}$ denotes r with e replaced by x_e .

5. Implementation and Experiments

We implemented our novel inlining approach in the **DLVHEX** solver and compared it to two previous evluation approaches for HEX-programs: traditional: Respect external atoms in the core algorithms. sup.sets: Use support sets only for external atom verification. We considered several benchmark problems, including:

1. House problem (abstraction of configuration problems):

	n	all answer sets					first answer set					
		traditio	onal	sup.se	ets	inlining		traditional		sup.sets		inlining
	7	251.68	(81)	83.24	(3)	22.21	(2)	22.25	(2)	3.19	(0)	1.53 (0)
	8	266.22	(85)	183.48	(43)	59.54	(11)	61.33	(10)	22.42	(1)	3.10 (0)
	9	272.70	(85)	263.01	(85)	86.07	(13)	76.74	(12)	56.57 (12)	6.18 (0)
1	0	278.26	(83)	275.47	(83)	121.39	(16)	102.86	(12)	98.96 (1	2)	11.97 (0)
1	1	292.05	(85)	300.00	(100)	167.00	(45)	158.73	(41)	176.44 (49)	22.52 (0)
1	2	300.00	(100)	300.00	(100)	180.43	(41)	159.64	(47)	210.52 (51)	40.43 (0)

- Compile the HEX-program to an ordinary ASP-program by inlining external sources.
- ► To this end, we employ support sets
 - (i.e., sets of input atoms which make the external atom true).
- Although inlining leads to an exponential blowup in the worst case, it is known that for certain types of external sources this is not the case!

2. Support Sets

- Let $e = \&g[\vec{y}](\vec{x})$ be an external atom in a program P.
- Intuition:

A positive (resp. negative) support set is a set of positive or negated input atoms of e, whose satisfaction implies that e is true (resp. false).

► Formally:

A support set for *e* is a consistent set $S_{\sigma} = S_{\sigma}^+ \cup S_{\sigma}^-$ with $\sigma \in \{T, F\}$, $S_{\sigma}^+ \subseteq HB_{\mathcal{C}}(\mathcal{P})$, and $S_{\sigma}^- \subseteq \neg HB_{\mathcal{C}}(\mathcal{P})$ s.t. $A \supseteq S_{\sigma}^+$ and $A \cap \neg S_{\sigma}^- = \emptyset$ implies $A \models e$ if $\sigma = T$ and $A \not\models e$ if $\sigma = F$ for all assignments A.

2. DL-programs (integration of ASP with description logics):

n		answer s		first answer set						
	traditional		sup.sets		inlining	traditional		sup.sets		inlining
20	1.08	(0)	0.34	(0)	0.31 (0)	0.34	(0)	0.34	(0)	0.31 (0)
30	27.73	(3)	0.98	(0)	0.34 (0)	5.66	(0)	0.98	(0)	0.34 (0)
40	145.06	(35)	16.68	(2)	0.40 (0)	84.73	(14)	16.74	(2)	0.40 (0)
50	249.78	(76)	80.69	(15)	0.48 (0)	213.45	(60)	80.61	(15)	0.47 (0)
60	285.70	(90)	184.25	(47)	0.57 (0)	265.61	(85)	184.23	(47)	0.57 (0)
70	298.13	(99)	254.00	(74)	0.72 (0)	297.17	(99)	254.06	(73)	0.72 (0)

6. Conclusion and Outlook

Main results:

Example: Set Partitioning (cont'd)

A positive support set of &diff[d,q](b) in P is $S_T = \{Td(b), Fq(b)\}$ since for all A: $A \models d(b)$ and $A \not\models q(b)$ implies $A \models \&diff[d,q](b)$.

Important concept: complete families of support sets:

A family (=set) of support sets \mathcal{S}_{σ} for external atom e is complete, if it contains all possibilities how to satisfy resp. falsify the external aton Formally:

A positive resp. negative family of support sets \mathcal{S}_{σ} with $\sigma \in \{\mathbf{T}, \mathbf{F}\}$ external atom *e* is a set of positive resp. negative support sets of *e*; is complete if for each assignment A with $A \models e$ resp. $A \not\models e$ there an $S_{\sigma} \in \mathcal{S}_{\sigma}$ s.t. $A \supseteq S_{\sigma}^+$ and $A \cap \neg S_{\sigma}^- = \emptyset$.

- Novel evaluation algorithm for HEX-programs and an implementation.
- Experiments show a significant (up to exponential) speedup.

Future work:

- Refinements and optimizations of the rewriting.
- Heuristics for deciding when to rewrite.

n.	8. References
for	Alviano, M., Faber, W., and Gebser, M. (2015). Rewriting recursive aggregates in answer set programming: back to monotonicity. <i>CoRR</i> , abs/1507.03923.
e is	Darwiche, A. and Marquis, P. (2011). A knowledge compilation map. <i>CoRR</i> , abs/1106.1819.
	Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2014). Efficient HEX-program evaluation based on unfounded sets. <i>Journal of Artificial Intelligence Research</i> , 49:269–321.

Der Wissenschaftsfonds.