
Conflict-driven ASP Solving with External Sources and Program Splits

Christoph Redl ∗

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

redl@kr.tuwien.ac.at

Abstract
Answer Set Programming (ASP) is a well-known
problem solving approach based on nonmonotonic
reasoning. HEX-programs extend ASP with external
atoms for access to arbitrary external sources, which
can also introduce constants that do not appear in
the program (value invention). In order to deter-
mine the relevant constants during (pre-)grounding,
external atoms must in general be evaluated under
up to exponentially many possible inputs. While
program splitting techniques allow for eliminating
exhaustive pre-grounding, they prohibit effective
conflict-driven solving. Thus, current techniques
suffer either a grounding or a solving bottleneck. In
this work we introduce a new technique for conflict-
driven learning over multiple program components.
To this end, we identify reasons for inconsistency
of program components wrt. input from predecessor
components and propagate them back. Experiments
show a significant, potentially exponential speedup.

1 Introduction
Answer-Set Programming (ASP) is a declarative programming
paradigm based on nonmonotonic programs [Gelfond and Lif-
schitz, 1991]. HEX-programs are an extension of ASP with
external sources (ontologies, Web resources, etc). So-called
external atoms pass information from the program to an ex-
ternal source, which returns values to the program. Notably,
value invention allows for domain expansion. For instance,
the external atom &synonym[car](X) might be used to find
the synonyms X of car , e.g. automobile . Also recursive data
exchange between the program and external sources is sup-
ported, which leads to high expressiveness of the formalism.
We use HEX as a representative for formalisms with expanding
domains. Also well-known ASP extensions such as aggre-
gates [Faber et al., 2010] and constraint ASP [Ostrowski and
Schaub, 2012] correspond to special cases of HEX.

Suitable safety conditions guarantee the existence of a fi-
nite grounding which suffices for answer set computation; a
grounding algorithm exists [Eiter et al., 2016b]. However,
computing a grounding is often expensive as, in general, the

∗Supported by the Austrian Science Fund (FWF) project P27730.

grounder must evaluate external sources under up to expo-
nentially many inputs to ensure that all relevant constants are
respected. The situation is relieved by a model-building frame-
work based on program splitting, where program components
are arranged in a directed acyclic graph [Eiter et al., 2016a].
Then, at the time a component is grounded, its predecessors
have already been evaluated and their answer sets can be ex-
ploited to skip evaluations. However, splitting deteriorates the
performance of the conflict-driven solver since propagation
throughout the whole program is inhibited. Therefore, current
approaches suffer either a solving or a grounding bottleneck,
depending on whether program splitting is used or not.

In this work we propose a novel learning technique for
programs with multiple components, which is our main con-
tribution. This allows for retaining the splitting technique for
the sake of efficient grounding, but at the same time also prop-
agate learned knowledge throughout the whole program. To
this end, we identify reasons for inconsistencies in program
components in terms of input from predecessors and propa-
gate them back. The results are relevant beyond HEX as they
carry over to special cases thereof; also ordinary ASP solving
can benefit from splitting [Eiter et al., 2011] and is another
possible application of our results.

In more detail, after the preliminaries (Section 2), the orga-
nization of the paper and our contributions are as follows:
• In Section 3 we use the notion of inconsistency reasons

(IRs) for HEX-programs and present an algorithm for
computing them for ground programs.
• In Section 4 we extend the algorithm to the nonground

case, respecting possible optimizations by the grounder.
• In Section 5 we show how the techniques can be used to

realize learning over multiple program components.
• In Section 6 we present our implementation and experi-

mental results, which show a significant – in some cases
even exponential – speedup.
• In Section 7 we discuss related work and conclude the

paper.
Proofs are outsourced to the extended version at http://www.

kr.tuwien.ac.at/research/projects/inthex/tulearning-ext.pdf.

2 Preliminaries
We follow Drescher et al. [2008] for basic concepts. We use
as our alphabet mutually disjoint sets P of predicates, X of

external predicats, C of constants, and V of variables. The set
of all terms is given by T = C ∪ V .

An (ordinary) atom a is of form p(t1, . . . , t`) with predicate
symbol p ∈ P and terms t1, . . . , t` ∈ T , abbreviated as p(t);
for a list of terms t = t1, . . . , t` we write t ∈ t if t = ti for
some 1 ≤ i ≤ `. We call an atom (or other objects) ground if
it does not contain variables. A (signed) literal is of type Ta
or Fa, where a is an atom. We let σ denote the negation of a
literal, i.e. Ta = Fa and Fa = Ta. An assignment A over
the (finite) set A of ground atoms is a set of literals over A,
where Ta ∈ A expresses that a is true, also denoted A |= a,
and Fa ∈ A that a is false, also denoted A 6|= a. A nogood
is a set {L1, . . . , Ln} of ground literals Li, 1 ≤ i ≤ n. An
assignment A is a solution to a nogood δ if δ 6⊆ A, and to a
set of nogoods ∆ if δ 6⊆ A for all δ ∈ ∆. Note that according
to this definition, partial assignments (i.e., assignments such
that for some a ∈ A we have Ta 6∈ A and Fa 6∈ A) might be
solutions to nogoods, even if supersets thereof are not. This
definition is by intend and does not harm in the following.

HEX-Programs. We briefly recall HEX-programs, which
generalize (disjunctive) logic programs under the answer set
semantics [Gelfond and Lifschitz, 1991]; for more details and
background, see Eiter et al. [2016a].

Syntax. HEX-programs extend ordinary ASP-programs by ex-
ternal atoms, which enable a bidirectional interaction between
a program and external sources of computation. An external
atom is of the form &g [Y](X), where &g ∈ X is an external
predicate, Y = p1, . . . , pk is a list of input parameters (pred-
icate names from P or constants1 from C ∪ V), called input
list, and X = t1, . . . , tl are output terms.

Definition 1. A HEX-program P consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn (1)

where each ai is a ground atom and each bj is either an
ordinary atom or an external atom.

The head of a rule r is H(r) = {a1, . . . , ak}, its body is
B(r) = {b1, . . . , bm,not bm+1, . . . ,not bn}, and its positive
resp. negative body is B+(r) = {b1, . . . , bm} resp. B−(r) =
{bm+1, . . . , bn}.
Semantics. We first define the semantics of ground programs.
In the following, assignments are over the setA(P) of ordinary
atoms that occur in the program P at hand. The semantics
of a ground external atom &g [y](x) wrt. an assignment A is
given by the value of a 1+k+l-ary Boolean oracle function
f&g that is defined for all possible values of A, y and x.
Thus, &g [y](x) is true relative to A iff f&g(A,y,x) = T. In
extension of the semantics by Gelfond and Lifschitz [1991], a
ground rule r of form (1) is satisfied under A, denoted A |= r,
if A |= ai for some 1 ≤ i ≤ k, or A 6|= bi for some 1 ≤ i ≤
m, or A |= bi for some m + 1 ≤ i ≤ n. A ground program
P is satisfied under A, denoted A |= P , if each r ∈ P is
satisfied under A. The answer sets of a ground HEX-program
P are defined using the FLP-reduct of P wrt. an assignment A,
which is the set fPA = {r ∈ P | A |= b for all b ∈ B(r)}
of all rules whose body is satisfied by A:

1Also variables become constants after the grounding step.

Definition 2. An assignment A is an answer set of a ground
HEX-program P , if A is a subset-minimal model of fPA. 2

The set of all answer sets of a program P is denotedAS(P).

Example 1. Consider the program P = {p ← &id [p]()},
where &id [p]() is true iff p is true. Then P has the answer set
A1 = ∅; indeed it is a subset-minimal model of fPA1 = ∅.

The answer sets of a (possibly) nonground program P are
given by the answer sets AS(grndC(P)) of its grounding
grndC(P) = {ρ(r) | ρ : V → C}, which results from P
if all variables are replaced by all constants from C in all
possible ways using variable substitutions ρ : V → C; for a
composed object x (atom, rule, program, etc), ρ(x) denotes x
after replacing each variable V ∈ vars(x) in x by ρ(V).

While grndC(P) may be infinite in general, suitable safety
criteria guarantee that a finite subset suffices to compute the
answer sets, cf. Eiter et al. [2016b]. In this paper, all programs
are assumed to satisfy these criteria.
Grounding and solving algorithm. For the general un-
derstanding of this paper it is not necessary to introduce the
grounding procedure in detail. Some details about the solving
algorithm are introduced later on. However, it is important to
know the following properties of the algorithms.

The existing grounding algorithm [Eiter et al., 2016b] is
typically slow whenever an external atom depends on atoms
other than facts and this dependency is neither monotonic nor
antimonotonic. Then already the construction of a single rule
instance is exponential in the number of atoms. Intuitively, this
is because the grounder does not yet know the relevant inputs
to the external atom and must evaluate it under exponentially
many possibilities to ensure that all relevant output elements
are respected. After grounding, the solving algorithm [Eiter
et al., 2014a] is applied, which uses conflict-driven learning
similar to SAT and ordinary ASP solving [Gebser et al., 2012];
the search is interleaved with the evaluation of external sources.
Efficiency strongly depends on learning additional nogoods
during solving, which are only implicitly in the program. In
addition, an evaluation framework has been developed, which
allows for splitting the program into components [Eiter et
al., 2016a]; while splitting may speed up grounding since the
grounder already knows parts of the answer set computed by
previous components, it is barrier for conflict-driven learning.

3 Inconsistency Analysis – Ground Case
In this section we consider programs P which are extended
with facts FI over atoms I ⊆ D from a given (input) domain
D, where FI = {a ←| a ∈ I}. This resembles a program
(component) P evaluated under input I (e.g. from predecessor
components, as discussed more extensively in Section 5).

Following Redl [2017b], we express reasons for inconsis-
tency of P ∪ FI in terms of atoms which must resp. must not
occur in I in order to make P ∪ FI inconsistent. Formally:

Definition 3 (Inconsistency Reason (IR)). Let P be a HEX-
program and D be a set of atoms, called (input) domain, such
that H(P) ∩ D = ∅. An inconsistency reason (IR) of P
wrt. D is a pair R = (R+, R−) of sets of atoms R+ ⊆ D and

2For ordinary P , these are Gelfond & Lifschitz’ answer sets.

R− ⊆ D with R+ ∩ R− = ∅ s.t. P ∪ FI is inconsistent for
I ⊆ D with R+ ⊆ I and R− ∩ I = ∅.
Example 2. An IR of P = {← a,not c; d ← b.} wrt. D =
{a, b, c} is R = ({a}, {c}) because P ∪FI is inconsistent for
all I ⊆ D whenever a ∈ I and c 6∈ I , while b can be in I or
not without influencing (in)consistency.

Note that in contrast to work on ASP debugging, which we
discuss in more detail in Section 7 and focuses on (human-
readable) explanations for inconsistency of single programs,
out notion rather aims at identifying classes of program in-
stances depending on the input facts, which are inconsistent.
As a consequence, the techniques developed for ASP debug-
ging cannot directly be used, which is intuitively expected
because checking a single program for inconsistency is com-
putationally easier than identifying IRs, cf. Redl [2017b].

Further note that although small IRs are preferred, we do
not formally require them to be minimal. This is in view of
the application in Section 5, which relies on a fast method for
computing IRs, for which we give up minimality.

In general, programs may have no, one or multiple IRs. For
instance, {← a;← b} has the inconsistency reasons R1 =
({a}, ∅) and R2 = ({b}, ∅)) wrt. D = {a, b}.

We introduce now a new technique for computing IRs.
Since it is based on an extension of the evaluation algorithm
for ground HEX-programs, we recapitulate it in the following
paragraph; for details we refer to Eiter et al. [2014a]. How-
ever, we slightly adopt the presentation of the algorithm as a
preparation for the extensions in the paragraph afterwards.

Evaluation of ground HEX-programs. The evaluation
follows Algorithm 1. The initialization is at (a). The given
HEX-program P is extended with facts FI and transformed to
an ordinary ASP-program P̂ by replacing each external atom
&g [y](x) in P by an ordinary replacement atom e&g[y](x) and
adding a rule e&g[y](x)∨ne&g[y](x)← to guess its value. Pro-
gram P̂ is then represented as set of nogoods ∆, which consists
of nogoods ∆P̂ stemming from Clark’s completion [Clark,
1977] and singleton loop nogoods [Gebser et al., 2012]; this
set will be extended as the search space is traversed. The
computed answer set Â of the guessing program P̂ is initially
empty; for the sake of the algorithm, assignments are seen as
lists (i.e., the order of assignments is relevant). The decision
level (dl) is initially 0 and incremented for every guess. We
assume that dl(a) ∈ N0 stores the dl of each assigned atom.
The initialization immediately assigns facts to true and atoms
which do not appear in any heads to false (both at dl 0).

After the initialization, the algorithm performs deterministic
propagation at (b) such as unit propagation; further propaga-
tion techniques such as unfounded set propagation can be
added. Each implied literal is assigned at the maximum dl of
the literals which implied it. The algorithm detects conflicts,
learns additional nogoods and backtracks at (c). If the conflict
is on dl 0, the instance is inconsistent and the callback function
h is notified (with nogoods ∆ and assignment Â over P as
input) to determine the return value in case of inconsistency;
this callback serves as a preparation for our extension of the
algorithm below and is instantiated with just h⊥(∆, Â) = ⊥
for answer set computation. If the assignment is complete at

Algorithm 1: HEX-CDNL
Input: A ground program P , input atoms I, an inconsistency handler function

h with a nogood set and an assignment as parameters
Output: An answer set of P if existing, and h(∆, Â) otherwise (where ∆

resp. Â are the nogood set resp. assignment at the time of
discovering the inconsistency)

(a)P ← P ∪ FI ; ∆← ∆P̂ ; Â← ∅; current dl ← 0

for a←∈ P do Â← Â ◦ (Ta); dl[a]← current dl

for a 6∈ H(r) for all r ∈ P do Â← Â ◦ (Fa); dl[a]← current dl
while true do

(b)(Â,∆)← Propagation(P̂ ,∆, Â)

(c)if some nogood δ ∈ ∆ violated by Â then
if current dl = 0 then return h(∆, Â)
Analyze conflict, learn nogood (∆), backjump (current dl)

(d)else if Â is complete then
if guesses are not correct or not minimal wrt. the reduct then

∆← ∆ ∪ {Â}
Analyze conflict, learn nogood (∆), backjump (current dl)

else
return Â|A(P)

(e)else if Heuristics evaluates &g[y] and Λ(&g[y], Â) 6⊆ ∆ then
∆← ∆ ∪ Λ(&g[y], Â)

(f)else
Let σ ∈ {T,F} and a ∈ A(P̂) with {Ta,Fa} ∩ Â = ∅
current dl ← current dl + 1
dl[a]← current dl

Â← Â ◦ (σa)

(d), the algorithm must check if the guesses of replacement
atoms coincide with the real truth values of external atoms,
and if it represents a model which is also subset-minimal
wrt. the reduct. If this is not the case, the assignment is added
as nogood in order to discard it.3 Finally, the algorithm may
perform theory propagation at (e) or guess a truth value at (f)
if no other case is applicable.

Soundness and completeness of Algorithm 1 was shown
by Eiter et al. [2014a] as follows:
Proposition 1. Let P be a program and I ⊆ D be input
atoms from a domain D. If HEX-CDNL(P, I, h⊥) returns
(i) an assignment A, then A is an answer set of P ∪FI ; (ii)⊥,
then P ∪ FI is inconsistent.

Computing inconsistency reasons. We now extend the ex-
isting evaluation algorithm for ground HEX-programs from
the previous paragraph to an algorithm for computing IRs.
Our approach is based on implication graphs, which repre-
sent the current status and assignment history of the solver
following Algorithm 1, cf. e.g. Biere et al. [2009]. Intuitively,
the nodes of the graph represent (already assigned) literals or
conflicts, their decision levels, and the nogoods which implied
them. Predecessor nodes represent implicants. Nodes without
predecessors represent guesses. Formally:
Definition 4. An implication graph is a directed graph 〈V,E〉,
where V is a set of triplets 〈L, dl , δ〉, denoted L@dl/δ, where
L is a signed literal or ⊥, dl ∈ N0 is a decision level, δ ∈
∆ ∪ {⊥} is a nogood, and E is a set of unlabeled edges.
Example 3. Let
∆ =

{
δ1 : {Ta,Tb}, δ2 : {Ta,Fb,Fc}, δ3 : {Tc,Td,Fe}

}
.

An implication graph is shown in Figure 1. Here, Ta@1/⊥ is

3This is for simplicity, actual implementations are more involved.

Algorithm 2: InconsistencyAnalysis
Input: Domain D, set of nogoods ∆ representing program P , assignment Â

conflicting with ∆
Output: Inconsistency reason of P wrt. D

(a)Let δ ∈ ∆ such that δ ⊆ Â
(b)while there is a σa ∈ δ with a 6∈ D do

Let ε ∈ ∆ s.t. σa ∈ ε and ε \ σa ⊆ Â′ for some Â = Â′ ◦ (σa) ◦ Â
(c)δ ← (δ \ {σa}) ∪ (ε ∪ σa)

Â← Â′

(d)return ({a | Ta ∈ δ}, {a | Fa ∈ δ})

a guess on dl 1, Fb@1/δ1 is implied by Ta using δ1, Tc@1/δ2
is implied by Ta and Fb using δ2, Td@2/⊥ is a guess on dl
2, and Te@2/δ3 is implied by Tc and Td using δ3.

Ta@1/⊥

Fb@1/δ1

Tc@1/δ2

Td@2/⊥

Te@2/δ3

Figure 1: Implication graph of the program in Example 5

In order to compute an IR wrt. a domain D in case
of inconsistency, we reuse Algorithm 1 but let it call
Algorithm 2 after an inconsistency is detected by using
InconsistencyAnalysis(D,∆, Â) instead of h⊥.

Observe that for answer set computation (i.e., using h =

h⊥), soundness of Algorithm 1 implies that h(∆, Â) is called
at some point because it is the only way to return ⊥. Note
that this can only happen after a violated nogood has been
identified on decision level 0. But this implies that at the time
the inconsistency of an instance is detected, all assignments
are deterministic.

Now the basic idea of Algorithm 2 is as follows. We start
at (a) with a nogood δ ∈ ∆ which is currently violated; such a
nogood always exists because otherwise Algorithm 1 would
not have called h(∆, Â). Since each literal σa in this nogood
was assigned on decision level 0, each of them was assigned
by unit propagation as a consequence of previously assigned
literals. Algorithm 2 resolves this nogood at (c) with the
cause of one of its literals σa, i.e., with the nogood ε which
implied literal σa. The loop at (b) repeats this step until the
nogood contains only literals over explanation atoms from
D. The iterative resolution corresponds to the replacement of
the literal by its predecessors in the implication graph (where
the implication graph itself is implicitly represented by the
nogoods that implied literals). The iteration steps when the
nogood δ contains only literals from D; since these literals
imply the originally violated nogood and are thus responsible
for inconsistency, δ represents an IR which we return at (d).

Using hDanalyse(∆, Â) = InconsistencyAnalysis(D,∆, Â)
allows then for exploiting Algorithm 1 to compute IRs:

Proposition 2. Let P be a program and I ⊆ D be input atoms
from a domainD. If HEX-CDNL(P, I, hDanalyse) returns (i) an
assignment A, then A is an answer set of P ∪ FI ; (ii) a pair
R = (R+, R−) of sets of atoms, then P ∪ FI is inconsistent
and R is an inconsistency reason of P wrt. D.

4 Inconsistency Analysis – Nonground Case
We now extend the above approach to nonground programs.

Grounding algorithms for ASP and HEX do not use the
naive grounding grndC(P) which substitutes variables V in
P by constants in C in all possible ways. Instead, optimiza-
tions are performed to keep the grounding small. However,
the exact algorithms for performing such optimizations, and
therefore the output, depend on the used grounder. In fact, a
correct grounding procedure can output any optimized ground
program ogC(P) as long as AS(ogC(P)) = AS(P) holds; it
does not even be a subset of grndC(P), which allows for opti-
mizations within rules and introducing auxiliary rules. This
is why one cannot give a precise definition of an optimized
grounding. However, while multiple valid groundings exist
in general, we assume that an arbitrary but fixed algorithm is
used, which makes ogC(P) unique; similarily for pogC,I(P)
introduced in the following.

This prohibits the direct reduction of the computation of an
IR for a (possibly) nonground program P wrt. a domain D to
the ground case. Let Pg = ogC,I(P) be an optimized ground-
ing of P ∪ FI for some I ⊆ D, where we assume that the
facts FI themselves are not included in the grounding. Then,
if HEX-CDNL(Pg, I, h

D
analyse) returns a pair R = (R+, R−),

we have by Proposition 2 that R is an IR for Pg , i.e., Pg ∪ FJ
is inconsistent for all J ⊆ D with R+ ⊆ J and R− ∩ J = ∅.
However, R is not necessarily an IR for P wrt. D because for
a different set of facts I ′ ⊆ D we may have ogC,I′(P) 6= Pg .

Example 4. Consider P = {q(X) ← p(X); ← not q(1)}
and D = {p(1)}. For input I = ∅, Pg ∪ FI = {← not q(1)}
is a valid grounding for evaluation because AS(P ∪ FI) =
AS(Pg ∪ FI) = ∅. However, for inconsistency analysis of P ,
the grounding Pg ∪ FI is not sufficient: R = (∅, ∅) is an IR of
Pg wrt. D but not of P wrt. D as P ∪ F{p(1)} is consistent.

We thus use a partially optimized grounding pogC,I(P) for
a specific input I ⊆ D with the properties that (i) pogC,I(P) ⊆
grndC(P) and (ii) AS(pogC,I(P)) = AS(P ∪ FI). That is,
optimization is restricted to the elimination of rules, while
changes within or additions of rules are prohibited. A ground-
ing procedure for HEX-progams with these properties was
presented by Eiter et al. [2016b].

The idea is to use pogC,I(P) for the inconsistency analysis,
but respect that unknown rules might provide additional sup-
port for atoms. To this end, we introduce for each atom a in
pogC,I(P) a rule a ← a′, where a′ is a new atom, to repre-
sent the situation that a is supported by rules not in pogC,I(P).
While structural information of the program might be exploited
to further restrict the set of atoms that can have further support
by rules that are missing in the current grounding, this is not a
trivial task; we leave it for future work in order to focus on the
main idea in this paper. Then, if an IR does not contain any a′,
possibly missing rules are not relevant and it carries over to
program P . Formally:
Proposition 3. Let P be a program and I ⊆ D be input
atoms from a domain D. Then an IR R = (R+, R−) of
pogC,I(P)∪{a← a′ | a ∈ A(pogC,I(P))} wrt.D∪{a′ | a ∈
A(pogC,I(P))} s.t. (R+∪R−)∩{a′ | a ∈ A(pogC,I(P))} =
∅ is an IR of P wrt. D.

5 Trans-Unit Propagation
Current evaluation techniques are in particular bad for pro-
grams with guesses that are separated from constraints by
nonmonotonic external atoms; we focus on programs of this
form in the following. While monotonic and antimonotonic
external atoms can be efficiently grounded without splitting,
grounding nonmonotonic external atoms, which do not depend
only on facts, requires exponentially many calls to external
sources. Splitting can solve this grounding bottleneck, but it
introduces a solving bottleneck because subsequent constraints
cannot be propagated back.
Example 5. Suppose we want to form a committee of em-
ployees. Some pairs of persons should not be together in the
committee due to conflicts of interests (cf. independent sets
of a graph). The competences of the committee depend on
the persons involved. For instance, it can decide in techni-
cal questions only if a certain number of members has expert
knowledge in the field. The competences can depend nonmono-
tonically on the members. For instance, while overrepresen-
tation of a department might not be forbidden in principle, it
can make it lose authorities such as assigning more resources
to this department. Constraints define the competences the
committee should have. This is encoded as follows:
P = {r1 : in(X) ∨ out(X)← person(X).

r2 : ← in(X), in(Y), conflict(X,Y).

r3 : comp(X)← &competences[in](X).

r4 : ← not comp(technical),not comp(financial).}
Here, we do not want committees which can neither decide in
technical nor financial affairs.

When grounding P as a whole, since the external atom
in r3 depends nonmonotonically on the guessed committee,
the grounder must evaluate it under all possible guesses as
each one could introduce other competences. However, many
guesses are not relevant because they are already eliminated
by r2. In contrast, an existing evaluation framework for HEX-
programs allows for splitting it into components which are
separately grounded and solved [Eiter et al., 2016a]. More pre-
cisely, based on the dependencies between rules, the program
is partitioned into subprograms such that the resulting depen-
dencies between the subprograms form an acyclic evaluation
graph (cyclically depending rules must be in one component);
an example is shown in Figure 2. For the evaluation, the frame-
work first computes the answer sets of components without
predecessors. The successor components are then extended
with the answer sets of predecessor components (one at a time),
grounded and solved. This procedure is repeated recursively;
the final answer sets are extracted from the leaf components.
For details we refer to Eiter et al. [2016a].
Example 6 (cont’d). Program P from Example 5 can be par-
titioned into P1 and P2, where P2 depends on P1, cf. Figure 2.

P1 = {r1, r2} P2 = {r3, r4}

Figure 2: Evaluation graph of the program from Example 5

However, then r4 is separated from the guess and a conflict
with r4 during the evaluation of P2 cannot be propagated to

exclude guesses. Hence, with current evaluation techniques,
there is a bottleneck either in the grounding phase (if the
program is not split) or in the solving phase (if it is split).
Propagating inconsistency reasons. The main idea is to
associate an IR R = (R+, R−) of a later program component
with a constraint cR =← R+, {not a | a ∈ R−} which
we propagate to predecessors. Recall that for a domain D of
explanation atoms and an inconsistency reasonR = (R+, R−)
wrt. a program P , all programs P ∪ FI with I ⊆ D such that
R+ ⊆ I and R− ∩ I = ∅ are inconsistent. Thus:

Proposition 4. For all HEX-programs P and IRs R =
(R+, R−) of P wrt. a domainD, we have thatAS(P ∪FI) =
AS(P ∪ {cR} ∪ FI) for all I ⊆ D.

Such a constraint can also be added to predecessor compo-
nents in order to eliminate wrong guesses earlier, which we
call trans-unit (tu-)propagation.

Proposition 5. For a program component P and IRs R =
(R+, R−) ofP wrt. a domainD, we have that cR can be added
to a predecessor component P ′, if all atoms appearing in cR
are defined in P ′ or one of its own transitive predecessors.

Example 7 (cont’d). Assume that joe and sue are the only
technicians and alyson is the only economist. Then, P2 is
always inconsistent if none of these three persons is selected,
independent of other choices. If the current input to com-
ponent P2 is I = {in(jack), in(joseph)}, then by exploit-
ing nogoods learned from the external source &competences ,
the IR R = (∅, {in(joe), in(sue), in(alyson)}) wrt. P2 ∪
FI can be determined, and the constraint cR =←
not in(joe),not in(sue),not in(alyson) can be added to P1.

According to Proposition 5, a constraint constructed in this
way can be added to a predecessor component P ′, if all atoms
appearing in cR are defined in P ′. That is, it can be added to
all predecessors which fulfill this criterion. In our implemen-
tation and experiments, we add it to the top-most one. This in
order to eliminate invalid candidates as early as possible. For
analytical reasons, this is always better than adding them to
later program components since it eliminates possibly more
candidates, while costs for adding the constraint are the same
for all components.

6 Implementation and Experiments
For the experiments, we integrated our techniques into the
reasoner DLVHEX4 with GRINGO 4.5.4 and CLASP 3.1.4 as
backends. All benchmarks were run on a Linux machine with
two 12-core AMD Opteron 6176 SE CPUs and 128 GB RAM;
timeout was 300 secs and memout 8 GB per instance. We
used the HTCondor load distribution system (http://research.cs.
wisc.edu/htcondor) to ensure robust runtimes (i.e., deviations
of runs on the same instance are negligible).
Setting and hypotheses. Based on the program class we
want to assess, we selected our benchmarks such that guessing
and checking is separated by nonmonotonic external atoms.
For each benchmark we compare three configurations: (i) eval-
uation as a monolithic program, (ii) evaluation using splitting,

4http://www.kr.tuwien.ac.at/research/systems/dlvhex

and (iii) evaluation with trans-unit (tu-)propagation. Our hy-
pothesis is that (i) suffers a grounding and (ii) suffers (also) a
solving bottleneck, whereas (iii) outperforms the other two ap-
proaches as it can restrict the grounding and propagate through-
out the whole program at the same time. In the tables we show
the overall runtime, grounding and solving time, averaged over
all instances of the respective size; importantly, other com-
putations besides grounding and solving (e.g. preprocessing
and method-specific tasks such as splitting for (ii) and incon-
sistency analysis for (iii)) can cause the overall runtime to be
higher than the sum of grounding and solving time. Numbers
in parantheses show the number of timeout instances. The
encodings of all presented benchmarks can be found in the
official benchmark suite of the system.5

Configuration Problem. Consider the following configu-
ration problem. We assemble a server cluster consisting of
various components. For a given component selection the
cluster has different properties such as its efficiency, power
consumption, etc. Properties may depend not only on indi-
vidual components but also on their interplay, and this depen-
dency can be nonmonotonic (e.g. the selection of an additional
component might make it lose the property of low energy
consumption). We want the cluster to have certain properties.

In order to capture also similar configuration problems (such
as Example 5), we use a more abstract formalization as a
quadruple (D,P,m,C), where D is a domain, P is a set of
properties, m is a function which associates each selection
S ⊆ D with a set of properties m(S) ⊆ P , and C is a set
of constraints of form Ci = (C+

i , C
−
i), where C+

i ⊆ 2P and
C−i ⊆ 2P define sets properties which must resp. must not be
simultaneously given; a selection S ⊆ D is a solution if for
all (C+

i , C
−
i) ∈ C we have C+

i 6⊆ m(S) or m(S) ∩ C−i 6= ∅.
For the experiment we consider for each size n ten ran-

domly generated instances with n domain elements, bn5 + 1c
properties, a random function m, and a random number of
constraints, such that their count has an expected value of n.

The results are shown in Table 1. One can observe that
for all shown instance sizes, the splitting approach is the
slowest, monolithic evaluation is the second-slowest, and tu-
propagation is the fastest configuration. A look at the ground-
ing and solving times shows that for the monolithic approach,
the main source of computation costs is grounding, while for
splitting it is the solving phase (although also the grounding
costs are high due to repetitive instantiation of program com-
ponents). In contrast, with tu-propagation both grounding and
solving is fast, while most of the computation time is spent
on other computations (most importantly, the inconsistency
analysis). The observations are in line with our hypotheses.
Diagnosis Problem. Next, we consider the diagnosis prob-
lem 〈Od,Op,H, C, P 〉, where sets Od and Op are definite
resp. potential observations, H is a set of hypotheses, C is a
set of constraints over the hypotheses, and P is a logic pro-
gram which defines the observations which follow from given
hypotheses. Each constraint C ∈ C forbids certain combina-
tions of hypotheses. A solution consists of a set SH ⊆ H of
hypotheses and a set of potential observations SO ⊆ Od such
that (i) all answer sets of P ∪H , which contain all of SO∪Od,

5https://github.com/hexhex/core/tree/master/benchmarks

size monolithic splitting tu-propagation
total ground solve total ground solve total ground solve

6 0.14 (0) 0.01 0.02 0.18 (0) 0.03 0.04 0.15 (0) <0.005 0.01
8 0.20 (0) 0.05 0.04 0.49 (0) 0.15 0.20 0.19 (0) <0.005 0.02

10 0.45 (0) 0.22 0.10 2.17 (0) 0.81 1.11 0.33 (0) <0.005 0.05
12 1.51 (0) 0.90 0.44 9.50 (0) 3.59 5.17 0.86 (0) 0.01 0.10
14 4.84 (0) 3.68 0.82 44.23 (0) 16.58 24.68 1.48 (0) 0.02 0.20
16 19.52 (0) 16.55 2.08 217.46 (0) 86.17 119.93 3.80 (0) 0.07 0.57
18 143.09 (3) 68.89 10.89 300.00 (10) 122.23 165.44 44.76 (1) 0.43 6.29
20 300.00 (10) 300.00 n/a 300.00 (10) 126.40 162.73 37.44 (0) 0.36 3.44
22 300.00 (10) 300.00 n/a 300.00 (10) 122.41 165.68 224.83 (6) 1.03 11.74

Table 1: Configuration Problem

size monolithic splitting tu-propagation
total ground solve total ground solve total ground solve

5 0.46 (0) 0.15 0.25 0.16 (0) 0.05 0.02 0.36 (0) 0.04 0.04
10 10.16 (0) 5.94 5.08 2.86 (0) 2.29 0.67 6.38 (0) 1.01 0.89
15 276.19 (5) 258.17 40.11 121.73 (1) 96.76 22.94 105.43 (3) 15.06 13.15
20 300.00 (10) 300.00 n/a 294.97 (9) 253.97 53.55 169.56 (5) 26.54 18.64
25 300.00 (10) 300.00 n/a 300.00 (10) 270.64 45.78 187.90 (5) 29.84 18.08
30 300.00 (10) 300.00 n/a 300.00 (10) 273.50 42.07 226.51 (6) 34.92 20.24
35 300.00 (10) 300.00 n/a 300.00 (10) 276.70 37.01 299.71 (9) 44.17 23.71

Table 2: Diagnosis Problem

contain also SH, and (ii) C 6⊆ SH for all C ∈ C. Informally,
SH are necessary hypotheses to explain the observations.

As a concrete medical example, definite observations are
known symptoms and test results, potential observations are
possible outcomes of yet unfinished tests and hypotheses are
possible causes (e.g. diseases, nutrition behavior, etc). Con-
straints exclude certain (combinations of) hypotheses because
it is known from anamnesis and the patient’s declaration that
they do not apply. A solution of the diagnosis problem corre-
sponds to a set of possible observations which, if confirmed by
tests, imply certain hypotheses (i.e., medical diagnosis), which
can be exploited to perform the remaining tests goal-oriented.

We use 10 random instances for each instance size, where
the size is given by the number of observations; observations
are definite with a probability of 20% and potential otherwise.

The results are shown in Table 2. Unlike for the previous
benchmark, monolithic is slower than splitting. This is be-
cause the evaluation of the external source (corresponding to
evaluating P) is much more expensive now; since monolithic
grounding requires exponentially many evaluations, while dur-
ing solving this is not necessarily the case, the evaluation costs
have a larger impact to monolithic than to splitting. However,
as before tu-propagation is clearly the fastest configuration.
Again, the observations are in line with our hypotheses.
Analysis of Best-Case Potential. Finally, in order to ana-
lyze the potential of our approach in the best case, we use a
synthetic program. Our program of size n is as follows:
P = {dom(1..n). in(X) ∨ out(X)← dom(X).

someIn ← in(X).

r(X)← &diff [dom, out](X). ← r(X), someIn}
It uses a domain of size n and guesses a subset thereof. It then
uses an external atom to compute the complement set. The
final constraint encodes that the guessed set and the comple-
ment must not be nonempty at the same time, i.e., there are
only two valid guesses: either all elements are in or all are out.

The results are shown in Table 3. While splitting separates
the rules in the third line from the others and must handle each
guess independently, the monolithic approach must evaluate
the external atom under all possible extensions of out . Both

size monolithic splitting tu-propagation
total ground solve total ground solve total ground solve

5 3.13 (0) 3.02 <0.005 0.19 (0) 0.04 0.04 0.14 (0) <0.005 0.01
6 13.59 (0) 13.48 <0.005 0.30 (0) 0.09 0.09 0.15 (0) <0.005 0.02
7 63.11 (0) 63.00 <0.005 0.54 (0) 0.20 0.21 0.16 (0) <0.005 0.02
8 281.10 (0) 280.99 <0.005 1.07 (0) 0.44 0.47 0.17 (0) <0.005 0.03

· ·
12 300.00 (1) 300.00 n/a 19.97 (0) 9.25 9.83 0.24 (0) <0.005 0.06
13 300.00 (1) 300.00 n/a 41.02 (0) 19.12 20.23 0.28 (0) <0.005 0.07
14 300.00 (1) 300.00 n/a 85.38 (0) 39.86 42.48 0.30 (0) <0.005 0.08
15 300.00 (1) 300.00 n/a 183.04 (0) 84.74 91.64 0.32 (0) <0.005 0.09

Table 3: Synthetic Set Guessing

approaches are exponential. In contrast, tu-propagation learns
for each non-empty guess a constraint which excludes all
guesses that set someIn to true; after learning a linear number
of such constraints, only the two valid guesses remain.

7 Related Work and Conclusion
Related Work. Previous work on inconsistency analysis was
mainly in the context of answer set debugging and faulty sys-
tems in general, based on symbolic diagnosis [Reiter, 1987].
For instance, Syrjänen [2006] computes inconsistency expla-
nations in terms of either minimal sets of constraints which
need to be removed to regain consistency, or of odd loops (in
the latter case the program is called incoherent). The real-
ization is based on another program. Also the more general
approaches by Brain et al. [2007] and Gebser et al. [2008]
rewrite the program to debug into a meta-program using ded-
icated control atoms. The goal is to support human users to
find reasons for undesired program behavior. Possible queries
are, for instance, why a certain assignment is not an answer
set. These approaches are based on meta-programming while
our approach is based on an analysis of the implication graph.
The extension to the nonground case, which is crucial for our
application, requires further techniques. The challenges arise
from the fact that, unlike the approaches mentioned above,
we do not only compute reasons for inconsistency of a fixed
program, but rather inconsistency wrt. a set of possible exten-
sions by facts. Another difference concerns the goal of the
approaches: while the aforementioned ones aim at answer set
debugging and therefore at human-readable explanations of
the inconsistency, we aim at an explanation in terms of atoms,
which can be transformed into a constraint more easily.

Also related are previous evaluation algorithms for HEX-
programs. While the previous state-of-the-art algorithm cor-
responds to Algorithm 1 using h⊥(∆, Â) = ⊥ for parameter
h, alternative algorithms have been developed as well. One of
them was presented by Eiter et al. [2014b], who used support
sets [Darwiche and Marquis, 2002] to represent sufficient con-
ditions to make an external atom true. Such support sets are
used speed up the compatibility check at (d). However, as this
technique shows its benefits only during the solving phase, it
does not resolve the grounding issue addressed in this paper.
Later, another evaluation approach based on support sets was
developed; in contrast to the previous one it compiles away
external atoms altogether [Redl, 2017a]. However, the size
of the resulting rewritten program strongly depends on the
type of external sources and is exponential in general. Thus,
the technique is only practical for certain external sources
which are known to have a small representation by support

sets (which is not the case for the benchmarks discussed in
this paper).
Conclusion. Our experiments show that inconsistency analy-
sis is a promising technique for realizing conflict-driven learn-
ing over multiple program components. For programs where
evaluation as a whole causes a grounding bottleneck (e.g. due
to presence of value invention in programs with expanding
domains), splitting is useful for efficient grounding but in-
troduces a barrier for propagation and a solving bottleneck.
Inconsistency analysis is the basis for combining the advan-
tages of both: splitting for the sake of efficient grounding but
still propagating throughout the whole program. The results
show a significant, potentially exponential speedup for the
addressed class of programs.

An interesting starting point for future work is the gener-
alization of nogood propagation to general, not necessarily
inconsistent program components. In this work, typical solver
optimizations have been disabled for tu-propagation as they
can harm soundness of the algorithm in general; although the
other approaches used them and tu-propagation was still the
fastest, an important extension is the identification of specific
solver optimizations which are compatible with inconsistency
analysis and might lead to an even greater improvement. An-
other starting point for future work is to exploit structural
information of the program to further restrict the set of atoms
that can have further support by rules that are missing in the
current grounding. Since this decision must reasonably be
made without computing the full grounding

References
[Biere et al., 2009] Armin Biere, Marijn J. H. Heule, Hans

van Maaren, and Toby Walsh, editors. Handbook of Satis-
fiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009.

[Brain et al., 2007] Martin Brain, Martin Gebser, Jörg Pührer,
Torsten Schaub, Hans Tompits, and Stefan Woltran. De-
bugging ASP Programs by Means of asp. In Chitta Baral,
Gerhard Brewka, and John Schlipf, editors, Proceedings of
the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning, (LPNMR’07), Tempe, AZ,
USA, volume 4483 of Lecture Notes in Artificial Intelli-
gence, pages 31–43. Springer, 2007.

[Clark, 1977] Keith L. Clark. Negation as failure. In Logic
and Data Bases, pages 293–322, 1977.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. J. Artif. Intell.
Res. (JAIR), 17:229–264, 2002.

[Drescher et al., 2008] Christian Drescher, Martin Gebser,
Torsten Grote, Benjamin Kaufmann, Arne König, Max
Ostrowski, and Torsten Schaub. Conflict-driven disjunctive
answer set solving. In KR’08, pages 422–432. AAAI Press,
2008.

[Eiter et al., 2011] Thomas Eiter, Michael Fink, Giovambat-
tista Ianni, Thomas Krennwallner, and Peter Schüller. Push-
ing efficient evaluation of hex programs by modular decom-
position. In James Delgrande and Wolfgang Faber, editors,
11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2011), Vancouver, BC,
Canada, May 16-19, 2011, volume 6645 of LNCS, pages
93–106. Springer, May 2011.

[Eiter et al., 2014a] Thomas Eiter, Michael Fink, Thomas
Krennwallner, Christoph Redl, and Peter Schüller. Effi-
cient HEX-program evaluation based on unfounded sets.
Journal of Artificial Intelligence Research, 49:269–321,
February 2014.

[Eiter et al., 2014b] Thomas Eiter, Michael Fink, Christoph
Redl, and Daria Stepanova. Exploiting support sets for
answer set programs with external evaluations. In Carla E.
Brodley and Peter Stone, editors, Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages
1041–1048. AAAI Press, 2014.

[Eiter et al., 2016a] Thomas Eiter, Michael Fink, Giovambat-
tista Ianni, Thomas Krennwallner, Christoph Redl, and
Peter Schüller. A model building framework for answer
set programming with external computations. Theory and
Practice of Logic Programming, 16(4):418–464, 2016.

[Eiter et al., 2016b] Thomas Eiter, Michael Fink, Thomas
Krennwallner, and Christoph Redl. Domain expansion for
ASP-programs with external sources. Artificial Intelligence,
233:84–121, 2016.

[Faber et al., 2010] Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence,

In Press, Corrected Proof, 2010. Available online 3 April
2010.

[Gebser et al., 2008] Martin Gebser, Joerg Puehrer, Torsten
Schaub, and Hans Tompits. A meta-programming tech-
nique for debugging answer-set programs. In Dieter Fox
and Carla P. Gomes, editors, AAAI-08/IAAI-08 Proceedings,
pages 448–453, 2008.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence, 187-188:52–
89, August 2012.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9(3–4):365–386,
1991.

[Ostrowski and Schaub, 2012] Max Ostrowski and Torsten
Schaub. ASP modulo CSP: The clingcon system. The-
ory and Practice of Logic Programming, 2012. To appear.

[Redl, 2017a] Christoph Redl. Efficient evaluation of answer
set programs with external sources based on external source
inlining. In Proceedings of the Thirty-First AAAI Confer-
ence (AAAI 2017), February 4–9, 2016, San Francisco,
California, USA. AAAI Press, February 2017.

[Redl, 2017b] Christoph Redl. Explaining inconsistency in
answer set programs and extensions. In Proceedings of the
14th International Conference on Logic Programming and
Nonmonotonic Reasoning, July 2017. To appear.

[Reiter, 1987] R Reiter. A theory of diagnosis from first prin-
ciples. Artif. Intell., 32(1):57–95, April 1987.

[Syrjänen, 2006] Tommi Syrjänen. Debugging inconsistent
answer set programs. In Proceedings of the 11th Inter-
national Workshop on Non-Monotonic Reasoning, pages
77–84, Lake District, UK, May 2006.

