
The ABC Benchmarking System

User Manual

INFSYS Research Report 1843-16-01
January 8, 2016

Christoph Redl

Institut für Informationssysteme,
Abteilung Wissensbasierte Systems,

Technische Universität Wien, Austria
redl@kr.tuwien.ac.at

1 Introduction

This paper describes the ABC benchmarking system for automated benchmarking on top of
HTCondor, i.e., comparing systems or system configurations to each other. The system is in-
tended to be easy to use yet customizable to a large variety of benchmark problems. Although
the system has originally been developed for the hex-program reasoner dlvhex1, it was kept
generic such that it can be used for experiments with other systems as well. The user is required
to provide no more than one script for each benchmark problem, which essentially specifies
problem-specific parameters and then delegates the call to generic scripts provided by this sys-
tem.

The ABC system is intended to run benchmark instances with multiple system configurations
and extract benchmark parameters (such as grounding and solving time, number of answer sets)
for each. It supports automated scheduling of instances, parameter extraction, aggregating the
parameters, generating a table in text or LATEX format, and comparison of the results with
previous runs. For scheduling benchmark instances, the system supports sequential runs using
shell scripts only, or the HTCondor system2.

2 Basic Usage of the System

The system is implemented as a set of shell scripts which should work on most Linux shells; at
least the bash shell. The basic functions of the system do not have any further requirements,
only features such as scheduling on top of HTCondor or aggregation of the results (see below)
depend on third-party software. All scripts of the ABC system are collected in the directory
scripts, to which we refer in the following whenever we discuss shell scripts. It is suggested to
add the scripts directory to the search path for executables. 3

2.1 Specifying a Benchmark

In order to use the system for a concrete benchmark problem, the file run template.sh has to be
copied to run.sh within the benchmark problem’s directory. The file needs then to be adopted
to the problem by modifying the lines marked with (1), (2) and (3) as follows.

(1) The loop condition which iterates over the instances of the benchmark needs to be con-
figured. Usually this condition will iterate over files, but sometimes also an iteration in a
certain range can be useful.

Example: "instances/*.hex"

iterates over all .hex files in directory instances.

Example: "{1..20}"
iterates over the integers from 1 to 20.

(2) Here, the commands (e.g. calls of a reasoner or another software systems) to be compared
should be entered in a semicolon-separated list.

When comparing entirely different systems, the configurations specified at (2) should con-
tain the command strings including the executable name and all options.

Example: "dlv;clasp;dlv -n=1;clasp -n=1"

compares DLV and clasp runs for computing
all and the first (-n=1) answer set, respectively.

If all configurations compare the same system (e.g. dlvhex) but with different options,
then as a shortcut the static part can (but does not need to) be part of the string at (3)
(see below), while (2) may contain only the changing parts of the command.

1http://www.kr.tuwien.ac.at/research/systems/dlvhex
2http://research.cs.wisc.edu/htcondor
3While the ABC system is generic and most scripts are useful for benchmarks with any software system, few

are specific for the dlvhex reasoner, which are easily recognizable by the prefix dlvhex in their filenames.

1

Example: "flpcheck=explicit;--flpcheck=ufs"

compares two dlvhex configurations, where the actual
reasoner call is specified at (3) (see below).

(3) Here, the static part of the actual shell command for a reasoner call needs to be inserted
(i.e., without configuration-specific options).

The tokens INST and CONF4 will be substituted by the instance name and the current
configuration, respectively.

If the string at (2) contains full commands, then the string at (3) should be "CONF INST".
Since CONF in (3) will be substituted by the elements from the configuration string before
executing the command, this will produce complete reasoner calls.

Example: Let "dlv;clasp;dlv -n=1;clasp -n=1" be the
configuration string at (2).
Then the string "CONF INST" at (3) will evaluate:
dlv INST

clasp INST

dlv -n=1 INST

clasp -n=1 INST

for all instances INST.

If the string at (2) contains only the changing part of the command, then the static part
must contained in the string at (3).

Example: Let "flpcheck=explicit;--flpcheck=ufs" be the
configuration string at (2).
Then the string "dlvhex2 -n=1 CONF INST" at (3) will evaluate:
dlvhex2 -n=1 --flpcheck=explitit INST

dlvhex2 -n=1 --flpcheck=ufs INST

for all instances INST.

Additionally the these mandatory customizations, a custom benchmark name might be spec-
ified at (4); by default it is extracted from the directory name. Moreover, the aggregation of
the results (5) and the extraction of benchmark parameters from the runs needs (6) can also be
customized. Section 3 is a good starting point to learn more about these parameters.

As stated above, it is convenient to add the path to the scripts directory to the PATH variable.
In this case, scheduling the benchmark instances is possible by simply calling ./run.sh, otherwise
the path to this directory needs to be passed as parameter to run.sh (cf. Section 3.1).

2.2 Shortcut

The beginnings of run.sh scripts are in many cases exactly like in run template.sh. Provided
that the benchmark script directory is the PATH variable, the static part can be directly imported
by

4Alternatively to INST and CONF, the meta-variables \$instance and \$config within the command string can
be used (e.g. dlvhex2 -n=1 \$config \$instance); note the backslash in front of the $ characters which makes
sure that the variables are not immediately resolved but are part of the string and are to be resolved later when
an individual instance and configuration is to be inserted.

2

source run header.sh

while only the definitions of (1), (2) and (3) (and optionally (4), (5) and (6)) at the bottom need
to be specified; for details we refer to the comments in run template.sh.

Note that the import of source run header.sh also defines the aliases all=0, instance=$2,
to=$3, bmscripts=$4 if $1 is single, and all=1, to=$2, bmscripts=$3 otherwise (cf. Sec-
tion 3.1). Moreover, mydir will be set to the absolute path of the directory where the current
run.sh script is located and req to the requirements file to be used. These variables might be
used in the benchmark-specific definitions.

3 System Architecture and Customization

The basic system architecture is visualized in Figure 1. There is a single benchmark-specific file
run.sh, which is usually stored in the benchmark’s directory (different from the scripts direc-
tory of the ABC system). This file can be used for scheduling all instances and for evaluating a
single instance (controlled by parameters). Normally, the user calls this file without any param-
eters, which schedules all instances (due to the default values for the parameters). Internally,
run.sh uses scripts from the benchmark scripts directory (runinsts.sh and runconfigs.sh;
these are not benchmark-specific) to schedule all instances for all configurations which are to be
compared. In basic settings, these scripts do not need to be used manually as run template.sh

abstracts from them (if run header.sh is used, the calls are not even visible in run.sh). How-
ever, we still describe the details here as advanced benchmarks might need to customize the
calls.

The script runinsts.sh makes callbacks to run.sh for evaluating single instances (appropri-
ate parameters make this script run a single instance rather than all instances in the initial call).
Note that the two run.sh occurrences in Figure 1 refer to a single physical file (symbolized by
their connection).

For each finished instance, the script system will call an output builder (can be customized at
(6) in run template.sh) which extracts the actual benchmark parameters the user is interested
in, e.g. time information and number of answer sets, from the reasoner output (standard output
and standard error). The result is stored in a separate result file for each instance. When all
instances have finished, the script system further calls an aggregation script (can be customized
at (5) in run template.sh), which generates the final benchmark table from the results of indi-
vidual instances. The script system provides a standard output builder outputbuilder.sh and
a standard aggregation script aggregateresults.sh, which are good for many benchmark prob-
lems, but customization is possible by providing alternative scripts (which need to be specified
within run.sh as described in Sections 3.2 and 3.3).

The following subsections describe the scripts of the benchmark system in more detail. Note
that except for run template.sh, which serves as an example for writing a benchmark-specific
file run.sh, none of these files need to be modified by the user.

3.1 run template.sh

This file is an example for an implementation of run.sh. It specifies how to execute a single
instance under various configurations and how to iterate over the instances of the benchmark.

The parameters mainly specify whether to execute all instances of the benchmark (using
further scripts from the ABC benchmark system) or a single instance. Note that this script is
(indirectly) recursively called: usually, the first call is to evaluate all instances, which internally
calls runinsts.sh, which in turn makes another (recursive) call of run.sh for evaluating every

3

User Final Benchmark Table

run.sh (all)

runinsts.sh Aggregation Script

run.sh (single) Instance Results

runconfigs.sh Output Builder

Reasoner
(e.g. dlvhex)

Reasoner Outputs
and Return Values

benchmark-specific

optional customization

static

control flow

data flow

Figure 1: ABC Benchmarking System Architecture

4

single instance. A single instance is then usually evaluated under a number of configurations, for
which the script runconfigs.sh is available.

However, this recursion is managed by the benchmark system. The user only needs to adopt
run.sh as described in Section 2.

Parameters:

$1: (optional) all, allseq or single, default is all.

– If $1 is all then the instances are evaluated in parallel using HTCondor (which, obvi-
ously, needs to be installed in this case). There are no further mandatory parameters.

$2: (optional) Timeout in seconds, default is 300.

$3: (optional) Directory with the benchmark scripts.

– If $1 is allseq then the instances are evaluated sequentially. There are no further
mandatory parameters.

$2: (optional) Timeout in seconds, default is 300.

$3: (optional) Directory with the benchmark scripts.

– If $1 is single then a single instance is evaluated. There are three more parameters,
one of which is optional:

$2: Instance name.

$3: Timeout in seconds.

$4: (optional) Directory with the benchmark scripts.

3.2 runinsts.sh

This script implements a loop over instances and schedules them for execution, which is done
either sequentially or in parallel using HTCondor. It is usually called from run.sh of a concrete
benchmark problem.

The parameters of the script control the loop condition and the command used for executing
a single instance. This script will also call the aggregation script (cf. Section 3.5) after execution
of all instance to produce the final benchmark table.

Parameters:

$1: (optional) Instance loop condition, default is *.hex.

$2: (optional) Single benchmark command, default is ./run.sh.

$3: (optional) Working directory, default is $PWD.

$4: (optional) Timeout in seconds, default is 300.

$5: (optional) Custom aggregation script, default is aggregateresults.sh in the scripts

directory of the ABC system. Custom aggregation scripts need to behave as described in
Section 3.5.

$6: (optional) Name of the benchmark, default is the name of the working directory.

$7: (optional) Requirements file (cf. Section 3.6).

When the script makes a call for executing a single benchmark instance as specified by $2, it
will run

5

$2 single INST TO SCRIPTS,

where INST is the current instance (an element of the loop specified in $1), TO is the timeout
specified in $4 and SCRIPTS is the path of the benchmark scripts directly.

3.3 runconfigs.sh

This script implements the evaluation of a single instance under various configurations. It is
usually called from run.sh of a concrete benchmark problem that needs to evaluate a single
instance.

The parameters control the configurations to be compared and the name of an output builder.

Parameters:

$1: Command for executing an instance, which may contain the constant CONF as a placeholder
for options to be inserted and INST as a placeholder for the instance.

$2: A semicolon-separated list of configuration strings to be substituted for CONF in $1.

$3: Instance to be inserted in the command string in $1 for INST.

$4: Timeout in seconds.

$5: (optional) Custom output builder name of a script to build the output of a run, which gets
the parameters, default is timeoutputbuilder.sh in the scripts directory of the ABC
system. A custom output builder needs to behave as described in Section 3.4.

3.4 Output Builders

An output builder is a script which extracts the actual benchmark parameters from a run. This
is the information the user is interest in. Usually it includes timing information (e.g. grounding
and solving time), the number of answer sets, etc.

An output builder gets the following parameters:

$1: Return value of the reasoner call (0 if success, 124 if timeout, any other value 6= 0 if failed).

$2: File with the overall runtime of the reasoner call.

$3: File with standard output of the reasoner call.

$4: File with standard error of the reasoner call.

The output builder needs to return 0 if it succeeded (note that the output builder can succeed
in extracting information even if the reasoner failed!) and 6= 0 if the output builder itself failed.

It further needs to write a space-separated list of the actual benchmark parameters to stan-
dard output. This is usually a list of numbers to represent timing information, timeouts, number
of answer sets, etc. For time values, the special values --- and === for representing timeouts and
memory outs, respectively, are supported. If --- or === is output for some columns, the output
builder can still return 0, i.e., output building counts as succeeded. In contrast, if the output
builder completely fails to extract some information, it should output FAIL for the according
column and return 6= 0; detailed error descriptions are allowed on standard error.

The benchmark script directory provides the following predefined output builders:

• timeoutbuilder.sh extracts the overall time (one time column and a column 0/1 for
tagging successful/timeout instances).

6

• gstimeoutbuilder.sh extracts the overall time, the grounding and the solving time (each
accompanied by a column 0/1 for tagging successful/timeout instances).

• ansctimeoutputbuilder.sh extracts the overall time (accompanied by a column 0/1 for
tagging successful/timeout instances) and the number of answer sets.

• debugoutbuilder.sh is the same as timeoutputbuilder.sh but includes also stdout and
stderr of the command in the stderr of the benchmark results.

A custom output builder can be specified at (6) in run template.sh (which is internally
passed to runconfigs.sh, cf. Section 3.3).

3.5 Aggregation Scripts

An aggregation script generates the final output of a benchmark as a table in text format, given
the results of individual instances. This step requires the statistics system R5 to be installed.
As standard input the file gets the concatenation of the results for all instances produced by the
output builder (cf. Section 3.4).

In the input, column 1 is interpreted as instance size. The script is expected to aggregate
over all instances of the same size and to output a single row for each instances size.

Note that a custom aggregation script only needs to read from standard input and write
to standard output and is not expected to interpret any parameters. However, the default
aggregation script aggregateresults.sh in the scripts directory of the ABC system provies
some optional parameters, which allow in many cases to write custom aggregation scripts that
simply delegate the call to the default one with appropriate parameters.

Parameters:

$1: (optional) Timeout value (in seconds) to be used for --- and === instances.

$2,$3: (optional) Start position and length of instance size information in the instance filenames
(index origin 0), or 0 and 0 for auto-detection, default is auto-detection.

$4: (optional) Comma-separated list of column indexes to compute means.

$5: (optional) Comma-separated list of column indexes to compute maxima.

$6: (optional) Comma-separated list of column indexes to minima.

$7: (optional) Comma-separated list of column indexes to sums.

The default for $4-$7 is to compute means of odd and sums of even columns (interpreted as
times and timeouts, respectively). A customized aggregation script can delegate the call to the
default script aggregateresults.sh with appropriate parameters.

A custom aggregation script can be specified at (5) in run template.sh (which is internally
passed to runinsts.sh, cf. Section 3.2).

5https://www.r-project.org

7

3.6 Requirements File

The requirements file specifies the hardware resources to be allocated for the benchmark run.
An example is available in req template.

The file is roughly a resource specification to be added to HTCondor job files6. In addition,
the following specification may be part of a resource file:

• # sequential

Evaluate all instances in sequence (not using HTCondor).

• # ExtendedNotification = mail@address.com

Send the benchmark results by e-mail.

Remark: The leading # is important to make sure that HTCondor ignores these lines as they
are not valid HTCondor syntax. However, the script system will still interpret them.

The script system will use as requirements file the first one of the following which exists:

1. The file passed as argument $7 to runinsts.sh.

2. The file req in the same directory as the run.sh script.

3. The file req in the scripts directory of the ABC system.

4 Advanced Features

This section discusses the advanced features of the benchmark system, which are needed for table
formatting and comparison of multiple benchmark runs.

4.1 Table Editing

Multiple tables generated by the benchmark system can be merged by calling

mergetables.sh table1.dat table2.dat ...,

where table1.dat, table2.dat, . . . are tables with the same number of rows. Each row of the
resulting table will be the concatenation of the respective rows of the input tables, keeping the
order of the tables specified in the call.

A table table.dat (which can also be a merged or previously projected table) can be pro-
jected to certain columns by calling

cat table.dat | colselect.sh i1 i2 ...,

where i1, i2, . . . are 1-based column indexes which specify the columns to select. The same index
can occur multiple times. The order of the output columns corresponds to the order specified
on the command line.

6http://research.cs.wisc.edu/htcondor/

8

4.2 Generating LATEX-Tables

A benchmark table table.dat in text format may be sent (as standard input) to the script
tolatextable.sh to produce valid LATEX code. The script can produce the table header using
different LATEX packages or the table body only.

Parameters:

$1: (optional) LATEX package to use for creating table header.
Valid values: none, standard, booktabs, default is none (only table body)

$2: (optional) Pattern how to format each line
The string needs to consist of constant parts and expressions of form ${val[i]} to refer
to the value of the i-th colum or ${fill[i]} to refer to a sequence of double-tilde (∼∼)
required to align this column.
Default:
${val[0]} ${fill[1]}(${val[1]}) & ←↩

${val[2]} ${fill[3]}(${val[3]}) & ...

(pairs of columns are put in the same cell with even columns being interpreted as times
and odd ones as timeouts which are put in parentheses)
The pattern needs to be specified without final line break (\\).

$3: (optional) subst (as a constant string)
If specified, then $2 supports a more convenient syntax: ${val[i]} and ${fill[i]} can
be written as val[i] and fill[i], respectively.

4.3 Running Multiple Benchmarks

The system supports to run multiple benchmarks and a final script for post-processing with a
single call. To this end, the script multibenchmark.sh should be used.

Parameters:

$1: A file which defines the benchmarks to be executed. Each line of this file is of form

BENCHMARKNAME=PATH,

where PATH needs to point to the run.sh script of the according benchmark.

$2: Output directory for the overall benchmark results.

$3: Requirements file to be used for all benchmarks (cf. Section 3.6).

$4: (optional) Either script to be executed after benchmarks have been finished (working di-
rectory will be $2), or a directory with reference benchmark results.

After completion of all benchmarks, $4 will be called (if existing); it gets the names of all
benchmarks as parameters and is intended to compare the new results to reference results.

9

4.4 Comparison to Previous Results

The benchmark system supports to compare benchmark results to previous runs. To this end,
multibenchmark.sh supports to specify in $4 a directory with reference output. It is expected
that for each benchmark with name BM, there is a reference output in $4/BM/BM.dat.

By default, the comparison procedure checks if there is an instance and configuration with a
difference in runtime of more than 5 seconds and more than 10%. However, this behavior can be
overridden for each benchmark by providing a custom comparison file compare.sh in the same
directory as the run.sh file of the according benchmark.

Script compare.sh gets as parameters:

$1: File (table) with the current benchmark results.

$2: File (table) with the reference benchmark results.

It is expected to return 0 if there were no significant changes, 1 if comparison failed, and 2 if
there were significant changes.

4.5 Running the dlvhex Standard Benchmarks

As stated above, the ABC system was originally developed for the dlvhex reasoner. While the
remaining part of this manual is generic and useful for benchmarks with any system, this subsec-
tion is specific for benchmarks with dlvhex. The ABC repository is automatically embedded in
the dlvhex benchmarks repository; the scripts directory of the ABC system is then mapped
to benchmarks/scripts.

The script dlvhex runall.sh allows for running all dlvhex standard benchmarks which are
currently available, provided that the dlvhex core and all required plugins are installed.

To prepare this process, the script dlvhex setup.sh downloads and installs all required
dlvhex software packages from scratch.

Parameters:

$1: Destination directory where all software packages are built and installed and where bench-
mark results are stored.

$2: (optional) URL of the benchmark instances, default is a Web server at Vienna University
of Technology.

$3: (optional) Custom options for configuring dlvhex and its plugins.

$4: (optional) Custom options for building dlvhex and its plugins.

$5: (optional) Custom requirements file, cf. Section 3.6.

The whole process from checkout to the final benchmark tables can therefore be automated
by calling

dlvhex setup.sh PATH

for some PATH to prepare the benchmarks, and then calling

PATH/benchmarks/scripts/dlvhex runall.sh

to run them.

10

