
1/19

dlvhex
The DLVHEX System for Knowledge
Representation: Recent Advances

(System Description)

Christoph Redl

redl@kr.tuwien.ac.at

October 18, 2016

mailto:redl@kr.tuwien.ac.at

2/19

Outline

Motivation

Exploiting External Source Properties

Usability and System Features

Applications of HEX-Programs

Conclusion

3/19

Motivation
HEX-Programs

I Extend ASP by external sources:

Problem
HEX-

Program

Reasoner
External
Sources

Solution(s) Answer
Sets

A HEX-program consists of rules of form
a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.

Example (external atom): p(X,Y)← url(U),&rdf [U](X,Y,Z)

Formally:
An external atom is of the form &p[q1, . . . , qk](t1, . . . , tl), where
p . . . external predicate, qi . . . predicates or constants, tj . . . terms.

Semantics given by a 1 + k + l-ary Boolean oracle function f&p:
I |= &p[q1, . . . , qk](t1, . . . , tl) if f&p(I, q1, . . . , qk, t1, . . . , tl) = T
(and I 6|= &p[q1, . . . , qk](t1, . . . , tl) otherwise).

3/19

Motivation
HEX-Programs

I Extend ASP by external sources:

Problem
HEX-

Program

Reasoner
External
Sources

Solution(s) Answer
Sets

A HEX-program consists of rules of form
a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.
Example (external atom): p(X,Y)← url(U),&rdf [U](X,Y,Z)

Formally:
An external atom is of the form &p[q1, . . . , qk](t1, . . . , tl), where
p . . . external predicate, qi . . . predicates or constants, tj . . . terms.

Semantics given by a 1 + k + l-ary Boolean oracle function f&p:
I |= &p[q1, . . . , qk](t1, . . . , tl) if f&p(I, q1, . . . , qk, t1, . . . , tl) = T
(and I 6|= &p[q1, . . . , qk](t1, . . . , tl) otherwise).

3/19

Motivation
HEX-Programs

I Extend ASP by external sources:

Problem
HEX-

Program

Reasoner
External
Sources

Solution(s) Answer
Sets

A HEX-program consists of rules of form
a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.
Example (external atom): p(X,Y)← url(U),&rdf [U](X,Y,Z)

Formally:
An external atom is of the form &p[q1, . . . , qk](t1, . . . , tl), where
p . . . external predicate, qi . . . predicates or constants, tj . . . terms.

Semantics given by a 1 + k + l-ary Boolean oracle function f&p:
I |= &p[q1, . . . , qk](t1, . . . , tl) if f&p(I, q1, . . . , qk, t1, . . . , tl) = T
(and I 6|= &p[q1, . . . , qk](t1, . . . , tl) otherwise).

4/19

Motivation

Implementation

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex

I Based on GRINGO and CLASP from the Potassco suite.
I Supported platforms: Linux-based, OS X, Windows.
I External sources are implemented as plugins using a plugin API

(available for C++ or Python).

This talk: presentation of
I novelties done in the last three years and
I current state of the system.

http://www.kr.tuwien.ac.at/research/systems/dlvhex

4/19

Motivation

Implementation

dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex

I Based on GRINGO and CLASP from the Potassco suite.
I Supported platforms: Linux-based, OS X, Windows.
I External sources are implemented as plugins using a plugin API

(available for C++ or Python).

This talk: presentation of
I novelties done in the last three years and
I current state of the system.

http://www.kr.tuwien.ac.at/research/systems/dlvhex

5/19

Outline

Motivation

Exploiting External Source Properties

Usability and System Features

Applications of HEX-Programs

Conclusion

6/19

From Black-box to Grey-box

Previous Evaluation Bottleneck
I External sources were seen as black boxes.
I Behavior under an interpretation did not allow for drawing

conclusions about other interpretations.
I Algorithms must be very general⇒ room for optimizations limited.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!

6/19

From Black-box to Grey-box

Previous Evaluation Bottleneck
I External sources were seen as black boxes.
I Behavior under an interpretation did not allow for drawing

conclusions about other interpretations.
I Algorithms must be very general⇒ room for optimizations limited.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!

6/19

From Black-box to Grey-box

Previous Evaluation Bottleneck
I External sources were seen as black boxes.
I Behavior under an interpretation did not allow for drawing

conclusions about other interpretations.
I Algorithms must be very general⇒ room for optimizations limited.

Idea
I Developers of external sources and/or implementer of HEX-program

might have useful additional information.
I Provide a (predefined) list of possible properties of external sources.
I Let the developer and/or user specify which properties are satisfied.
I Algorithms exploit them for various purposes, most importantly:

I efficiency improvements and
I language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.

I As part of the HEX-program using property tags 〈 · · · 〉.
Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

7/19

Specifying Properties

How to specify them?
I During development of external source using the plugin API.
I As part of the HEX-program using property tags 〈 · · · 〉.

Example:
&greaterThan[p, 10]() is true if

∑
p(c)∈I c > 10.

It is monotonic for positive integers.

Available properties (examples)
I Functionality: &add[X,Y](Z)〈functional〉

Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

I Well-ordering: &decrement[X](Z)〈wellordering 0 0〉
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

I Three-valued semantics:
The external source can be evaluated under partial interpretations.

I . . .

8/19

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)

8/19

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)

8/19

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving

I ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).

I Additional nogoods learned from conflicting interpretations.
I HEX-solver further learns nogoods from external sources which

describe parts of their behavior to avoid future wrong guesses.

Example

I We evaluate &diff [p, q](X) under I = {p(a), q(b)}.
I It is true for X = a (and false otherwise), i.e., I |= &diff [p, q](a).
I ⇒ Learn nogood N = {p(a),¬q(a),¬p(b),q(b),¬&diff [p, q](a)}.

Exploiting Properties

I Known properties used to shrink nogoods to their essential part.
I Example: &diff [p, q](X) is monotonic in p:

Shrink above nogood N to N′ = {p(a),¬q(a), q(b),¬&diff [p, q](a)}.
(If p(b) turns to true, &diff [p, q](a) is still true⇒ ¬p(b) not needed.)

9/19

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

9/19

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

9/19

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!

I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

9/19

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

9/19

Exploiting Properties for Language Flexibility
Grounding and Safety

I External atoms may introduce new constants: value invention.
I ⇒ Can lead to programs which cannot be finitely grounded.

Example

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}

Solution: Syntactic Restrictions (Safety)

I Traditionally: strong safety; essentially no recursive value invention!
I But: overly restrictive.

Exploiting Properties

I Properties may allow for identifying finite groundability even in
presence of recursive value invention (in some cases).

I Example:
Known finiteness of the graph above allows for establishing safety.

10/19

Outline

Motivation

Exploiting External Source Properties

Usability and System Features

Applications of HEX-Programs

Conclusion

11/19

Python Programming Interface
More convenient interface
Previously only C++ support, but Python preferred by many developers:

I No overhead due to makefiles, compilation, linking, etc.
I High-level features.
I Negligible overhead compared to plugins implemented in C++.

Example
Program

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}
compute the strongly connected component of a node s in a graph.

Implementation of &edge[X](Y):

def edge (x) :
graph = ((1 , 2) , (1 , 3) , (2 , 3)) # s i m p l i f i e d implementat ion
for edge in graph : # search f o r out−edges of node x

i f edge [0]== x . i n tVa lue () :
d lvhex . output ((edge [1] ,)) # output edge t a r g e t

def r e g i s t e r () :
prop = dlvhex . ExtSourceProper t ies () # in form dlvhex about
prop . addFiniteOutputDomain (0) # f i n i t e n e s s o f the graph
dlvhex . addAtom (” edge ” , (d lvhex .CONSTANT,) , 1 , prop)

11/19

Python Programming Interface
More convenient interface
Previously only C++ support, but Python preferred by many developers:

I No overhead due to makefiles, compilation, linking, etc.
I High-level features.
I Negligible overhead compared to plugins implemented in C++.

Example
Program

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y)← scc(X),&edge[X](Y).

}
compute the strongly connected component of a node s in a graph.

Implementation of &edge[X](Y):

def edge (x) :
graph = ((1 , 2) , (1 , 3) , (2 , 3)) # s i m p l i f i e d implementat ion
for edge in graph : # search f o r out−edges of node x

i f edge [0]== x . i n tVa lue () :
d lvhex . output ((edge [1] ,)) # output edge t a r g e t

def r e g i s t e r () :
prop = dlvhex . ExtSourceProper t ies () # in form dlvhex about
prop . addFiniteOutputDomain (0) # f i n i t e n e s s o f the graph
dlvhex . addAtom (” edge ” , (d lvhex .CONSTANT,) , 1 , prop)

12/19

Further Improvements

Availability

I Pre-compiled binaries for major platforms available
(previously distributed only as sourcecode).

I Online demo:
http://www.kr.tuwien.ac.at/research/systems/
dlvhex/demo.php.

Interoperability

I Support for all features of the ASP-Core-2 standard.
I Support for input/ouput in CSV format

(interoperability with tools and spreadsheet programs).

http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

13/19

Outline

Motivation

Exploiting External Source Properties

Usability and System Features

Applications of HEX-Programs

Conclusion

14/19

Applications of HEX-Programs

I Multi-context Systems (interconnection of knowledge-bases)
I DL-programs (integration of ASP with ontologies)
I Constraint ASP (programs with constraint atoms)
I Physics simulation (e.g. AngryBirds agent)
I Route planning (possibly semantically enriched)
I Robotics applications (planning)
I ACTHEX (programs with action atoms)
I . . .

15/19

Outline

Motivation

Exploiting External Source Properties

Usability and System Features

Applications of HEX-Programs

Conclusion

16/19

Conclusion

dlvhex
Two main categories of improvements:

Exploiting external source properties

I Plugin developer or HEX-programmer tags guaranteed properties.
I Algorithms exploit these properties where applicable.
I User does not need to know how they are exploited to benefit.
I Used for efficiency improvements and language flexibility.

Usability and System Improvements

I New programming interface (API) for Python-based plugins.
I Binaries for Linux, OS X and Windows available.
I Online demo allows for testing in the browser.
I Support for ASP-Core-2 standard and for input/output in CSV format.

http://www.kr.tuwien.ac.at/research/systems/dlvhex

http://www.kr.tuwien.ac.at/research/systems/dlvhex

17/19

References I

Bögl, M., Eiter, T., Fink, M., and Schüller, P. (2010).
The MCS-IE system for explaining inconsistency in multi-context
systems.
In In Proceedings of the Twelfth European Conference on Logics in
Artificial Intelligence (JELIA 2010), pages 356–359.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Roland Kaminski, T. K.,
Leone, N., Ricca, F., and Schaub, T. (2013).
ASP-Core-2 Input Language Format.

Eiter, T., Fink, M., Krennwallner, T., and Redl, C. (2016a).
Domain expansion for asp-programs with external sources.
Artif. Intell., 233:84–121.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. (2014).
Efficient HEX-program evaluation based on unfounded sets.
Journal of Artificial Intelligence Research, 49:269–321.

18/19

References II

Eiter, T., Kaminski, T., Redl, C., and Weinzierl, A. (2016b).
Exploiting partial assignments for efficient evaluation of answer set
programs with external source access.
In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence (IJCAI 2016), July 9–15, 2016, New York City,
New York, USA.

Eiter, T., Krennwallner, T., Prandtstetter, M., Rudloff, C., Schneider,
P., and Straub, M. (2016c).
Semantically enriched multi-modal routing.
Int. J. Intelligent Transportation Systems Research, 14(1):20–35.

Erdem, E., Patoglu, V., and Schüller, P. (2016).
A Systematic Analysis of Levels of Integration between High-Level
Task Planning and Low-Level Feasibility Checks.
AI Communications, IOS Press.

19/19

References III

Ianni, G., Calimeri, F., Germano, S., Humenberger, A., Redl, C.,
Stepanova, D., Tucci, A., and Wimmer, A. (2016).
Angry-HEX: an artificial player for angry birds based on declarative
knowledge bases.
IEEE Transactions on Computational Intelligence and AI in Games.

Zirtiloglu, H. and Yolum, P. (2008).
Ranking semantic information for e-government: complaints
management.
In Duke, A., Hepp, M., Bontcheva, K., and Vilain, M. B., editors,
Proceedings of the First International Workshop on
Ontology-supported Business Intelligence, OBI 2008, Karlsruhe,
Germany, October 27, 2008, volume 308 of ACM International
Conference Proceeding Series, page 5. ACM.

	Motivation

