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1. Motivation

HEX-programs extend ASP by external sources:
I Rule bodies may contain external atoms of the form

&p[q1, . . . , qk](t1, . . . , tl), where
p . . . external predicate name, qi . . . input terms, tj . . . output terms.

Semantics:
1 + k + l-ary Boolean oracle function f&p:
ground external atom &p[q1, . . . , qk](t1, . . . , tl) is true under
assignment A iff f&p(A, q1, . . . , qk, t1, . . . , tl) = T.

Example: Set Partitioning

P=


d(a1). . . . d(an).

r1 : p(X)← d(X), &diff [d, q](X).

r2 : q(X)← d(X), &diff [d, p](X).


Problem:

I Due to value invention,
grounding nonmonotonic external atoms is expensive.

I Previous remedy: split program into components (see Block 4.).
I But: deteriorates conflict-driven solving techniques.

Our Solution:
I Keep splits, but compute reasons for inconsistent components.
I Propagate them as constraints to predecessor components.

2. Inconsistency Reasons (IRs)

Characterization of Program Inconsistency [Redl, 2017]:
Let P be a HEX-program and D be a domain of atoms.

An inconsistency reason (IR) of P wrt. D is a pair R = (R+,R−) of sets of
atoms R+ ⊆ D and R− ⊆ D with R+ ∩ R− = ∅ s.t. P ∪ facts(I) is
inconsistent for all I ⊆ D with R+ ⊆ I and R− ∩ I = ∅.

Example

Consider P = {← a, not c; d← b.} and D = {a, b, c}.
An IR is R = ({a}, {c}) because P ∪ facts(I) is inconsistent
for all I ⊆ D such that a ∈ I and c 6∈ I.

3. Computing Inconsistency Reasons

Ground Case:
Consider the implication graph: its nodes are literals in the current
assignment, edges represent implications; nodes⊥ represent conflicts.

Example

∆ =
{
δ1 : {Ta,Tb}, δ2 : {Ta, Fb, Fc}, δ3 : {Tc,Td, Fe}, δ4 : {Td,Te}

}
.

Ta@1/⊥

Fb@1/δ1

Tc@1/δ2

Td@2/⊥

Te@2/δ3 ⊥@2/δ4

I To find a reason for a literal l being true or a conflict⊥ in terms of a
set D, find all (transitive) predecessors l resp.⊥ that are in D.

I If all assignments are on decision level 0, then transitive predecessors
of⊥ in D represent an IR.

Nonground Case:
I Optimized grounding algorithms inhibit reduction to the ground case.
I Remedy: Restrict the type of optimizations and give up completeness

of IR computation (i.e., we do not always find an IR).

4. Trans-Unit (TU-)Propagation

Existing Evaluation Approaches and Observations:
I Grounding P as a whole needs exponentially many external atom calls.
I Program splitting based on acyclic evaluation graph [Eiter et al., 2016]

inhibits effective conflict-driven learning.
I ⇒ There is either a grounding or a solving bottleneck.

Example

I Form a committee of employees; some pairs of persons are forbidden.
I Its competences depend nonmonotonically on the persons involved.
I Constraints define the competences the committee should have.

P = {r1 : in(X) ∨ out(X)← person(X).

r2 : ← in(X), in(Y), conflict(X, Y).

r3 : comp(X)← &competences[in](X).

r4 : ← not comp(technical), not comp(financial).}

P1 = {r1, r2} P2 = {r3, r4}

add answer set as input atoms

detect inconsistencyinconsistency reason R
compute

add as constraint cR

TU-Propagation: Propagate an IR R = (R+,R−) of a later program
component as constraint cR =← R+, {not a | a ∈ R−} to predecessors.

5. Implementation and Experiments

We implemented tu-propagation in the DLVHEX solver and compared it to:
I monolithic evaluation as a single program (grounding bottleneck),
I splitting approach (solving bottleneck).

We considered several benchmark problems, including:

1. Configuration Problem:
size monolithic splitting tu-propagation

total ground solve total ground solve total ground solve
8 0.20 (0) 0.05 0.04 0.49 (0) 0.15 0.20 0.19 (0) <0.005 0.02

10 0.45 (0) 0.22 0.10 2.17 (0) 0.81 1.11 0.33 (0) <0.005 0.05
12 1.51 (0) 0.90 0.44 9.50 (0) 3.59 5.17 0.86 (0) 0.01 0.10
14 4.84 (0) 3.68 0.82 44.23 (0) 16.58 24.68 1.48 (0) 0.02 0.20
16 19.52 (0) 16.55 2.08 217.46 (0) 86.17 119.93 3.80 (0) 0.07 0.57
18 143.09 (3) 68.89 10.89 300.00 (10) 122.23 165.44 44.76 (1) 0.43 6.29
20 300.00 (10) 300.00 n/a 300.00 (10) 126.40 162.73 37.44 (0) 0.36 3.44
22 300.00 (10) 300.00 n/a 300.00 (10) 122.41 165.68 224.83 (6) 1.03 11.74

2. Diagnosis Problem:
size monolithic splitting tu-propagation

total ground solve total ground solve total ground solve
5 0.46 (0) 0.15 0.25 0.16 (0) 0.05 0.02 0.36 (0) 0.04 0.04

10 10.16 (0) 5.94 5.08 2.86 (0) 2.29 0.67 6.38 (0) 1.01 0.89
15 276.19 (5) 258.17 40.11 121.73 (1) 96.76 22.94 105.43 (3) 15.06 13.15
20 300.00 (10) 300.00 n/a 294.97 (9) 253.97 53.55 169.56 (5) 26.54 18.64
25 300.00 (10) 300.00 n/a 300.00 (10) 270.64 45.78 187.90 (5) 29.84 18.08
30 300.00 (10) 300.00 n/a 300.00 (10) 273.50 42.07 226.51 (6) 34.92 20.24
35 300.00 (10) 300.00 n/a 300.00 (10) 276.70 37.01 299.71 (9) 44.17 23.71

6. Conclusion and Outlook

Main results:
I Novel evaluation algorithm for HEX-programs and implementation.
I Experiments show a significant (up to exponential) speedup.

Future work:
I Generalization of tu-propagation from IRs to other learned nogoods.
I Exploit structure of the program to improve IR computation.
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