Automated Benchmarking of KR-Systems

Christoph Red|

redl@kr.tuwien.ac.at

TECHNISCHE
UNIVERSITAT bs
WIEN o b

Vienna University of Technology

November 28, 2016

Redl| C. (TU Vienna) Automated Benchmarking November 28, 2016 1/16

mailto:redl@kr.tuwien.ac.at

|
Motivation

Benchmarking is a time-consuming task

m Benchmarking is an important part of scientific work on solving techniques for
KR systems.

m The implementation of hand-crafted scripts for each benchmark problem is
cumbersome.

m Most benchmarks are similar such that the process appears to be largely
automatable.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 2/16

|
Motivation

Benchmarking is a time-consuming task

m Benchmarking is an important part of scientific work on solving techniques for
KR systems.

m The implementation of hand-crafted scripts for each benchmark problem is
cumbersome.

m Most benchmarks are similar such that the process appears to be largely
automatable.

Issues

m However, automating the process is not straightforward.
m While there are similarities between benchmarks, details may differ:

m Systems/configurations to compare.
m Input/Output of such systems.

m Values to measure.

...

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 2/16

|
Motivation

Goal

m |dentify similarities between benchmarks.

m Create a benchmarking system with a default behavior which is good for
many benchmarks ...

m ...but also flexible to be adaptable to a large variety of benchmarks.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 3/16

|
Motivation

Goal

m |dentify similarities between benchmarks.

m Create a benchmarking system with a default behavior which is good for
many benchmarks ...

m ...but also flexible to be adaptable to a large variety of benchmarks.

Contributions

m Formalization of benchmarks in a customizable fashion.
m Design of a benchmark system.
m Implementation in the ABC-system.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 3/16

|
Formalization of Benchmarks

Definition
A benchmark problem is a tuple

B={(h,...,1s),C,0,a)
where

m[,...,I; CZTis alist of sets of instances,
m C C Cis a list of configurations,
B o is an output builder function, and

B a is an aggregation function.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 4/16

|
Formalization of Benchmarks

Example

Suppose we want to compare the runtime of multiple SAT-solvers.

Then:
m T is the set of all syntactically wellformed DIMACS files
m C is a set of SAT solver calls
m D is the set of all floating point values

Suppose we have two different instance sizes 1 and 2 (wrt. the number of
variables) containing |/;| = |I»| = 2 instances each.

Then:
m [,], are sets of SAT-instances to be run
m The configurations are C = (minisat, clasp, manysat)

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 5/16

N —
Evaluating Instances

The (benchmark-independent) evaluation function e maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Red| C. (TU Vienna) Automated Benchmarking November 28, 2016 6/16

N —
Evaluating Instances

The (benchmark-independent) evaluation function e maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition

The evaluation function e: Z x C — O associates each instance i € Z and
configuration ¢ € C with an output from O.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6/16

N —
Evaluating Instances

The (benchmark-independent) evaluation function e maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition
The evaluation function e: Z x C — O associates each instance i € Z and

configuration ¢ € C with an output from O.

However, normally not the full output is relevant for the benchmark results.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6/16

N —
Evaluating Instances

The (benchmark-independent) evaluation function e maps an instance and a
configuration to the output from an abstract output domain O (e.g. the set of all
strings).

Definition

The evaluation function e: Z x C — O associates each instance i € Z and
configuration ¢ € C with an output from O.

However, normally not the full output is relevant for the benchmark results.
Definition

For a benchmark with domain D, an output builder o is a function o: O — D",
where n is the number of values per instance and configuration measured by o.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 6/16

N —
Evaluating Instances

Example (cont’d)
Continuing the previous example (SAT-solvers), the output domain O contains all
possible outputs consisting of:

m the standard output (e.g. a satisfiability flag, possibly models),

m the standard error output (e.g. log information),

m the return value of the call (e.g. indicating satisfiability), and

m meta-information (e.g. observed runtime and memory consumption).

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 7/16

N —
Evaluating Instances

Example (cont’d)
Continuing the previous example (SAT-solvers), the output domain O contains all
possible outputs consisting of:

m the standard output (e.g. a satisfiability flag, possibly models),

m the standard error output (e.g. log information),

m the return value of the call (e.g. indicating satisfiability), and

m meta-information (e.g. observed runtime and memory consumption).

The output builder o extracts from this information the observed runtime and
maximum memory usage and returns it as two floating point values, hence n = 2.

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 7/16

N —
Evaluating Instances

Example (cont’d)
Continuing the previous example (SAT-solvers), the output domain O contains all
possible outputs consisting of:

m the standard output (e.g. a satisfiability flag, possibly models),

m the standard error output (e.g. log information),

m the return value of the call (e.g. indicating satisfiability), and

m meta-information (e.g. observed runtime and memory consumption).

The output builder o extracts from this information the observed runtime and
maximum memory usage and returns it as two floating point values, hence n = 2.

For C = (minisat, clasp, manysat) and instance i | € b,

we have that o(e(iz,1, ¢)) evaluates to a vector of floating point values of length 2
foreach c € C.

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 7/16

Representing the Output as Table

The results of individual instances can then be arranged in a table:
Definition (Instance Results Table)

The instance results table 7;(B) associated with a benchmark B is the unique

table of size |I| x |C| - n such that (tiyy.nt1, - - - s tiyyntn) = 0(€(Ly, Cyy1)) for all
1<u<l|I,0<v<|C|

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 8/16

Representing the Output as Table

The results of individual instances can then be arranged in a table:
Definition (Instance Results Table)

The instance results table 7;(B) associated with a benchmark B is the unique

table of size |I| x |C| - n such that (tiyy.nt1, - - - s tiyvntn) = 0(€(Ly, Cyy1)) for all
1<u<|I,0<v<]|C|

However, normally the final results should not show individual instances, but
aggregated results, where the aggregation might be benchmark-dependent.
Definition

An aggregation function for a benchmark B as by Definition 1 is a function
a: 20" 5 plcln,

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 8/16

——
Representing the Output as Table

The results of individual instances can then be arranged in a table:
Definition (Instance Results Table)

The instance results table 7;(B) associated with a benchmark B is the unique
table of size |I| x |C| - n such that (tiyy.nt1, - - - s tiyvntn) = 0(€(Ly, Cyy1)) for all
1<u<|I,0<v<]|C|

However, normally the final results should not show individual instances, but
aggregated results, where the aggregation might be benchmark-dependent.
Definition
An aggregation function for a benchmark B as by Definition 1 is a function

. »DICIn |C|-n
a:?2 — DIt
Definition (Aggregated Results Table)

The aggregated results table 7, (B) associated with a benchmark B has rows
ri = a({T,(B)H_], ey TI(B)S'HM}) for all 1 <i< f,
where s = X, <;;|;| is the number of instances preceding instance group i.

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 8/16

——
Representing the Output as Table

Example (cont’d)

Continuing the previous example (SAT-solvers), each row of T;(B) consists of
|C| - 2 columns because the output builder returns two values (runtime and
memory consumption) for each instance and configuration.

Suppose the instance results table looks as follows:

T;(B) minisat clasp manysat
runtime memory runtime memory runtime memory
T;(B); | 0.04 0.10 1.21 1.00 0.51 0.40 I
T;(B)y | 1.64 0.90 5.23 2.20 0.20 0.20 [
T;(B); | 6.44 2.40 3.53 1.30 1.12 5.00 I
T;(B)sy | 7.70 2.80 6.11 3.30 8.32 7.20 (2

RedI C. (TU Vienna)

Automated Benchmarking

November 28, 2016

9/16

——
Representing the Output as Table

Example (cont'd)

Continuing the previous example (SAT-solvers), each row of T;(B) consists of
|C| - 2 columns because the output builder returns two values (runtime and
memory consumption) for each instance and configuration.

Suppose the instance results table looks as follows:

T;(B) minisat clasp manysat
runtime memory runtime memory runtime memory
T;(B); | 0.04 0.10 1.21 1.00 0.51 0.40 I
T;(B)y | 1.64 0.90 5.23 2.20 0.20 0.20 [
T;(B); | 6.44 2.40 3.53 1.30 1.12 5.00 I
T;(B)sy | 7.70 2.80 6.11 3.30 8.32 7.20 (2

The aggregation function a is separately applied to {7;(B)1, 7;(B),} and
{T1(B)3, T;(B)4} and computes the columnwise average values. As above, for a
table T4 (B) let Tx(B)y be its k-th row.

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 9/16

——
Representing the Output as Table

Example (cont’d)
This yields table T, (B) with two rows:

T4(B) minisat clasp manysat
runtime memory runtime memory runtime memory

Ts(B); | 0.84 0.50 3.22 1.60 0.36 0.30

Tx(B)y | 7.07 2.60 4.82 2.30 4.72 6.10

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 10/16

Implementation
The ABC-System

m Automated benchmarking based on HTCondor:
https://github.com/credl/abcbenchmarking.
A detailed system documentation is included in the repository.

m Implemented as a set of shell scripts.

m Based on HTCondor (https://research.cs.wisc.edu/htcondor)
and the R-system (https://www.r-project.org).

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 11/16

https://github.com/credl/abcbenchmarking
https://research.cs.wisc.edu/htcondor
https://www.r-project.org

Implementation
The ABC-System

m Automated benchmarking based on HTCondor:
https://github.com/credl/abcbenchmarking.
A detailed system documentation is included in the repository.

m Implemented as a set of shell scripts.

m Based on HTCondor (https://research.cs.wisc.edu/htcondor)
and the R-system (https://www.r-project.org).

Basic usage

In order the user the system, add its patch to the SPATH variable, and for each
benchmark create a file run. sh which:
Include the ABC header file:

source run_header.sh

Call the run method with appropriate parameters
(see system documentation and the following example).

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 11/16

https://github.com/credl/abcbenchmarking
https://research.cs.wisc.edu/htcondor
https://www.r-project.org

EEE———————
Implementation
Example

Consider the following scenario:

m Our instances are given by all files of type « .d1v (DLV programs) in the
directory instances.

m We compare the configurations d1v and d1v —-n=1.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 12/16

Implementation
Example

Consider the following scenario:
m Our instances are given by all files of type « .d1v (DLV programs) in the
directory instances.
m We compare the configurations d1v and d1v —-n=1.
This is implemented in the following file run. sh:

source run_header.sh

instances="instances/*.dlv”
configurations="dlv ;dlv.—n=1"
combine="CONF_INST”
benchmarkname="dlv”
aggregationfunc=""
outputbuilder=""

run "S$instances” ”"$configurations” "$combine” \
"$benchmarkname” ”$aggregationfunc” ”$outputbuilder”

RedI C. (TU Vienna) Automated Benchmarking November 28, 2016 12/16

EEE———————
Implementation
Example (cont’d)

Assuming that there are three groups of 10 instances of sizes 1, 2 and 3, the
output of the call . /run. sh is a table of the following form:

110 0.12 0 0.07 O
2 10 1.08 0 43.15 1
3 10 22.81 0 270.01 9

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 13/16

Implementation
Example (cont’d)

Assuming that there are three groups of 10 instances of sizes 1, 2 and 3, the
output of the call . /run. sh is a table of the following form:

110 0.12 0 0.07 O
2 10 1.08 0 43.15 1
3 10 22.81 0 270.01 9

This ABC system allows for an automatic translation of this table to IATEX code:

\begin{table} [t]

\scriptsize

\centering
\begin{tabular}[t]{r|rrr}

\hline

instance & \verb+dlv+ & \verb+dlv —n=1+ \\
\hline

1 (10) & 0.12 (0) & 0.07 (0) \\

2 (10) & 1.08 (0) & 43.15 (1) \\
3 (10) & 22.81 (0) & 270.01 (9) \\
\hline

\end{tabular}

\caption{Benchmark Results}
\label{tab:results}

\end{table}

Figure: Benchmark Results: IETEX Code

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 13/16

System Architecture

3
i
'
'
'
'
'
'

Aggregation Script

Iy
?

—> control flow

optional customization ---» data flow

Figure: ABC System Architecture

Redl C. (TU Vienna) Automated Benchmarking

N —
Further Features of the System
Customization

m Custom output builders implemented as shell script.
m Custom aggregation functions implemented either by

m specifying the function for each column, or by
m providing a completely customized R script.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 15/16

N —
Further Features of the System
Customization

m Custom output builders implemented as shell script.
m Custom aggregation functions implemented either by

m specifying the function for each column, or by
m providing a completely customized R script.

Output processing

m Scripts for processing final benchmark tables,
e.g. projection, joining, etc., and
m E-mail notifications upon finishing benchmarks.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 15/16

N —
Further Features of the System

Customization

m Custom output builders implemented as shell script.
m Custom aggregation functions implemented either by

m specifying the function for each column, or by
m providing a completely customized R script.

Output processing

m Scripts for processing final benchmark tables,
e.g. projection, joining, etc., and

m E-mail notifications upon finishing benchmarks.

Comparisons
m Results may be (statistically) compared to previous results.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 15/16

|
Conclusion

Benefits of our system

m Largely automates benchmarking from the evaluation of individual instances
up to generating the final IATEX table.

m Focused on command-line tools including many KR-tools.
m Default settings are good for many benchmarks.
m But customizable to allow for adaption to less standardized benchmarks.

Future Work

m The benchmark specification is declarative, thus a declarative language
might be supported as frontend.

m Additional backends (as an alternative to HTCondor) might be supported.

Redl C. (TU Vienna) Automated Benchmarking November 28, 2016 16/16

