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Zusammenfassung. The HEX formalism has been designed as an extension of answer set programs
that offers an abstract interface to access external sources of information and computation, such as
the World Wide Web or description logics reasoners. The generic nature makes the extension pow-
erful, which has been exploited in different ways: as an end user problem solving language, as a
backend formalism, or as the basis of a richer formalism with possibly increased expressiveness.
The increasing spread of HEX is paralleled with the frequently asked questions of what HEX is, and
how it can be used for problem solving. In this paper, we aim to answer these questions; we consider
different scenarios and provide a methodology for applying HEX from a user perspective. Further-
more, we briefly present a collection of applications based on HEX or derived from it, including
sample snippets from associated HEX programs.
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1 Introduction

Answer Set Programming (ASP) is a declarative problem solving approach [48, 45, 43], in which a problem
is described by the rules of a nonmonotonic logic program, such that the answer sets [33] (i.e., specific
models) of the program correspond to the solutions of the problem; the latter can be extracted from the
answer sets computed using an ASP solver. With the advent of efficient and expressive such solvers (e.g.,
SMODELS [58], DLV [41], ASSAT [44], and GRINGO plus CLASP [31, 30]), this approach has been fruitfully
deployed to a growing range of applications in different areas and disciplines, cf. [8].

However, the World Wide Web and trends in distributed systems have created a need for accessing
external information sources in a program, ranging from light-weight data access (e.g., XML, RDF, or
data bases) to knowledge-intensive formalisms (e.g., description logics reasoners), and even to information
sources not based on logical grounds (e.g., dictionaries or route planning services). To cater for this need,
HEX programs have been introduced in [13] as an extension to nonmonotonic logic programs in which access
to external sources is possible via designated external atoms, which abstractly define external predicates
whose valuation is determined by external computation.

For a simple example, consider the rule

pointsTo(X,Y )← &hasHyperlink [X](Y ), url(X); (1)

informally, it obtains pairs (X,Y ) of URLs, where X actually links Y on the Web. Here, &hasHyperlink
is an external predicate associated with an external computation function; X is the input for the latter and
Y is a result. Besides single values, also relational information (predicate extensions) can flow from the
program to external sources and back; e.g., an extended input [X , skip] in (1) may provide a relation skip
containing pairs of URLs whose linkage should be omitted. Notably, the output Y may involve values not
occurring in the program (known as value invention), and Y may influence the input of the atom where in
practice, certain safety conditions must be obeyed [15]. This makes the efficient evaluation of HEX programs
challenging, for which advanced techniques have been developed [14, 18, 13, 16].

The abstract concept of an external atom has been realized in the open-source software DLVHEX1 as an
API, which allows the user via a plugin mechanism to tailor external atoms for her needs using Python or
C++. This makes the system very powerful; depending on the external evaluation cost, HEX programs offer
a range of problem solving capacity, from Σp

2 for polynomial-time external atoms to Turing-completeness
in general.

HEX programs and DLVHEX have been used for solving diverse kinds of problems. This frequently raises
the questions of prospective users what HEX is after all, and how HEX programs or DLVHEX can be exploited
for solving their applications; notably DLVHEX offers a growing suite of library plugins that have been used
in different applications.

This paper addresses these questions and focuses on HEX programs as a KR tool for problem solving,
which they support at different levels of abstraction, namely as an end user problem solving language, as
a backend formalism or as the basis of a richer formalism with possibly increased expressiveness. Besides
a methodology for using HEX programs, we further present some examples of HEX applications. More in
detail, we proceed on this as follows.

• After recalling in Section 2 HEX programs and briefly addressing some aspects of the DLVHEX sy-
stem, we show in Section 3 how HEX programs can be used for problem solving. Besides a basic

1www.kr.tuwien.ac.at/research/systems/dlvhex
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methodology, which is a strict generalization of the ASP methodology, we present typical kinds of
external sources and HEX use scenarios.

• In Section 4 we then consider some end user applications which have been realized on top of HEX

programs.

• In Section 5 we show how several extensions of the HEX formalism and some of their internals. While
some extensions increase the expressiveness and need extensions of the internal evaluation algorithms,
many others are in fact only syntactic shortcuts and can be compiled to pure HEX programs.

• In Section 6 we show applications that use HEX as a backend formalism for the sake of evaluation,
sometimes completely hiding HEX from the user.

After a discussion of related work in Section 7, we conclude in Section 8 with an outlook on future topics.
This paper is in honor of Gabriele Kern-Isberner, who has worked extensively on Artificial Intelligence

and in particular on knowledge representation and reasoning, and made over many years numerous import-
ant contributions to belief change, conditional and nonmonotonic reasoning, reasoning with uncertainty,
argumentation, agents etc., based on solid and deep mathematical foundations. Gabriele’s excellent book
“Methods of Knowledge based Systems – Foundations, Algorithms and Applications” [5], co-authored by
Christoph Beierle and now in its fifth edition, demonstrates her comprehension of the field, and provides a
coherent and formally guided introduction to the ingredients of knowledge based systems. Unfortunately,
the book is only available in German; but in the style of Cato the Elder, Thomas keeps asking her ever since
the first edition to have an English translation, so that a much larger audience can read and enjoy it, which
would be well-deserved – and that we can use it in our English classes! In turn, we hope that Gabriele may
discover the wealth of the HEX family as a tool box for building advanced knowledge based systems, as
envisaged in her book and further supported by her many research results.

2 HEX Programs

In this section, we formally introduce the syntax and semantics of HEX programs; for more details and
background, see e.g. [23, 24, 13, 55].

2.1 HEX Program Syntax

Let C, X , and G be mutually disjoint sets of constants, variables, and external predicates, respectively.
Usually constants (resp., variables) are denoted with first letter in upper case (resp., lower case), while
external predicates start with ‘ & ’. Elements from C∪X are called terms. An atom is a tuple (Y0, Y1, . . . , Yn),
where Y0, . . . , Yn are terms and n ≥ 0 is the arity of the atom. Intuitively, Y0 is the predicate name, and
we often use the more familiar notation Y0(Y1, . . . , Yn). An atom is ordinary (resp., higher-order) if Y0 is a
constant (resp., a variable), and it is ground, if all its terms are constants.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists, resp.), and &g ∈ G
is an external predicate name. We assume that &g has fixed lengths in(&g) =n and out(&g) =m for input
and output lists, respectively. In the ground case, the input terms Y1, . . . , Yn intuitively consist of individual
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constants (e.g. joe) and predicate names (e.g. edge). An external atom provides a way for deciding the truth
value of an output tuple depending on the input tuple and a given interpretation.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, m, k ≥ 0,

where all αi are atoms and all βj are either atoms or external atoms. We let H(r) = {α1, . . . , αk} and
B(r) = B+(r) ∪B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. A HEX program is
a finite set P of rules.

A rule r is a constraint, if H(r) = ∅ and B(r) 6= ∅; a fact, if B(r) = ∅ and H(r) 6= ∅; and nondisjunc-
tive, if |H(r)| ≤ 1. We call r ordinary, if it contains only ordinary atoms. We call a program P ordinary
(resp., nondisjunctive), if all its rules are ordinary (resp., nondisjunctive). Note that facts can be disjunctive.

Example 1 Consider the following program Πgoto to decide where to go for a city trip, but exclude cities
where the (external) weather report is bad.

badweather(rain). badweather(snow).

goto(paris) ∨ goto(london).

← &weatherreport [goto](W ), badweather(W ).

We guess where to go and forbid that the externally obtained weather report &weatherreport indicates bad
weather for a city in the extension of goto. 2

2.2 HEX Program Semantics

The semantics of HEX programs generalizes the well-known answer-set semantics of ordinary programs
[33]. Given a HEX program P , its Herbrand base, denoted HBP , is the set of all possible ground versi-
ons of atoms and external atoms occurring in P obtained by replacing variables with constants from C.
The grounding of a rule r, grnd(r), is defined accordingly, and the grounding of P is given by the set
grnd(P ) =

⋃
r∈P grnd(r). Unless specified otherwise, X and G are implicitly given by P . Different from

the ‘usual’ ASP setting, the set C of constants used for grounding a program is only partially given by the
program itself; in HEX, external computations may introduce new constants that are relevant for semantics
of the program.

An interpretation relative to P is any subset I ⊆HBP containing no external atoms. We say that I is a
model of atom a∈HBP , denoted I |= a, if a∈ I .

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary Boolean function (called
oracle function) f&g assigning each tuple (I , y, x) where y = y1, . . . , yn and x = x1, . . . , xm either 0 or 1,
where n = in(&g), m = out(&g), I ⊆HBP , and xi, yj ∈C. We say that I ⊆HBP is a model of a ground
external atom a = &g [y](x), denoted I |= a, if f&g(I , y, x) = 1. This definition of external atom semantics is
very general; indeed an external atom may depend on every part of the interpretation. For practical reasons,
external atom semantics is usually restricted such that it depends only on the extension of those predicates
in I that are given in the input list.

Let r be a ground rule. Then we say that
(i) I satisfies the head of r, denoted I |=H(r), if I |= a for some a∈H(r);

(ii) I satisfies the body of r (I |=B(r)), if I |= a for all a∈B+(r) and I 6|= a for all a∈B−(r); and
(iii) I satisfies r (I |= r), if I |=H(r) whenever I |=B(r).



6 INFSYS FB 15-07

We say that I is a model of a HEX program P , denoted I |=P , if I |= r for all r∈ grnd(P ). We call P
satisfiable, if it has some model.

Given a HEX program P , the FLP-reduct of P with respect to I ⊆HBP , denoted fP I , is the set of all
r∈ grnd(P ) such that I |=B(r). Then I ⊆HBP is an answer set of P if, I is a minimal model of fP I . We
denote by AS (P ) the set of all answer sets of P .

HEX programs are a conservative extension of disjunctive [33] (resp., normal [32]) logic programs under
the answer set semantics.

Example 2 (cont’d) Assume that the weather report for paris is sun and for london it is rain , then
I |= &weatherreport [goto](sun) if I |= goto(paris), moreover I |= &weatherreport [goto](rain) if I |=
goto(london), and Πgoto has one answer set {goto(paris)} (we omit atoms in facts of Πgoto). If wea-
ther reports of both cities are sunny, we additionally obtain the answer set {goto(london)}. Finally if the
weather report for both cities is snow , there is no answer set. 2

2.3 Usability Issues

When realizing a project with HEX and the DLVHEX reasoner, besides writing the HEX program it is usually
also necessary to write a plugin which implements the semantics of external atoms to be used (unless an
already existing plugin can be reused). Plugins may be implemented either in Python or C++ using a reasoner
API provided by DLVHEX; for details, see [26].

For the sake of performance improvements, external atom semantics implementations can further inject
nogoods into the solver process, i.e., combinations of truth values of atoms which are inconsistent with the
external atom semantics and cannot occur in any answer set. This allows for eliminating inconsistent guesses
earlier and might speed up the solving process.

Besides defining external atoms, plugins may also (i) rewrite the input program, and (ii) post-process
answer sets. Rewriting the input is useful for creating language extensions (see Section 5) or for changing the
behavior of an input program by modifying its code (e.g., for performance reasons or for debugging). Post-
processing answer sets allows for translating the answer sets into a more application-specific presentation.
This is useful when HEX is used as a backend for other KR formalisms, cf. Section 6.

The DLVHEX user manual [26] presents examples for HEX programs and the corresponding implemen-
tations of external atom semantics. Furthermore, it describes different ways of obtaining, building, and
installing the DLVHEX solver for Linux (in particular Ubuntu), Mac OS X, and soon Windows.

3 KR Problem Solving using HEX

In this section, we show how the HEX family can be used for declarative problem solving. To this end,
we first present the basic methodology in Section 3.1, and show how modeling techniques from ordinary
ASP can be generalized to HEX. We provide methodology for using external atoms in Section 3.2 and
further distinguish typical kinds of external sources. Roughly, one can classify them as outsourcing of either
computation or information, or as a combination thereof. Afterwards, we present three kinds of use case
scenarios in Section 3.3. HEX programs can either directly be used as a formalism for modeling end user
applications, as a basis for language extensions (i.e., extensions of HEX which are compiled into plain HEX),
or as backend for the realization of other KR formalisms. The three use cases are orthogonal to the types of
external sources as in any scenario one may use all types of external sources.
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3.1 Basic Methodology

Because the HEX family is an extension of ASP, all modeling techniques from ASP may also be used in HEX

programs. One of the most important examples is the guess and check paradigm, where default negation or
disjunctive rules are used to generate a superset of the intended solutions (guessing part), and constraints are
used to eliminate spurious candidates (checking part). For instance, if we assume that facts over predicates
node and edge define a graph, then the well-known graph 3-colorability problem can be solved by guessing
all possible colorings of the nodes of a graph using the disjunctive rule

g : color(red , X) ∨ color(green, X) ∨ color(blue, X)← node(X), (2)

and eliminating all colorings which assign the same color to adjacent nodes using the constraint

c : ← color(C,X), color(C, Y ), edge(X,Y ). (3)

However, unlike in ASP, HEX programs allow for using external atoms in addition. They can occur both
in the guessing and in the checking part. In the former case, they may be used to import individuals over
which guessing is performed. For instance, one may replace the atom node(X) in the body of rule (2) by
&node[](X) to import the nodes of the graph. In the latter case, external atoms can be used in the body of
constraints to check given conditions. For instance, rule c may be replaced by

c′ : ← not &check [color , edge](), (4)

where &check [color , edge]() is true if color is a valid 3-coloring wrt. edge and false otherwise.
The saturation technique is an advanced modeling technique for solving hard problems up to ΣP

2 -
completeness, by exploiting the subset-minimality of answer sets for checking whether a property holds
for all guesses in a search space [20]. A typical example is the check if a graph is not 3-colorable, i.e., all
possible colorings are invalid. Also here, the checking part may employ external atoms.

For more details about ASP modeling techniques we refer to [20, 29].

3.2 Methodology for Using External Atoms

In general, one can roughly distinguish between two main usages of external sources that we call compu-
tation outsourcing and information outsourcing, respectively, and combinations thereof. We stress that this
distinction concerns the usage in applications, as both usages are based on the same language constructs.
For each of them we will describe some typical use cases that serve as usage patterns for external atoms
when writing HEX programs.

Computation Outsourcing means to send the definition of a subproblem to an external source and retrieve
its result. The input to the external source uses predicate extensions and constants to define the problem
at hand and the output terms are used to retrieve the result, which can in simple cases also be a Boolean
decision.

On-demand constraints are of the form ← &forbidden[p1, . . . , pn]() eliminate certain extensions of pre-
dicates p1, . . . , pn and are a special case of computational outsourcing, see also the 3-colorability example
above. The external evaluation of such a constraint can return reasons for conflicts to the reasoner in order to
restrict the search space and avoid reconstruction of the same conflict [14]. This technique avoids explicitly
grounding the forbidden combinations of atoms as constraints and reduces the size of the ground program.
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On-demand constraints have been used for efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [56, 35].

Computations that cannot (easily) be expressed by rules. Outsourcing computations also allows for in-
cluding algorithms which cannot (easily or efficiently) be expressed by rules. As a concrete example, an
artificial intelligence agent for the skills and tactics game AngryBirds needs to perform physics simulati-
ons [10]. This requires floating point computations which can not be done by rules in a practical way (this
would either come at the costs of very limited precision or a blow-up of the grounding) therefore the physics
simulations are integrated with game playing rules as external atoms in a HEX program.

Complexity lifting. This is another kind of computational outsourcing that allows for realizing computations
with a complexity higher than the complexity of ordinary ASP programs. The external atom serves than as
an ‘oracle’ for deciding subprograms. While for the purpose of complexity analysis of the formalism, it is
often assumed that external atoms can be evaluated in polynomial time [27]2, as long as external sources
are decidable there is no practical reason for limiting their complexity. External sources can also be other
ASP or HEX programs, which allows for encoding other formalisms of higher complexity in HEX programs,
e.g., abstract argumentation frameworks [12].

Information Outsourcing refers, in contrast to computational outsourcing, to external sources which im-
port information, while reasoning itself is done in the logic program.

A typical example can be found in Web resources which provide information for import, e.g., RDF triple
stores [40] or geographic data [47]. More advanced use cases are multi-context systems, which are systems
of knowledge-bases (contexts) that are abstracted to acceptable belief sets (roughly speaking, sets of atoms)
and interlinked by bridge rules that range across knowledge bases [7]; access to individual contexts has been
provided through external atoms [6]. Also sensor data, as often used when planning and executing actions
in an environment, is a form of information outsourcing (cf. ACTHEX [4]).

Combinations. It is also possible to outsource computation and information at the same time. A typi-
cal example are logic programs with access to Description Logic knowledge bases (DL KB), called DL-
programs [22]. A DL KB not only stores information, but also provides reasoning services. This allows
for interleaving reasoning within the DL KB and the logic program with information that flows across the
external atom API in both directions.

3.3 Use Scenarios

One can distinguish between three main types of usages of the HEX formalism. Note that the following
classification is orthogonal to the types of external sources above, i.e., each of the following scenarios may
make use of various types of external atoms.

End user applications based on HEX. The first scenario is the modeling of end-user applications. The
HEX language is directly used for modeling a problem at hand and computing its solutions. Note that the
problem instance formally consists both of the HEX program and the external sources, but external sources
may be reused for different applications if suitable.

The typical procedure when modeling an end user application starts with identifying and realizing the
required external sources, followed by writing a HEX program which makes use of these external sources.
The two steps may be repeated in order to refine the encoding, i.e., while writing the HEX program, the need
for further or modified external sources may arise. In some cases, external atoms of other applications can

2Under this assumption, deciding the existence of an answer set of a propositional HEX program is ΣP
2 -complete.
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be reused. Some existing plugins are generic and useful for different applications, e.g., string manipulation
functions and an interface to RDF triple stores. We present such applications in Section 4.

HEX language extensions. It turns out that some advanced applications call for additional language features
as they can not or not easily by realized in pure HEX programs. A possible relief are language extensions, of
which some may be compiled to pure HEX syntax, while others actually increase expressiveness. However,
even in cases where language extensions are only syntactic shortcuts, they still not only increase the user
comfort but also give the reasoner more specific information about the user’s intents (compare this with
a constraint ← Body vs. an equivalent rule p ← Body ,not p in ordinary ASP). This can be exploited to
improve efficiency. We present such extensions in Section 5.

HEX as backend formalism. Finally, other formalisms may be implemented on top of HEX programs (or
extensions thereof) using an appropriate translation. Instead of encoding the end user application directly, its
encoding as a HEX program is automatically generated from a different representation. This step can either
be hidden from the user, or can be transparent such that modifications (e.g., extensions or improvements)
can be made prior to evaluation. We present existing applications using HEX as a backend in Section 6.

4 End User Applications Based on HEX

In this section, we consider some end applications of HEX programs, which have been conceived in different
domains.

In the context of the Semantic Web, HEX was applied to connect SPARQL and RDF querying with
logic programming rules [51]. Moreover, HEX was used for archaeological research in order to combine
geographical and cultural knowledge from various ontologies [47], and for adapting user interfaces targeted
at elderly and disabled people by combining ontologies about user profiles with rules about potential user
interface styles [59].

As described above, an important use case of HEX is planning: the DLVC planning language can use
external atoms for determining effects of actions [49]; moreover in robotic planning, external atoms have
been used to perform checks on feasibility of actions or action costs [56, 35]. In the following we describe
a specific planning application realized with HEX in more detail.

Route planning. While many commercial and free route planning applications exist (Google Maps is
currently perhaps the most popular), the supported query types are usually limited. In contrast, an imple-
mentation in HEX programs allows for an easy addition of side constraints and thus tailoring to very specific
use cases. As a concrete use-case, [16] considered tours with multiple stops (e.g. at shops, a pharmacy,
kindergarden, etc) using an external source that supports only point-to-point queries. Side constraints may
include restrictions on the order of stops, the tour length, or opening hours at the stops.

Related to route planning is a trip planning scenario. When planning a holiday trip with multiple stops,
the order of the stops is often irrelevant, but one wants to spend a certain number of days at each location.
However, due to shifts of the dates, the overall price often differs significantly with different sequences.
In addition to the sequence of the locations, also other considerations affect the price. E.g. instead of a
multi-stop flight through all locations, one may book a return flight to one of them plus local flights from
there to the others; sometimes special offers for two-way-tickets make this more attractive. A logic program
can automatically generate flight plans according to the constraints and enquire their ticket prices by an
external atom that internally uses an online flight booking service. An additional weak constraint can select
the cheapest.
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AngryHEX. The annual AIBirds Competition3 is a competition for AI agents based on the popular Angry
Birds4 game, which is about using a slingshot to shoot birds of different types at pigs placed on a scene
in order to destroy them. The pigs are usually protected by obstacles of different types. The game uses a
realistic physics simulation, including gravity and statics. In the competition, agents are given the positions
and dimensions of the objects in the scene and need to return the angle and velocity for shooting the next
bird.

The AngryHEX agent [38] is implemented on top of HEX programs. The basic strategy is to maximize
the estimated damage to obstacles and pigs for all possible targets. Plain ASP is ill-suited for this application
as the computation involves physics simulation and floating point numbers. Therefore, a HEX program was
used to realize the basic strategy including the optimal selection of the target, while low-level numeric
computations have been outsourced. The agent participated in the competition since 2012 and ranked second
in 2015.
HEX programs with nested program calls. Notably, DLVHEX can be used to ‘call’ HEX programs from
other HEX programs, which we refer to as the called program and the host program, respectively. Specifi-
cally, one can process the collection of answer sets of a different program, and e.g. reason about it. To this
end, dedicated external atoms for evaluating subprograms and inspecting their answer sets are available, cf.
[53, 25].

When a subprogram call (corresponding to the evaluation of a special external atom) is encountered in
the host program, the external atom internally creates another instance of DLVHEX to evaluate the subpro-
gram. The result is then stored in an answer cache and gets a unique handle which can be later used to
reference the result and access its components (e.g., predicate names, literals, arguments) via other external
atoms. The subprogram can either be directly embedded in the host program, or stored in a separate file. In
the latter case, code reuse is easy and libraries for solving re-occurring subproblems in ASP applications,
e.g., graph problems or combinatorial optimization problems, can be built, where updates are automatically
reflected in the call program.

To this end, we use &callhexn , &callhexfilen , &answersets , &predicates , and &arguments , where

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

n ≥ 0, allow to execute a subprogram given by a string P or in a file FN, respectively; here n specifies the
number of predicate names pi, 1 ≤ i ≤ n, used to define the input facts. When evaluating such an external
atom on an interpretation I , the system adds all atoms pi(t) in I as facts to the specified program, creates
another DLVHEX instance to evaluate it, and returns a symbolic handle H as result. A handle is a unique
integer that represents a certain program answer cache entry. For convenience, we omit the subscript n in
&callhexn and &callhexfilen as it is clear from the context.

Example 3 We use two predicates p1 and p2 to define the input to the subprogram sub.hex (n = 2), i.e.,
all atoms over these predicates are added to the subprogram prior to evaluation. The call derives a handle H
as result.

p1(x, y); p2(a); p2(b);

handle(H)← &callhexfile[sub.hex, p1, p2](H)

In the implementation, handles are consecutive numbers starting at 0. The unique answer set of the
program is {handle(0), p1(x, y), p2(a), p2(b)}. 2

3https://aibirds.org
4https://www.angrybirds.com
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Formally, given an interpretation I , f&callhexfilen
(I,file, p1, . . . , pn, h) = v with v= 1 if h is the handle

to the result of the program in file file augmented with the facts over predicates p1, . . . , pn that are true in I ,
and v = 0 otherwise. The formal notion and use of &callhexn to call embedded subprograms is analogous
to &callhexfilen .

Example 4 Consider the following program:

h1(H)← &callhexfile[sub.hex](H)
h2(H)← &callhexfile[sub.hex](H)
h3(H)← &callhex [a; b← not c](H)

2

The rules execute the program sub.hex and the embedded program Pe = {a; b ← not c}, with no
facts being added. The single answer set is {h1(0), h2(0), h3(1)} or {h1(1), h2(1), h3(0)} depending on
the order in which the subprograms are executed (which is irrelevant). Note that the program in sub.hex
is called in two places but executed only once; Pe is (possibly) different from sub.hex and thus evaluated
separately.

Now we want to determine how many answer sets a program has. For this purpose, we design an external
atom &answersets[PH ](AH ) that associates subprograms with their answer set handles. Formally, for an
interpretation I , we have f&answersets(I, hProg , hAS ) = v with v = 1, if hAS is a handle to an answer set of
the program with program handle hProg , and v = 0 otherwise.

Example 5 The single rule

ash(PH ,AH ) ← &callhex [“a ∨ b←”](PH ),&answersets[PH ](AH )

calls the embedded subprogram Pe = {a∨ b←} and retrieves pairs (PH ,PA) of handles to its answer sets;
here &callhex [”a ∨ b←”](PH ) returns a handle PH = 0 to the result of Pe, which is passed to the atom
&answersets[PH ](AH ). The latter returns the handles 0 and 1, as Pe has two answer sets ({a} and {b}).
The overall program has thus the single answer set {ash(0, 0), ash(0, 1)}. As for each program the answer
set handles start at 0, only a pair of a program and an answer set handle uniquely identifies an answer set. 2

Using the external atoms from above, it is now easy e.g. to count the answer sets of a subprogram by de-
termining the largest valid handle to an answer set. Similarly, external atoms &predicates and &arguments
can be used to inspect answer sets; we refer to [25] for details.

5 HEX Language Extensions

We now turn to some extensions of HEX programs that are motivated by application needs.
HEX programs with function symbols. Uninterpreted function symbols, as for instance do(a, s) to repre-
sent the follow up of a situation s after executing an action a, can be easily realized in HEX using external
atoms; we thus can extend the language by such function symbols as syntactic sugar.

Formally, the set X ∪ C of terms is enriched, given a set F of function symbols, to the smallest superset
T of X ∪ C such that for each f ∈ F of arity n, it holds that {f(t1, . . . , tn) | t1, . . . , tn ∈ T } ⊆ T ;
technically, it is possible to let F ⊆ C.

Using external atoms, it is possible to simulate composition and decomposition of function terms, as
described in [9]. For every k ≥ 0, two external predicates &compk and &decompk are defined that have
k + 1 (resp., 1) input arguments and 1 (resp., k + 1) output arguments; the oracle functions are

f&compk
(I, f,X1, . . . , Xk, T ) = f&decompk

(I, T, f,X1, . . . , Xk) = v,
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with v = 1 if T = f(X1, . . . , Xk) and v = 0 otherwise. Intuitively, &compn constructs a nested term from
a function symbol and its term arguments (possibly nested themselves), and &decompn extracts the function
symbol and the term arguments from a nested term.

Concrete occurrences of function terms in rules can now be eliminated by using auxiliary variables and
adding appropriate &compn and &decompn atoms to the rule bodies. This will be clear from an example.

Example 6 Consider the following HEX program P with function symbols and its rewriting Tf (P ) to a
plain HEX program:

P : q(z); q(y)
p(f(f(X)))← q(X)

r(X)← p(X)
r(X)← r(f(X))

Tf (P ) : q(z); q(y)
p(V )← q(X),&comp1 [f,X](U),

&comp1 [f, U ](V )
r(X)← p(X)
r(X)← r(V ),&decomp1 [V ](f,X)

Intuitively, Tf (P ) first builds f(f(X)) for all X on which q holds using two atoms over &comp1 , and
then extracts X from derived r(f(X)) facts using a &decomp1 -atom. 2

Realizing function symbols on top of external atoms allows for a better control of their processing. For
example, the construction of new nested terms may be subject to additional conditions which are integrated
into the semantics of the external predicates &compk and &decompk . A concrete example is data type
checking, i.e., checking whether the arguments of a function term are in a given domain. Another example
is automatic computation of some argument from others; e.g., in building roman(8, viii) from 8, the first
argument is converted to Roman number representation.

HEX programs with action atoms. ACTHEX [4] is an extension of HEX programs which allows for the
execution of declaratively scheduled actions. To this end, action atoms are introduced to rule heads, which
operate on an environment and may modify it. The environment can be seen as an abstraction of realms
outside the logic program. Thus, in contrast to ASP and HEX programs, which are stateless, ACTHEX allows
for modifications of the external environment without wrapping the solver in a procedural language. We
here review ACTHEX programs at a glance and refer to [4, 28] for details.

Intuitively, the evaluation of an ACTHEX program starts with evaluating it as an ordinary HEX program.
Answer sets that optimize an associated objective function are best models. The evaluation algorithm selects
a single best model which determines a sequence of executable action atoms called the execution schedule.
These actions are then executed and possibly modify the environment.

The ACTHEX language provides a set A of action predicate names, which start with #. An action atom
is of the form #g [Y]{o, p}[w : l], where #g ∈ A is an action predicate name, Y = Y1, . . . , Yn is the input
list, o ∈ {b, c, cp} is the action option which declares actions as one of brave, cautious or preferred cautious,
and the optional integer attributes p, w, and l are called precedence, weight, and level. Rules and programs
are then defined as in ordinary HEX programs but may contain action atoms in rule heads.

The semantics of external atoms is generalized such that the environment may influence its truth va-
lue. To this end, a ground external atom &g [y](x) with k-ary input and l-ary output has an associated a
2+k+l-ary Boolean oracle function f&g; the atom &g [y](x) is true wrt. assignment I and environment E,
if f&g(I, E,y,x) = 1. Best models are defined based on level and weight of actions, and actions are exe-
cutable wrt. a best model depending on their action option o. An execution schedule SI for a best model
I is a sequence of all actions executable in I that respects action precedence. The effect of executing a
ground action #b[y1, . . . , yn]{o, r}[w : i] on an environment E is modeled by a (2+n)-ary function f#b that
determines a follow-up environment E′ = f#b(I, E,y).
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Example 7 (from [28]) The following ACTHEX-program controls a robot capable of executing a parame-
terized action #robot , where an external &sensor predicate enables to access sensor data.

#robot [clean, kitchen]{c, 2}[1 : 1]← night

#robot [clean, bedroom]{c, 2}[1 : 1]← day

#robot [goto, charger ]{b, 1}[1 : 1]← &sensor [bat ](low)

night ∨ day ←

Informally, in the night the kitchen should be cleaned, and during daytime the bedroom; if the battery is low,
the robot needs to go to the charger. The option b makes this action mandatory, while the other actions are
by option c only taken if they occur in every answer set; by the disjunctive fact, this is not the case. Note
that precedence 1 of #robot [goto, charger ]{b, 1}makes the robot recharge its battery (if needed) before any
cleaning. 2

Use-cases of ACTHEX programs. ACTHEX has been used in several applications; for a more elaborative
discussion, we refer to [4] and [28].

Action languages, such as the one by [34], are used to describe the relations between actions that modify
the state of the world which is described by fluents, i.e., predicate that can change over time. Such languages
can be captured by ACTHEX, exploiting the precedence attribute of action atoms to model time.

Related to this is knowledge base update, as adding and removing statements in knowledge bases main-
tenance can be modeled by action atoms. The ACTHEX-programmer can in this way reason over knowledge
bases and modify them declaratively depending on the current content. Since ACTHEX supports iterative
solving, it can be exploited for various use cases such as belief revision, belief merging or implementing the
observe-think-act cycle of agents [39].

Agents with iterative strategies do not compute solutions in a single shot using an appropriate encoding,
but in multiple steps using intermediate solutions. This can be advantageous, in particular if the grounding
of a monolithic problem encoding is very large, as holds e.g. for the logic puzzles Sudoku and Reversi. An
ACTHEX Sudoku agent that iteratively adds numbers to a cell or excludes them from the set of possible
values has the potential to solve larger instances than pure ASP can handle [28].

Constraint HEX programs. Constraint Answer Set Programming (CASP) (see e.g. [46, 42]) combines ASP
with constraint programming [1]. A well-known implementation is the CLINGCON system [50], which inte-
grates GRINGO, CLASP and the constraint solver GECODE. Constraints can be encoded in plain ASP using
builtin predicates, but this quickly produces groundings of unmanageable size; hence, a genuine support of
constraints in ASP is reasonable, which can hide instances of constraint variables in the constraint solver.

Dedicated CASP solvers, however, do not allow to integrate background theories other than constraints.
This motivated an integration of CASP with HEX programs to constraint HEX programs. Such programs
are strictly more general than CASP programs, as besides constraints arbitrary background theories can
be accessed via external atoms. Technically, the integration uses a translation of constraint HEX programs
into native HEX programs, where constraints are handled using an SMT-like [3] approach (also used by
CLINGCON).

Informally, a constraint HEX program may contain besides ordinary and external atoms also constraint
atoms. The latter are comparisons of arithmetic expressions that consist of (constraint) variables and con-
stants, such as x + y < 10. Here, x and y are constraint variables which range over a certain domain.
Different from ASP variables, constraint variables are global, i.e., each occurrence in a program is bound
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to the same value; thus, the atoms x < 10 and x > 20 can never be jointly true, even if they occur in dif-
ferent rules. Notably, (upper-case) ASP variables can occur in constraint atoms (they are eliminated by the
grounder); e.g., in x+Y > 5, the ASP variable Y is substituted by ground terms yielding ground constraint
atoms.

We omit here a formal definition of constraint HEX programs, but illustrate them by an example.

Example 8 Suppose Alice’s restaurant offers daily menus. The menus can be selected based on the price
of food and drink, where drink should be cheaper than food and each menu should cost at most 20 Euros;
menus of the limit cost are called exclusive. This knowledge is encoded by the following program:

r1 : food(P )← &sql [“Select price from Food”](P )

r2 : drink(P )← &sql [“Select price from Drink”](P )

r3 : max price(20)

r4 : inMenu(F,D) ∨ outMenu(F,D)← drink(D), food(F )

r5 : ← D > F, inMenu(F,D)

r6 : F +D 6 P ← inMenu(F,D),max price(P )

r7 : exclusive menu ← inMenu(F,D),max price(P ), F +D ≡ P

Here, food and drink prices are represented by atoms food(·) and drink(·), respectively; via the external
atoms &sql [·](·), all prices from the database of the restaurant are loaded. Rule r4 generates all price combi-
nations of menus, while rule r5 checks that food is more expensive than drink and rule r6 that the maximum
price is not exceeded. The rule r7 checks for the existence of an exclusive menu. Note that the constraint
atom in the head of rules r6 is not derived to be true if the body is true, but it must evaluate to true in this
case.

If the database contains prices 18 and 9 for food and 5 for drink, the single answer set contains atom
inMenu(9, 5), and outMenu(18, 5), encoding a single menu of 9 Euros for food and 5 Euros for drink;
there is no exclusive menu. 2

Constraint HEX programs can be translated into plain HEX programs using a dedicated external atom for
constraint checking. The idea is to guess the truth values of all constraint atoms, which are represented using
a special predicate con(·), in the program and pass the guess to external constraint checking; the answer set
candidate is eliminated if the guess is not compatible, i.e., the corresponding constraints are not satisfiable.
This is best illustrated on the previous example.

Example 9 (cont’d) The constraint atoms D > F , F + D 6 P , and F + D ≡ P are represented by
con(D,>,F ),
con(F,+, D,6, P ), and con(F,+, D,≡, P ), and their negations by con(D,6, F ), con(F,+, D, >, P ),
and con(F,+, D, 6≡, P ). The rules r5–r7 are now replaced by the following rules:

r′5 : ← con(D,>,F ), inMenu(F,D)

r′6 : con(F,+, D,6, P )← inMenu(F,D),max price(P )

r′7 : exclusive menu ← inMenu(F,D),max price(P ), con(F,+, D,≡, P )

g1 : con(D,>,F ) ∨ con(D,6, F )← inMenu(F,D)

g2 : con(F,+, D,6, P ) ∨ con(F,+, D,>, P )← inMenu(F,D),max price(P )

g3 : con(F,+, D,≡, P ) ∨ con(F,+, D, 6≡, P )← inMenu(F,D),max price(P )

c : ← not &check [con, sum]()



INFSYS FB 15-07 15

The rule r′i results from ri by replacing the constraint atom with its guess atom. The rules g1, g2 and g3 guess
the truth values of all (ground) constraint atoms, and c checks compatibility of the guess via the constraint
solver. Here sum is like con a special predicate for sums in constraint expressions that is void. 2

For more details and discussion, we refer to [54].

HEX∃ programs. An important feature of HEX programs is that they are capable of value invention, i.e., that
new constants are introduced into a program. This relates to existential quantification, as, given an external
atom &p[y](x) that evaluates to true, the output values x witness that the formula ∃X&p(y,X) is true.
If we are just interested in some (arbitrary) such witness x, we might write rules that choose one of them;
alternatively, one may delegate this choice to the external source, i.e., use a variant &p′ of &p such that
&p′[y](x) holds for a unique x. As the choice of x depends on the external source, we obtain in this way
domain-specific existential quantification. If, as in pure logic, we want to leave concrete witnesses open, we
can use a tuple x′ = x1 . . . , xm of fresh constants xi (or null values) as generic witness; this amounts to
Skolemization for the elimination of function symbols.

Such logical existential quantification is supported in the language of HEX∃ programs, which are finite
sets of rules of the form

∃X : p(Y′,X)← conj[Y], (5)

where X and Y are disjoint sets of variables, Y′ ⊆ Y, p(Y′,X) is an ordinary atom, and conj[Y] is a
conjunction of (possibly default-negated) atoms and external atoms containing all and only the variables
Y. Semantically, this rule assigns for each ground instance conj[y] that evaluates to true a tuple x =
x1, . . . , xm of new null values as above.5

A HEX∃ program Π can be transformed to an equivalent HEX program T (Π) by rewriting each rule r of
form (5) to the rule

p(Y′,X)← conj[Y],&exists |Y
′|,|X|[r,Y′](X),

where the existential quantifier is replaced by a new external atom &exists of appropriate input and output
arity which uses value invention.

Example 10 Consider the following HEX∃ program Π, which expresses that each employee X has some
office Y :

employee(john). employee(joe).
r1 : ∃X : office(Y,X)← employee(Y ).
r2 : room(X)← office(Y,X)

In the translated program T∃(Π), r1 is replaced by

r′1 : office(Y,X)← employee(Y ),&exists1 ,1 [r1, Y ](X).

One can use HEX∃ programs to model query answering from existential rules (i.e., conj[Y] in (5) consists
of ordinary atoms). Even if the answer set may be infinite, a finite fragment may suffice for this purpose. For
more details see [17].

5By the underlying unique name assumption, these values do not match with any other values; to model this, equality reasoning
would need to be imposed on top.
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6 HEX as Backend Formalism

For the third use scenario, we consider some data and knowledge-based formalisms that use (extended) HEX

programs as backend.

Multi-context systems. Multi-context systems (MCSs) [7] are a formalism for interlinking multiple know-
ledge based systems called contexts. The formalism abstracts from the knowledge representation language
and models context semantics in terms of accepted belief sets. The latter are abstractly modeled as naked
sets whose elements (i.e., the beliefs) need not bear logical structure. The contexts are interlinked by so cal-
led bridge rules which add formulas to the knowledge base of a context depending on the presence and/or
absence of beliefs from the belief sets of other contexts. The semantics of an MCS is given in terms of
equilibria, which are global states that consist of acceptable belief sets for each context, such that all bridge
rules are satisfied.

Besides computing equilibria, an important reasoning task for MCSs is inconsistency analysis; e.g., gi-
ven a MCSM that lacks equilibria, compute a reason for this inconsistency [19]. Inconsistency explanations
can be computed using a HEX program encoding [6] in which external atoms outsource contextual reasoning
and check whether a context accepts a certain belief set. The use of external atoms in the program is highly
cyclic as the saturation technique is employed; the latter is required as the problem is beyond NP and co-NP.

Description Logics plus rules. Description logics (DLs) provide a logical formalism for ontologies that
are well-suited for the Semantic Web [36] or in medical applications [37]. Ontologies represent classes of
objects, referred to as concepts, and the relations between objects, called roles. Concepts and roles corre-
spond to unary and binary predicates in first-order logic, respectively. A description logic knowledge base
consists of a Tbox (the terminology) that defines concepts and roles and represents relations between them,
and an Abox (assertions), that contains specific information on membership of individuals in concepts resp.
of pairs of individuals in roles.

Example 11 Suppose PhDStudent , Student and Professor are concepts and isAssistantOf is a role.
The Tbox may contain the concept inclusion axiom PhDStudent v Student , which states that the class
of PhD students is a subclass of all students. The Abox contains concept membership assertions such as
Professor(smith) and PhDStudent(johnson), representing that smith is a professor and johnson a PhD
student. An assertion isAssistantOf (johnson, smith) states that johnson is an assistant of professor smith .
2

Typical reasoning tasks over description logic knowledge bases include concept and role retrieval, i.e.,
listing all individuals or pairs of individuals which are members of a given concept or role, respectively.
In the example above one may ask for all members of Student and expects as answer johnson as he is a
PhDStudent and thus, by the terminological knowledge, also a Student .

Combining ontologies and answer set programming is especially valuable as existing domain knowledge
can be accessed from logic programs. To this end, DL-programs have been developed by [21] which have
been implemented on top of HEX programs with dedicated external atoms; where the external source features
external atoms for concept and role queries. Prior to query evaluation, concepts and/or roles are enriched by
individuals from the ASP program. This allows for advanced reasoning tasks such as terminological default
reasoning or closed world reasoning on description logic knowledge bases [11].

As description logics are monotonic, default reasoning can only be realized by the (cyclic) interacti-
on of rules and the DL knowledge base. To this end, appropriate encodings and an implementation were
developed [11]. DL-programs have, e.g., been applied in complaint management for e-government [60].
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The MELD belief merging system deals with merging collections of belief sets [52, 53], which are roughly
sets of classical ground literals. A merging strategy is defined by tree-shaped merging plans, whose leaves
are the collections of belief sets to be merged, and whose inner nodes are merging operators (provided by
the user). The structure is akin to syntax trees of terms. The automatic evaluation of tree-shaped merging
plans is based on nested HEX programs; it proceeds bottom-up, where every step requires inspection of the
subresults, i.e., accessing the answer sets of subprograms. In fact, the need for such processing has led to
develop nested HEX program.
Interactive ASP. The Answer Set Application Programming (ASAP) framework [57] allows for creating
interactive applications based on ASP. In this framework, incoming events (e.g., keyboard) are processed by
ASP and the application state is managed using fluents (as in planning). An ASAP program is rewritten to
a HEX program where each evaluation obtains fluent values and event information via HEX external atoms.
Answer sets determine future fluent values by atoms fl=val@t , which intuitively means that fluent fl has
value val at time t. Programs can contain actions (atoms starting with ’@’) as in ACTHEX, for example to
display the user interface or to quit the program.

Example 12 The following ASAP-program displays a help text and the state (on or off) of a switch. The
user can change the state using cursor keys and quit with the Q key.

#initial switch=off ←.
switch=off @next ←&event ["key.special"]("Down").

switch=on@next ←&event ["key.special"](Üp").

@exit(0)←&event ["key.normal"]("q").

@drawText(2, 2, Üp/Down: switch, Q: quit")← .

@drawText(5, 4, State)←switch=State@next .

Here the time next refers to the state after the currently processed event. 2

ASAP is a hybrid HEX use scenario: an ASAP-program is rewritten into a HEX program, transforming fluent
atoms into regular atoms and adding rules containing external atoms. At the same time an ASAP program
can use arbitrary external atoms, e.g., for string processing. ASAP combines computation outsourcing (string
processing) with information outsourcing (events and fluents) and uses HEX as a clean interface to the real
world.

7 Discussion

In the previous sections, we have considered different types of use case scenarios for formalisms from the
HEX family. We now briefly discuss some advantages and drawbacks of these types. However, we remain at
the surface and the considerations only serve as a general guideline to select the way for realizing a concrete
application using HEX. After that, we consider related work.

7.1 Comparison of the use case types

Unsurprisingly, using the HEX formalism directly provides maximal flexibility to the user, as this allows
one to formulate arbitrary rules and to access arbitrary external sources from the rules, provided that the
external predicates are defined and implementations are provided as plugins. Depending on the conceptual
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complexity of the application, this might come at the price of a low user convenience due to the need
for heavy-weight and repetitive syntax in the problem encodings. Furthermore, the manual implementation
of external source access through a plugin requires some effort (as in general, if one aims at coupling
systems via interfaces), and depending on experience and technical skills may be time-consuming; besides
development also proper testing and validation of the plugin have to be considered.

In contrast to this, HEX program extensions as well as automated translations of frontends in other KR
formalisms into HEX programs provide one with the possibility to use specific language features for expres-
sing particular aspects of a problem. This comes with the advantage of eliminating some repetitive work,
where the same rule patterns need not be written over and over again, and in this way also helps to reduce
errors that are made by spoiled copy and paste. Furthermore, using designated language constructs gives
the solver as in ordinary ASP more insight into the user’s intention in writing a certain part of the program,
which may be exploited for performance enhancements; guessing such intention respectively discovering
program parts or rule patterns that may amount to an intention is expensive in general. For a simple exam-
ple, the constraint c′ in (4) is equivalent to the rule

a← not &check [color , edge](),not a; (6)

where a is a fresh atom. The explicit form of c′ allows us to immediately conclude that the external atom
&check [color , edge]() must be true in every answer set; given (6), further analysis of the program is needed.

On the other hand, the use of front end translations provides limited flexibility and one is in general com-
mitted to a specific encoding. This can be disadvantageous, if for some targeted application that encoding is
not working well (e.g., for performance reasons), or some additional features or aspects should be respected
(e.g., some simple preference of alternatives). As a compromise, one can then resort to encodings that are
automatically generated, but then manually customized by the user; this has been advocated and used e.g.
in [21]. However, this approach requires a proper grasp and understanding of the encoding produced by the
translation, which may require considerable effort, the more if—as happens often in practice—optimizations
are applied to the code (sometimes without proper documentation, and based on implicit assumptions).

7.2 Related Work

Despite the terminological similarity, customizable functions as supported by GRINGO and so called frozen
atoms supported by CLASP (sometimes called external atoms) are different from external atoms as supported
by HEX. GRINGO supports custom functions (implemented in the scripting languages Lua or Python) which
are evaluated during the program grounding and thus compiled away prior to the solving step. They are
intended to be used as customizable built-in atoms, but no cyclic dependencies are possible. The frozen
atoms of CLASP are sometimes also called external atoms; they are protected from optimization, and their
truth values can be determined from code (e.g., in Python) that controls the grounding and solving process,
for example in advanced techniques such as incremental solving. Using frozen atoms requires that the solver
and the truth values of atoms are controlled “from outside” using imperative code. HEX inverts the roles of
ASP and imperative code: the DLVHEX solver engine controls the ASP evaluation and evaluates external
atom semantics “inside” the ASP evaluation on demand and whenever needed. That is, with HEX external
semantics is evaluated within evaluation of ASP semantics, while with CLASP, ASP semantics is evaluated
within imperative code that configures the truth values of frozen atoms.

Besides GRINGO and CLASP, there are extensions of ASP towards the integration of specific external
sources. Examples are constraint ASP as an integration of ASP with constraint programming as realized
e.g. in CLINGCON [50] and Ezcsp [2], or DL-programs as a native combination of ASP with ontologies [22].
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In contrast, HEX allows for the integration of arbitrary external sources through a general interface and their
flexible combination; the other use cases correspond to special cases thereof.

8 Conclusion

Arriving at the end, we give a brief summary and an outlook on future work.

8.1 Summary

HEX programs extend answer set programs with access to external sources through an API-style interface,
which has been fruitfully deployed to various applications. In this paper, we briefly discussed how the
formalism can be used for problem solving in KR.

To this end, we first presented the general methodology as a strict generalization of ASP. In particular, the
prominent guess and check paradigm can be seamlessly combined with external sources, both in the guessing
and in the checking part. Also other ASP techniques, such as saturation, can be used with external sources.
We then presented two typical types of external sources for computation outsourcing and for information
outsourcing, respectively, and for combinations thereof. We further distinguished three typical use case
scenarios of HEX programs, namely for encoding end user applications, as a basis for language extensions,
and as a backend for other KR formalisms. For each of the scenarios, we have briefly presented existing
applications.

8.2 Open Issues and Future Work

Ongoing work includes the extension of the interface for external sources. While the current interface is
convenient, it turns out that the integration of external sources as black boxes inhibits efficient evaluation
in many cases. Low-level interfaces might be less convenient, but give the reasoner more insights into the
semantics and properties of external atoms, which might be exploited to increase efficiency. This includes
the possibility for evaluating external sources under partial interpretations and retrieving partial answers.
Such interfaces are currently under development and will be an alternative to the existing ones without
replacing them.

Another issue concerns robustness of performance. Currently, in some cases small changes in the en-
coding and in the run options of the solver influence the efficiency considerably. While such effects are
understandable to users who know the algorithms underlying the systems well, inexperienced users may
face difficulties in crafting efficient encodings for their applications. The same issue applies to ordinary
ASP as well, and thus is not a genuine issue for HEX programs; indeed, [29] states that “crafting an [plain]
ASP encoding that also leads to the best possible system performance is yet not as obvious as it might seem.”
In general, the highly declarative nature of ASP and its intrinsic intractability comes at a computational pri-
ce, and handling different inputs smoothly requires complex and sophisticated algorithms, where also the
use of heuristics is indispensable; the presence of external atoms adds to this difficulty.

This naturally leads to two directions for potential future work. On the solver side, the problem might
be mitigated, but may not be expected to be eliminated, by more advanced optimization methods and heu-
ristics, which automatically optimize the input program and determine optimal solver options to process
the current input program. On the modeling side, an interesting issue are methodologies for deciding when
it makes sense to outsource computation for efficiency reasons, and methodologies for encoding problems
with external atoms to ensure the best possible efficiency.
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