
Automated Benchmarking of KR-Systems

Christoph Redl

redl@kr.tuwien.ac.at

November 28, 2016

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 1 / 16

mailto:redl@kr.tuwien.ac.at

Motivation
Benchmarking is a time-consuming task

Benchmarking is an important part of scientific work on solving techniques for
KR systems.

The implementation of hand-crafted scripts for each benchmark problem is
cumbersome.

Most benchmarks are similar such that the process appears to be largely
automatable.

Issues

However, automating the process is not straightforward.
While there are similarities between benchmarks, details may differ:

Systems/configurations to compare.
Input/Output of such systems.
Values to measure.
. . .

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 2 / 16

Motivation
Benchmarking is a time-consuming task

Benchmarking is an important part of scientific work on solving techniques for
KR systems.

The implementation of hand-crafted scripts for each benchmark problem is
cumbersome.

Most benchmarks are similar such that the process appears to be largely
automatable.

Issues

However, automating the process is not straightforward.
While there are similarities between benchmarks, details may differ:

Systems/configurations to compare.
Input/Output of such systems.
Values to measure.
. . .

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 2 / 16

Motivation

Goal

Identify similarities between benchmarks.

Create a benchmarking system with a default behavior which is good for
many benchmarks . . .

. . . but also flexible to be adaptable to a large variety of benchmarks.

Contributions

Formalization of benchmarks in a customizable fashion.

Design of a benchmark system.

Implementation in the ABC-system.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 3 / 16

Motivation

Goal

Identify similarities between benchmarks.

Create a benchmarking system with a default behavior which is good for
many benchmarks . . .

. . . but also flexible to be adaptable to a large variety of benchmarks.

Contributions

Formalization of benchmarks in a customizable fashion.

Design of a benchmark system.

Implementation in the ABC-system.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 3 / 16

Formalization of Benchmarks

Definition
A benchmark problem is a tuple

B = 〈(I1, . . . , I`),C, o, a〉
where

I1, . . . , I` ⊆ I is a list of sets of instances,

C ⊆ C is a list of configurations,

o is an output builder function, and

a is an aggregation function.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 4 / 16

Formalization of Benchmarks

Example

Suppose we want to compare the runtime of multiple SAT-solvers.

Then:

I is the set of all syntactically wellformed DIMACS files

C is a set of SAT solver calls

D is the set of all floating point values

Suppose we have two different instance sizes 1 and 2 (wrt. the number of
variables) containing |I1| = |I2| = 2 instances each.

Then:

I1, I2 are sets of SAT-instances to be run

The configurations are C = (minisat, clasp,manysat)

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 5 / 16

Evaluating Instances

The (benchmark-independent) evaluation function ε maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition
The evaluation function ε : I × C → O associates each instance i ∈ I and
configuration c ∈ C with an output from O.

However, normally not the full output is relevant for the benchmark results.

Definition
For a benchmark with domain D, an output builder o is a function o : O → Dn,
where n is the number of values per instance and configuration measured by o.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6 / 16

Evaluating Instances

The (benchmark-independent) evaluation function ε maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition
The evaluation function ε : I × C → O associates each instance i ∈ I and
configuration c ∈ C with an output from O.

However, normally not the full output is relevant for the benchmark results.

Definition
For a benchmark with domain D, an output builder o is a function o : O → Dn,
where n is the number of values per instance and configuration measured by o.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6 / 16

Evaluating Instances

The (benchmark-independent) evaluation function ε maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition
The evaluation function ε : I × C → O associates each instance i ∈ I and
configuration c ∈ C with an output from O.

However, normally not the full output is relevant for the benchmark results.

Definition
For a benchmark with domain D, an output builder o is a function o : O → Dn,
where n is the number of values per instance and configuration measured by o.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6 / 16

Evaluating Instances

The (benchmark-independent) evaluation function ε maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition
The evaluation function ε : I × C → O associates each instance i ∈ I and
configuration c ∈ C with an output from O.

However, normally not the full output is relevant for the benchmark results.

Definition
For a benchmark with domain D, an output builder o is a function o : O → Dn,
where n is the number of values per instance and configuration measured by o.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6 / 16

Evaluating Instances

Example (cont’d)

Continuing the previous example (SAT-solvers), the output domain O contains all
possible outputs consisting of:

the standard output (e.g. a satisfiability flag, possibly models),

the standard error output (e.g. log information),

the return value of the call (e.g. indicating satisfiability), and

meta-information (e.g. observed runtime and memory consumption).

The output builder o extracts from this information the observed runtime and
maximum memory usage and returns it as two floating point values, hence n = 2.

For C = (minisat, clasp,manysat) and instance i2,1 ∈ I2,
we have that o(ε(i2,1, c)) evaluates to a vector of floating point values of length 2
for each c ∈ C.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 7 / 16

Evaluating Instances

Example (cont’d)

Continuing the previous example (SAT-solvers), the output domain O contains all
possible outputs consisting of:

the standard output (e.g. a satisfiability flag, possibly models),

the standard error output (e.g. log information),

the return value of the call (e.g. indicating satisfiability), and

meta-information (e.g. observed runtime and memory consumption).

The output builder o extracts from this information the observed runtime and
maximum memory usage and returns it as two floating point values, hence n = 2.

For C = (minisat, clasp,manysat) and instance i2,1 ∈ I2,
we have that o(ε(i2,1, c)) evaluates to a vector of floating point values of length 2
for each c ∈ C.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 7 / 16

Evaluating Instances

Example (cont’d)

Continuing the previous example (SAT-solvers), the output domain O contains all
possible outputs consisting of:

the standard output (e.g. a satisfiability flag, possibly models),

the standard error output (e.g. log information),

the return value of the call (e.g. indicating satisfiability), and

meta-information (e.g. observed runtime and memory consumption).

The output builder o extracts from this information the observed runtime and
maximum memory usage and returns it as two floating point values, hence n = 2.

For C = (minisat, clasp,manysat) and instance i2,1 ∈ I2,
we have that o(ε(i2,1, c)) evaluates to a vector of floating point values of length 2
for each c ∈ C.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 7 / 16

Representing the Output as Table
The results of individual instances can then be arranged in a table:

Definition (Instance Results Table)

The instance results table TI(B) associated with a benchmark B is the unique
table of size |I| × |C| · n such that (tiu,v·n+1, . . . , tiu,v·n+n) = o(ε(Iu,Cv+1)) for all
1 ≤ u ≤ |I|, 0 ≤ v < |C|.

However, normally the final results should not show individual instances, but
aggregated results, where the aggregation might be benchmark-dependent.

Definition
An aggregation function for a benchmark B as by Definition 1 is a function
a : 2D

|C|·n → D|C|·n.

Definition (Aggregated Results Table)

The aggregated results table TA(B) associated with a benchmark B has rows
ri = a({TI(B)s+1, . . . ,TI(B)s+|Ii|}) for all 1 ≤ i ≤ `,

where s = Σ1≤j<i|Ij| is the number of instances preceding instance group i.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 8 / 16

Representing the Output as Table
The results of individual instances can then be arranged in a table:

Definition (Instance Results Table)

The instance results table TI(B) associated with a benchmark B is the unique
table of size |I| × |C| · n such that (tiu,v·n+1, . . . , tiu,v·n+n) = o(ε(Iu,Cv+1)) for all
1 ≤ u ≤ |I|, 0 ≤ v < |C|.

However, normally the final results should not show individual instances, but
aggregated results, where the aggregation might be benchmark-dependent.

Definition
An aggregation function for a benchmark B as by Definition 1 is a function
a : 2D

|C|·n → D|C|·n.

Definition (Aggregated Results Table)

The aggregated results table TA(B) associated with a benchmark B has rows
ri = a({TI(B)s+1, . . . ,TI(B)s+|Ii|}) for all 1 ≤ i ≤ `,

where s = Σ1≤j<i|Ij| is the number of instances preceding instance group i.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 8 / 16

Representing the Output as Table
The results of individual instances can then be arranged in a table:

Definition (Instance Results Table)

The instance results table TI(B) associated with a benchmark B is the unique
table of size |I| × |C| · n such that (tiu,v·n+1, . . . , tiu,v·n+n) = o(ε(Iu,Cv+1)) for all
1 ≤ u ≤ |I|, 0 ≤ v < |C|.

However, normally the final results should not show individual instances, but
aggregated results, where the aggregation might be benchmark-dependent.

Definition
An aggregation function for a benchmark B as by Definition 1 is a function
a : 2D

|C|·n → D|C|·n.

Definition (Aggregated Results Table)

The aggregated results table TA(B) associated with a benchmark B has rows
ri = a({TI(B)s+1, . . . ,TI(B)s+|Ii|}) for all 1 ≤ i ≤ `,

where s = Σ1≤j<i|Ij| is the number of instances preceding instance group i.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 8 / 16

Representing the Output as Table

Example (cont’d)

Continuing the previous example (SAT-solvers), each row of TI(B) consists of
|C| · 2 columns because the output builder returns two values (runtime and
memory consumption) for each instance and configuration.

Suppose the instance results table looks as follows:

TI(B) minisat clasp manysat
runtime memory runtime memory runtime memory

TI(B)1 0.04 0.10 1.21 1.00 0.51 0.40
}

I1TI(B)2 1.64 0.90 5.23 2.20 0.20 0.20
TI(B)3 6.44 2.40 3.53 1.30 1.12 5.00

}
I2TI(B)4 7.70 2.80 6.11 3.30 8.32 7.20

The aggregation function a is separately applied to {TI(B)1,TI(B)2} and
{TI(B)3,TI(B)4} and computes the columnwise average values. As above, for a
table TA(B) let TA(B)k be its k-th row.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 9 / 16

Representing the Output as Table

Example (cont’d)

Continuing the previous example (SAT-solvers), each row of TI(B) consists of
|C| · 2 columns because the output builder returns two values (runtime and
memory consumption) for each instance and configuration.

Suppose the instance results table looks as follows:

TI(B) minisat clasp manysat
runtime memory runtime memory runtime memory

TI(B)1 0.04 0.10 1.21 1.00 0.51 0.40
}

I1TI(B)2 1.64 0.90 5.23 2.20 0.20 0.20
TI(B)3 6.44 2.40 3.53 1.30 1.12 5.00

}
I2TI(B)4 7.70 2.80 6.11 3.30 8.32 7.20

The aggregation function a is separately applied to {TI(B)1,TI(B)2} and
{TI(B)3,TI(B)4} and computes the columnwise average values. As above, for a
table TA(B) let TA(B)k be its k-th row.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 9 / 16

Representing the Output as Table

Example (cont’d)

This yields table TA(B) with two rows:

TA(B) minisat clasp manysat
runtime memory runtime memory runtime memory

TA(B)1 0.84 0.50 3.22 1.60 0.36 0.30
TA(B)2 7.07 2.60 4.82 2.30 4.72 6.10

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 10 / 16

Implementation
The ABC-System

Automated benchmarking based on HTCondor:
https://github.com/credl/abcbenchmarking.
A detailed system documentation is included in the repository.

Implemented as a set of shell scripts.

Based on HTCondor (https://research.cs.wisc.edu/htcondor)
and the R-system (https://www.r-project.org).

Basic usage

In order the user the system, add its patch to the $PATH variable, and for each
benchmark create a file run.sh which:

1 Include the ABC header file:

source run header.sh

2 Call the run method with appropriate parameters
(see system documentation and the following example).

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 11 / 16

https://github.com/credl/abcbenchmarking
https://research.cs.wisc.edu/htcondor
https://www.r-project.org

Implementation
The ABC-System

Automated benchmarking based on HTCondor:
https://github.com/credl/abcbenchmarking.
A detailed system documentation is included in the repository.

Implemented as a set of shell scripts.

Based on HTCondor (https://research.cs.wisc.edu/htcondor)
and the R-system (https://www.r-project.org).

Basic usage

In order the user the system, add its patch to the $PATH variable, and for each
benchmark create a file run.sh which:

1 Include the ABC header file:

source run header.sh

2 Call the run method with appropriate parameters
(see system documentation and the following example).

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 11 / 16

https://github.com/credl/abcbenchmarking
https://research.cs.wisc.edu/htcondor
https://www.r-project.org

Implementation
Example

Consider the following scenario:

Our instances are given by all files of type *.dlv (DLV programs) in the
directory instances.

We compare the configurations dlv and dlv -n=1.

This is implemented in the following file run.sh:

source run header . sh

ins tances= ” ins tances / ∗ . d l v ”
c o n f i g u r a t i o n s = ” d l v ; d l v −n=1 ”
combine= ”CONF INST ”
benchmarkname= ” d lv ”
aggregat ionfunc= ” ”
o u t p u t b u i l d e r = ” ”

run ” $ instances ” ” $con f i gu ra t i ons ” ” $combine ” \
” $benchmarkname ” ” $aggregat ionfunc ” ” $ou tpu tbu i l de r ”

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 12 / 16

Implementation
Example

Consider the following scenario:

Our instances are given by all files of type *.dlv (DLV programs) in the
directory instances.

We compare the configurations dlv and dlv -n=1.

This is implemented in the following file run.sh:

source run header . sh

ins tances= ” ins tances / ∗ . d l v ”
c o n f i g u r a t i o n s = ” d l v ; d l v −n=1 ”
combine= ”CONF INST ”
benchmarkname= ” d lv ”
aggregat ionfunc= ” ”
o u t p u t b u i l d e r = ” ”

run ” $ instances ” ” $con f i gu ra t i ons ” ” $combine ” \
” $benchmarkname ” ” $aggregat ionfunc ” ” $ou tpu tbu i l de r ”

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 12 / 16

Implementation
Example (cont’d)

Assuming that there are three groups of 10 instances of sizes 1, 2 and 3, the
output of the call ./run.sh is a table of the following form:

1 10 0.12 0 0.07 0
2 10 1.08 0 43.15 1
3 10 22.81 0 270.01 9

This ABC system allows for an automatic translation of this table to LATEX code:

\begin{table}[t]
\scriptsize
\centering
\begin{tabular}[t]{r|rrr}
\hline
instance & \verb+dlv+ & \verb+dlv -n=1+ \\
\hline
1 (10) & 0.12 (0) & 0.07 (0) \\
2 (10) & 1.08 (0) & 43.15 (1) \\
3 (10) & 22.81 (0) & 270.01 (9) \\
\hline
\end{tabular}
\caption{Benchmark Results}
\label{tab:results}
\end{table}

Figure: Benchmark Results: LATEX Code

instance dlv dlv -n=1
1 (10) 0.12 (0) 0.07 (0)
2 (10) 1.08 (0) 43.15 (1)
3 (10) 22.81 (0) 270.01 (9)

Table: Benchmark Results: Final Appearance

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 13 / 16

Implementation
Example (cont’d)

Assuming that there are three groups of 10 instances of sizes 1, 2 and 3, the
output of the call ./run.sh is a table of the following form:

1 10 0.12 0 0.07 0
2 10 1.08 0 43.15 1
3 10 22.81 0 270.01 9

This ABC system allows for an automatic translation of this table to LATEX code:

\begin{table}[t]
\scriptsize
\centering
\begin{tabular}[t]{r|rrr}
\hline
instance & \verb+dlv+ & \verb+dlv -n=1+ \\
\hline
1 (10) & 0.12 (0) & 0.07 (0) \\
2 (10) & 1.08 (0) & 43.15 (1) \\
3 (10) & 22.81 (0) & 270.01 (9) \\
\hline
\end{tabular}
\caption{Benchmark Results}
\label{tab:results}
\end{table}

Figure: Benchmark Results: LATEX Code

instance dlv dlv -n=1
1 (10) 0.12 (0) 0.07 (0)
2 (10) 1.08 (0) 43.15 (1)
3 (10) 22.81 (0) 270.01 (9)

Table: Benchmark Results: Final Appearance

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 13 / 16

System Architecture

User Final Benchmark Table

run.sh (all)

runinsts.sh Aggregation Script

run.sh (single) Instance Results

runconfigs.sh Output Builder

Reasoner (e.g. DLV)
Reasoner Outputs
and Return Values

benchmark-specific

optional customization

static

control flow

data flow

Figure: ABC System Architecture

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 14 / 16

Further Features of the System
Customization

Custom output builders implemented as shell script.
Custom aggregation functions implemented either by

specifying the function for each column, or by
providing a completely customized R script.

Output processing

Scripts for processing final benchmark tables,
e.g. projection, joining, etc., and

E-mail notifications upon finishing benchmarks.

Comparisons

Results may be (statistically) compared to previous results.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 15 / 16

Further Features of the System
Customization

Custom output builders implemented as shell script.
Custom aggregation functions implemented either by

specifying the function for each column, or by
providing a completely customized R script.

Output processing

Scripts for processing final benchmark tables,
e.g. projection, joining, etc., and

E-mail notifications upon finishing benchmarks.

Comparisons

Results may be (statistically) compared to previous results.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 15 / 16

Further Features of the System
Customization

Custom output builders implemented as shell script.
Custom aggregation functions implemented either by

specifying the function for each column, or by
providing a completely customized R script.

Output processing

Scripts for processing final benchmark tables,
e.g. projection, joining, etc., and

E-mail notifications upon finishing benchmarks.

Comparisons

Results may be (statistically) compared to previous results.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 15 / 16

Conclusion

Benefits of our system

Largely automates benchmarking from the evaluation of individual instances
up to generating the final LATEX table.

Focused on command-line tools including many KR-tools.

Default settings are good for many benchmarks.

But customizable to allow for adaption to less standardized benchmarks.

Future Work

The benchmark specification is declarative, thus a declarative language
might be supported as frontend.

Additional backends (as an alternative to HTCondor) might be supported.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 16 / 16

