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Motivation
HEX-Programs

I Extend ASP by external sources:

Problem
HEX-

Program

Reasoner
External
Sources

Solution(s) Answer
Sets

A HEX-program consists of rules of form
a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.

Example (external atom): p(X,Y)← url(U),&rdf [U](X,Y,Z)

Formally:
An external atom is of the form &p[q1, . . . , qk](t1, . . . , tl), where
p . . . external predicate, qi . . . predicates or constants, tj . . . terms.

Semantics given by a 1 + k + l-ary Boolean oracle function f&p:
I |= &p[q1, . . . , qk](t1, . . . , tl) if f&p(I, q1, . . . , qk, t1, . . . , tl) = T
(and I 6|= &p[q1, . . . , qk](t1, . . . , tl) otherwise).
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Motivation

Implementation

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex

I Based on GRINGO and CLASP from the Potassco suite.
I Supported platforms: Linux-based, OS X, Windows.
I External sources are implemented as plugins using a plugin API

(available for C++ or Python).

This talk: presentation of
I novelties done in the last three years and
I current state of the system.

http://www.kr.tuwien.ac.at/research/systems/dlvhex
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From Black-box to Grey-box

Previous Evaluation Bottleneck
I External sources were seen as black boxes.
I Behavior under an interpretation did not allow for drawing

conclusions about other interpretations.
I Algorithms must be very general⇒ room for optimizations limited.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!
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Specifying Properties

How to specify them?
I During development of external source using the plugin API.

I As part of the HEX-program using property tags 〈 · · · 〉.
Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .
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Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)
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Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.
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Python Programming Interface
More convenient interface
Previously only C++ support, but Python preferred by many developers:

I No overhead due to makefiles, compilation, linking, etc.
I High-level features.
I Negligible overhead compared to plugins implemented in C++.

Example
Program

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}
compute the strongly connected component of a node s in a graph.

Implementation of &edge[X](Y):

def edge ( x ) :
graph = ( ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 3 ) ) # s i m p l i f i e d implementat ion
for edge in graph : # search f o r out−edges of node x

i f edge [0 ]== x . i n tVa lue ( ) :
d lvhex . output ( ( edge [ 1 ] , ) ) # output edge t a r g e t

def r e g i s t e r ( ) :
prop = dlvhex . ExtSourceProper t ies ( ) # in form dlvhex about
prop . addFiniteOutputDomain ( 0 ) # f i n i t e n e s s o f the graph
dlvhex . addAtom ( ” edge ” , ( d lvhex .CONSTANT, ) , 1 , prop )
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Further Improvements

Availability

I Pre-compiled binaries for major platforms available
(previously distributed only as sourcecode).

I Online demo:
http://www.kr.tuwien.ac.at/research/systems/
dlvhex/demo.php.

Interoperability

I Support for all features of the ASP-Core-2 standard.
I Support for input/ouput in CSV format

(interoperability with tools and spreadsheet programs).

http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
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Applications of HEX-Programs

I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)
I . . .
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Conclusion

dlvhex
Two main categories of improvements:

Exploiting external source properties

I Plugin developer or HEX-programmer tags guaranteed properties.
I Algorithms exploit these properties where applicable.
I User does not need to know how they are exploited to benefit.
I Used for efficiency improvements and language flexibility.

Usability and System Improvements

I New programming interface (API) for Python-based plugins.
I Binaries for Linux, OS X and Windows available.
I Online demo allows for testing in the browser.
I Support for ASP-Core-2 standard and for input/output in CSV format.

http://www.kr.tuwien.ac.at/research/systems/dlvhex

http://www.kr.tuwien.ac.at/research/systems/dlvhex
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