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Abstract

This document provides a user guide for the Answer Set Programming (ASP)
system called dlvhex. ASP is a declarative problem solving paradigm, rooted
in logic programming and nonmonotonic reasoning, which has been gaining
increasing attention during the last years. The dlvhex system is a reasoner
for computing the models of so-called hex-programs, which are an extension
of answer-set programs towards integration of external computation sources.
This guide aims at explaining the syntax of hex-programs and the usage of
the dlvhex solver to enable users to interoperate with a broad set of external
computation sources. The guide refers to version 2.4 and higher.
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1 Introduction

The dlvhex system is a logic-programming reasoner for computing the models
of so-called hex-programs [3], which are an extension of answer-set programs
towards integration of external computation sources. To enable access to ex-
ternal information, hex-programs extend programs with external atoms, which
allow for a bidirectional communication between the logic program and external
sources of computation (e.g. description logic reasoners and Web resources) [4].
The system is motivated by the need to interoperate with a broad set of ex-
ternal computation sources and the observation, that for meta-reasoning in the
context of the Semantic Web, no adequate support is available in ASP to date.
To overcome this, hex-programs support higher-order logic programs (which
accommodate meta-reasoning through higher-order atoms) with external atoms
for software interoperability.

This guide is intended to help beginners make use of the system and provide
a reference for the features of the tool. The language of hex-programs is an
extension of disjunctive datalog, it largely realizes the ASP-Core-2 Standard [2]
and extends it with external and high-order atoms.

1.1 Download and Installation

dlvhex is written in the C++ programming language and published under the
GNU Lesser General Public License [9]. In this section we provide an overview
of the download and installation process. For a quick overview, some examples
and the possibility to evaluate hex-programs directly in the browser, an on-
line demo is available at http://www.kr.tuwien.ac.at/research/systems/

dlvhex/demo.php.

1.1.1 Building from source

There are two possibilities to install dlvhex from source: install the latest
stable release of the system or install the latest development version which may
not be stable. Both ways are described in the following sections.

1.1.1.1 Latest release version (tarball) Packages (tarballs) of dlvhex
can be downloaded from the project page http://www.kr.tuwien.ac.at/res

earch/systems/dlvhex/. The latest release of the software runs on Linux-
based systems, Mac OS X and Microsoft Windows. Installation instructions are
given in the INSTALL and README files of dlvhex and plugin source directories.
Changes between versions can be found in the NEWS files and details about
changes in the ChangeLog file.

The system requires the following packages: git, gcc and g++ (version 4.8
or later), BZ2, Python (version 2.7 or later), bison, scons, cmake, automake,
autoconf, Curl (version 4 or later), libtool, and Boost (version 1.55 or later).

After downloading Boost from http://www.boost.org/, the following steps
should be followed in order to install it in a way usable for dlvhex.

Here and in the following, commands prefixed with “$” sign are the com-
mands executed from the system shell. The following commands need to be
executed:

$ ./bootstrap.sh
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$ ./b2 install --prefix=BPREFIX

In this command, BPREFIX is the directory where Boost should be installed.
After downloading the latest release version of dlvhex, the following se-

quence of commands dlvhex will configure dlvhex:

$ ./configure

To enable the Python features of dlvhex, --enable-python needs to be
added as an additional parameter to configure. If Boost was installed in a
non-standard location, the parameter --with-boost=BPREFIX also needs to be
added.

After configuration, the following command builds the system:

$ make

To allow using of multiple cores one should specify the -jN option to make
use of N cores. Finally,

$ make install

installs the package. The installation location can be set to HPREFIX by
adding parameter --prefix=HPREFIX to configure.

1.1.1.2 Development version (git clone) The source code of dlvhex is
hosted on github at https://github.com/hexhex/. To get the latest develop-
ment version it is necessary to clone the repository as follows:

$ git clone https://github.com/hexhex/core --recursive

After cloning it is necessary to execute the script bootstrap.sh.

$ ./bootstrap.sh

After that, the steps from Section 1.1.1.1 (configure, make, and make

install) should be followed to complete the installation.
We provide a script for installing dlvhex automatically on Ubuntu systems:

https://github.com/hexhex/core/blob/master/scripts/setupdlvhex.sh.
Once installation is completed, dlvhex can be used as follows:

$ dlvhex2 program.hex

where program.hex refers to the input program. Various additional com-
mand line options are available and explained in Section 6.

1.1.2 Pre-built binaries

Pre-built binaries of dlvhex are available for some systems. For details see our
website http://www.kr.tuwien.ac.at/research/systems/dlvhex/.

1.2 Outline

This guide is organized as follows. Section 2 provides an introductory example
including problem instance, encoding and its solution. Section 3 explains the
input language of dlvhex. In Section 4 we introduce three real life problems
which can be solved using hex. Section 5 is focused on the description of
external interfaces which are written in C++ or Python. Input-related warnings
and errors are described into more details in Section 7.
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2 Quickstart

As an introductory example, we consider a social graph as used in social net-
works. Beginning from a simplified scenario, we stepwisely extend it to present
various features of dlvhex.

2.1 Problem Setting

A social graph is a graph that represents interconnections among people, groups
and organizations in a social network. Services such as Facebook facilitate
the exchange of information, news, photographs, literary works, music, art,
software, opinions or even money among users. Individuals and organizations,
called actors, are nodes of the graph. In this environment, the social graph for a
particular actor consists of the set of nodes and edges which model other actors
that are directly connected to that actor. Interdependencies, called ties, can be
multiple and diverse, including characteristics or concepts such as age, gender,
ethnical group, genealogy, chain of command, ideas, financial transactions, trade
relationships, political affiliations, club memberships, occupation, education and
economic status. Social graphs contain edges between one person and related
people, places, and things they interact with online. For this particular example,
we consider a simulation of social graphs as used, e.g., by Facebook.

Consider the situation where a birthday party should be organized and a
specific number of friends will be invited. The person X who organizes the
event wants to call his or her friends and friends of these friends up to some
distance from the root node X. A depth constraint specifies how many edges
we can go away from the root node X.

We make use of an external source which returns for a given person all direct
friends, while a direct access to the full graph is not available due to privacy
issues imposed by social networks. Also, due to the large amount of data,
importing the whole graph would be infeasible (billions of users), while only a
small fraction is relevant for the application. Given a person X, the external
source retrieves all neighbour nodes (successor nodes). More details about the
external source implementation are given in Section 5.

2.2 Encoding

The problem can be modeled as a hex-program as follows:

Example 2.1 (download example 2 1.hex).

r1: personOfInterest(john).

r2: friendOfDegree(P , 0 ,P) : - personOfInterest(P ).

r3: friendOfDegree(P ,DegPlus,F2 ) : - friendsOfDegree(P ,Deg ,F1 ),
&friendsOf [F1](F2),
DegPlus = Deg + 1 ,
DegPlus < 2 ,
#int(DegPlus),#int(Deg).

r4: invite(P) ∨ ninvite(P) : - friendOfDegree(J ,X ,P),#int(X ).

r5: : - not 4 = #count{P : invite(P)}.
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The complete source code for this example is available at https://github.
com/hexhex/manual/tree/master/example_2_1.

Rule r1 specifies the person who organizes the event and initializes the
search. Rule r2 defines that the initiating person has distance 0 from him-
or herself.

The most interesting part of the program is rule r3. It cyclically defines
friends of already known persons using an external atom and increments the
distance with each definition. Variables used in these predicates are:

• F1 to represent the person for which we are looking for the successors

• F2 is the variable for successor nodes of F1

• P represents the person of interest

• Deg and DegPlus are variables used to compute the distance from the root
node

The external atom &friendsOf [F1](F2) has one input and one output param-
eter. For input F1 , it finds all successor nodes of F1 and returns them in F2 .
In other words, &friendsOf [F1](F2) is true for all pairs (F1 ,F2 ) such that F2
is a direct friend of F1 in the graph. The implementation of the external atom
is discussed in Section 5. The atom

friendOfDegree(P,Deg, F1)

is true for all friends F1 of P that we already know; it binds the variable F1 to
a person for which we want to discover more successor nodes. This value is used
as input to the external source &friendsOf [F1](F2) which returns all friends
F2 of F1. For each found friend F2 we define:

friendOfDegree(P,DegPlus, F2)

where DegPlus is Deg incremented by 1 to represent that the distance to F2 is
by 1 greater than to F1. The condition

DegPlus < 2

ensures the distance is limited to 2.
We now move to the part where we handle invitations. Rule r4 guesses all

possible persons to be invited or not. Since atom friendOfDegree(J ,X ,P) is
true for person P , that person will be either invited or not.

We limit the number of invited persons by using an integrity constraint from
the r5 It ensures that exactly 4 persons are invited to the party.

The combination of r4 and r5 can be replaced by a construction called
‘choice‘ as shown in r5′. This rule also allows to specify lower and upper bound
on the number of persons independently.

r5′: 3<={invite(P ) : friendOfDegree(J,X, P )}<= 3.
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Figure 1: Social Network Graph

2.3 Problem Solution

Now we are ready to solve our social graph problem. Consider that we have the
data as specified in the Figure 1. To compute the answer sets representing the
solution, dlvhex should be invoked as follows:

$ dlvhex2 --pythonplugin=example 2 1.py example 2 1.hex

where example 2 1.hex is hex-program and example 2 1.py is the Python
plugin which realizes the external source implementation. Details of the Python
plugin interface are given in Section 5, the files can be downloaded from exam-
ple 2 1.py (the plugin) and example 2 1.edgelist (the graph in Figure 1).

The output of dlvhex is as follows:

{personOfInterest(john), friendOfDegree(john, 0 , john),

invite(john), friendOfDegree(john, 1 ,mike),

friendOfDegree(john, 1 , david), friendOfDegree(john, 1 , charly),

invite(mike), invite(david), invite(charly)}

Note that the order of the atoms and the order of answer sets does not bear any
meaning. As we specified in the previous section, we can travel at most 1 edge far
from the root node. Considering the graph given above only, John,Mike,Charly
and David are found since they are at most one edge away from the root node.
The next three atoms express who are the new friends discovered and at which
depth level. For the invitations, it is specified by using aggregates that answer
sets must have four distinct invites atoms. In the single answer set we have four
invites atoms which are invite(john), invite(mike), invite(david), invite(charly).
Note that this is the only answer set possible from this program because there
are only 4 distinct persons with depth level 1.
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If we allow the depth level to be larger there may be more answer sets found
due to the fact that more nodes will be discovered. If we decrease the minimum
number of friends to be invited to the party there may also be more than one
answer set. Consider the different example where instead of 4 persons we want
to invite only 3 persons to the party. The integrity constraint at r5 will be
modified to:

r5′′: : - not #count{P : invite(P)} = 3.

This time we have more than one answer set. Since the depth level is still 2
there will be 4 persons discovered again, however, out of these 4 persons we have
to invite only three of them and one of them will not be invited. According to
this we have 4 answer sets. Two of them are shown below:

{personOfInterest(john), friendOfDegree(john, 0 , john),

invite(john), friendOfDegree(john, 1 ,mike),ninvite(charly),

friendOfDegree(john, 1 , david), friendOfDegree(john, 1 , charly),

invite(mike), invite(david)}
{personOfInterest(john), friendOfDegree(john, 0 , john),

invite(john), friendOfDegree(john, 1 ,mike),ninvite(mike),

friendOfDegree(john, 1 , david), friendOfDegree(john, 1 , charly),

invite(david), invite(charly)}

(Again, note that the order of answer sets is arbitrary and does not bear any
meaning.) This time in the answer set we have ninvite(charly) and ninvite(mike)
since one friend must be discarded and only three will be invited. One can ex-
periment with the depth constraint and aggregate atom to see how the output
and answer sets will be affected.

3 Input Language

This section provides an overview of the input language of dlvhex and some
examples to illustrate the concepts.

3.1 Terms and Atoms

The vocabulary consists of terms, constants, variables and external predicates.
Terms may be integers, constants, function terms, strings and variables as well
as the “ ” token. Constant names begin with lowercase letters or are strings
enclosed in quotation marks. Variable names begin with uppercase letters.

Function terms (uninterpreted functions) are complex terms composed of
a name (like a constant) and one or more terms as arguments. For instance,
at(john, t(10 ),X ) is a function term with three arguments: constant john, an-
other function term t(12 ) with an integer argument, and variable X [8].

While a constant, function term, or string, always represents itself; a variable
is a placeholder for all variable-free terms in the language of a logic program.
An anonymous variable is a special variable denoted by “ ” (the underscore):
each occurrence of “ ” represents a new and unique variable which does not

7



occur anywhere else in the same rule. This might be used to specify that an
argument can be ignored or does not matter.

An atom has the form p(t1 , . . . , tn) where p is a predicate name, t1, . . . , tn
are terms and n< 0 is the arity of the predicate p; an atom p() of arity 0 is
usually written as p without parentheses. Atoms can be classically negated
using “-”, yielding q and - q.

Example 3.1. The following example illustrates the above concepts.

Constants: a, 1, a1 , 9862 , c1 , ”hello”
Variables: X, Y , Z
Atoms: parent(X,Y ), employee(name, salary, ID, location)
Predicates: parent , employee

3.2 Normal Programs and Integrity Constraints

A hex-program is constructed using facts, rules and integrity constraints.

Fact: A0.
Rule: A0 : - L1,. . . , Ln.

Constraint: : - L1,. . . , Ln.

The sign “: -” is meant to be an implication to the left (←). The left side of
a rule is called its head, and its right side is called body. The head A0 of a
rule or a fact is an atom. In the body of a rule or an integrity constraint,
every Lj , 1≤ j≤n, is a literal of the form A or not A, where A is an atom and
the connective not denotes default negation. We say that literal L is positive
if it is an atom and negative otherwise. While the head atom A0 of a fact
must unconditionally be true, the intuitive reading of a rule corresponds to an
implication: if all positive atoms in the rule body are true and negated atoms
are false, then the head A0 must be true. On the other hand, an integrity
constraint is a rule that filters solution candidates: the literals in its body must
not jointly be satisfied. A result of a dlvhex computation is called an answer
set which is a consistent explanation (model) of the world given the knowledge
about the world represented by rules as intuitively explained above.

We here give only informal semantics; for a formal description of semantics
of normal ASP programs and hex-programs we refer to [7] and [3], respectively.

Example 3.2. Consider the following logic program:

r1: joke.

r2: laugh : - joke.

The first line here represents an atom which is always true. The second line is
a rule and reads as “If joke is true, laugh must also be true”. Also we can read
this as “from joke follows laugh”. The single answer set of the program above
is {joke, laugh} since they are the atoms which are true in the program.

Another important feature of dlvhex is default negation which is also called
“negation as failure”. Intuitively, negation as failure means: if we cannot show
truth of an atom, then we may safely assume that it is false.
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Variables in default negated atoms must be safe which means that they must
also occur in a positive atom in the body of the same rule.

Example 3.3. With default negation we can represent the complementary
graph comp edge(X,Y ) of a graph given as atoms edge(X,Y ). The comple-
mentary graph has the same nodes as the original graph, but of all possible
edges it has exactly those edges, which do not exist in the original graph.

r1: node(X) : - edge(X, ).

r2: node(Y ) : - edge( , Y ).

r3: comp edge(X,Y ) : - node(X),node(Y ),not edge(X,Y ).

Note that node(X) and node(Y ) are included in the body to satisfy the safety
requirement for variables X and Y . Also note the anonymous variables “ ”.

Default negation allows for generating multiple answer sets that are equally
correct as models of a single program. Integrity constraints eliminate those
answer set candidates that make the body of the constraint true.

Example 3.4. Consider the following example for coloring nodes of a graph
either red, green or black.

r1: node(X) : - edge(X,Y ).

r2: node(Y ) : - edge(X,Y ).

r3: colored(X, r) : - node(X),not colored(X, g),not colored(X, b).

r4: colored(X, g) : - node(X),not colored(X, r),not colored(X, b).

r5: colored(X, b) : - node(X),not colored(X, r),not colored(X, g).

r6: : - edge(X,Y ), colored(X,C), colored(Y,C).

r7: edge(2, 4). edge(2, 3). edge(5, 5).

r8: edge(4, 6). edge(4, 5). edge(5, 7).

r9: edge(6, 7).

In the first two rules we extract the nodes implicitly given by the edges of
the graph. Rules r3-r5 describe a guess such that for each node X, either
colored(X, r), colored(X, g), or colored(X, b) will be true in answer sets. These
three rules generate all possible node color combinations. Rule r6 is a constraint,
sometimes called check, that deletes all color combinations which do not satisfy
the requirement that there may be no edge between two nodes of equal color.

3.3 Classical Negation

dlvhex supports two kinds of negation. Here we will emphasize the difference
between explicitly expressing falseness of an atom and having it done by negation
as failure. The connective not expresses default negation, i.e. a literal not A is
assumed to hold unless atom A is derived to be true. This is also called Closed
World Assumption. In contrast, the classical (or strong) negation of an atom
holds only if it can be derived. In other words if there is no evidence that an
atom is true, it is considered to be false. Classical negation “-” is permitted in
from of an atom. The semantic relationship between A and - A is simply that
they must not jointly hold.
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Example 3.5. Imagine a situation where an agent has to cross a railroad. The
agent should cross it if there is no train approaching. With this description, one
might specify the following program:

r1: cross railroad : - not train approaches.

This program has the answer set {cross railroad} because train approaches is
assumed to be false (as it being true is not stated anywhere). This kind of
negation is called negation as failure.

Example 3.6. Imagine, instead, that we use the following program which uses
classical negation (sometimes called strong or true negation).

r1: cross railroad : - - train approaches.

Since - train approaches is not known to be true, the program has only an empty
answer set.

Note the difference between the two kinds of negation: in the first example,
the railroad track is crossed if there is no information on any trains approaching;
while in the second example, it is only crossed if we can prove that no train
comes. In that sense classical negation is stronger than negation as failure.

3.4 Disjunctive Programs

Disjunctive logic programs permit the connective “∨” between atoms in rule
heads.

Fact: A0 ∨ . . .∨ Am.
Rule: A0 ∨ . . .∨ Am : - L1, . . . , Ln.

A disjunctive head holds if at least one of its atoms is true. If all body literals
L1, . . . , Ln of the rule specified above are known to be true then the head also
needs to hold, i.e. one of the atoms in A0 ∨ . . .∨ Am needs to be true. If our
program just contains the fact “a ∨ b” we obtain two answer sets {a} and {b}.

Disjunctive logic programs intuitively make the minimum of disjunctive
heads true that are necessary to satisfy all constraints to obtain an answer
set. Formally speaking semantics are not that simple: disjunctive programs
have a higher expressive power than normal logic programs (it is possible to
encode subset minimality using advanced techniques such as saturation that we
will not discuss further in this manual).

Example 3.7. In the Example 3.4 we could replace the guess in r3-r5 by the
following single disjunctive rule:

colored(X , r) ∨ colored(X , g) ∨ colored(X , b) : - node(X ).

This generates all possible node color combinations.

Example 3.8. Suppose we met a friend recently and know that he had one of
his arms broken, but do not know which one. Now suppose we did not receive a
greeting card for your birthday and wonder if you should be angry on him or he
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just could not write because his right hand is broken. Suppose that we encode
this reasoning problem in hex.

r1: left arm broken ∨ right arm broken.

r2: can write : - left arm broken.

r3: be angry : - can write.

For this program, dlvhex will generate two possible explanations. The first rule
is called a disjunctive rule which is read as “For sure, either the left or the right
arm is broken.” Without being sure which arm is broken dlvhex will evaluate
the program and produce the two models {left arm broken, can write, be angry}
and {right arm broken}.

3.5 Built-in Arithmetic Functions

dlvhex supports integers and the following arithmetic operators: + (addition),
− (subtraction), ∗ (multiplication), and / (integer division). Atom +(X,Y, Z)
is true, iff Z is the sum of X and Y and likewise for other operators.

Alternatively to prefix notation one can also use infix notation to use built-in
arithmetic functions in dlvhex. For instance +(X ,Y ,Z ) alternatively can be
written as Z = X + Y .

Example 3.9. Suppose the following program.

r1: a(6).

r2: b(2).

r3: c(X,Y, Z) : - a(X), b(Y ),+(X,Y, Z).

r4: d(X,Y, Z) : - a(X), b(Y ),−(X,Y, Z).

r5: e(X,Y, Z) : - a(X), b(Y ), ∗(X,Y, Z).

r6: f(X,Y, Z) : - a(X), b(Y ), /(X,Y, Z).

The single answer set for the example above is:

{a(6), b(2), e(6, 2, 12), f(6, 2, 3), c(6, 2, 8), d(6, 2, 4)}.

The infix alternatives of rules r3-r6 above are as follows.

r3′: c(X,Y, Z) : - a(X), b(Y ), Z = X + Y.

r4′: d(X,Y, Z) : - a(X), b(Y ), Z = X − Y.
r5′: e(X,Y, Z) : - a(X), b(Y ), Z = X ∗ Y.
r6′: f(X,Y, Z) : - a(X), b(Y ), Z = X/Y.

3.6 Built-in Comparison Predicates

dlvhex features a total order among variable-free terms using built-in predi-
cates == (equal), ! = or <> (not equal), < (less than), <= (less than or equal),
> (greater than) and >= (greater than or equal). All ground terms and integers
can be compared this way. Integer comparison is according to numeric values.
All other comparisons just guarantee a fixed ordering over all terms.
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Example 3.10. Suppose we have the following program.

r1: a(1).

r2: a(2).

r3: b(1).

r4: c(X,Y ) : - a(X), b(Y ), X ! =Y.

r5: d(X,Y ) : - a(X), b(Y ), X <>Y.

r6: e(X,Y ) : - a(X), b(Y ), X < Y.

r7: f(X,Y ) : - a(X), b(Y ), X > Y.

r8: g(X,Y ) : - a(X), b(Y ), X <=Y.

r9: h(X,Y ) : - a(X), b(Y ), X >=Y.

r10: i(X,Y ) : - a(X), b(Y ), Y == 1.

The single answer set this program is

{a(1), a(2), b(1), i(1, 1), i(2, 1), c(2, 1),

d(2, 1), f(2, 1), g(1, 1), h(1, 1), h(2, 1)}.

3.7 Conditions and Conditional Literals

A conditional literal is of the form

L0 : L1, . . . , Ln

where every Lj with 0≤ j≤n is a literal, the literals L1, . . . , Ln are called
condition, and “:” resembles the vertical bar (|) in mathematical set notation.
The condition is expanded into all ground versions of L0 where the condition is
true. For example, the rule a : - b : c. yields a whenever either c is false (whether
b holds or not) or both b and c are true.

Together with variables, conditions allow for specifying collections of expres-
sions within a single rule or aggregate. This is particularly useful for encoding
conjunctions (or disjunctions) over arbitrarily many ground atoms as well as for
the compact representation of aggregates [8].

Example 3.11. Consider the following program for scheduling a meeting [8].

r1: person(jane). person(john).

r2: day(mon). day(tue). day(wed). day(thu). day(fri).

r3: available(jane) : - not on(fri).

r4: available(john) : - not on(mon),not on(wed).

r5: meet : - available(X) : person(X).

r6: on(X) : day(X) : - meet .

Conditions are used in r5 and r6. The conjunction in r5 is instantiated by
replacing X in available(X ) with all ground terms t such that person(t) holds,
namely X = jane and X = john. The condition in r6 is contained in the head
of the rule and turns into a disjunction over all ground instances of on(X ) such
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that X is substituted by terms t for which day(t) holds, i.e., whenever meet
holds, one of on(t) for which day(t) is true should hold.

This program has the following two answer sets.

{meet , on(tue), day(mon), day(tue), day(wed), day(thu), day(fri),

person(jane), person(john), available(jane), available(john)}
{meet , on(thu), day(mon), day(tue), day(wed), day(thu), day(fri),

person(jane), person(john), available(jane), available(john)}

3.8 Aggregates

Aggregates allow to express properties over sets of elements. hex-programs with
aggregates often allow clean and concise problem encodings by minimizing the
use of auxiliary predicates and recursive programs, and help the programmers
to depict problems in a more natural way. For instance, we may state that
the sum of a semester’s course credits must be at least 20, or that the sum
of shopping items must not exceed 30 Euros. We can say that an aggregate
is a function on a set of tuples that are normally subject to conditions. By
comparing an aggregated value with given values, we can extract a truth value
from an aggregate’s evaluation, thus obtaining an aggregate atom. Aggregates
can occur in the bodies of rules and constraints, possibly negated using negation-
as-failure [8]. The form of an aggregate atom is as follows:

s1 ≺1 α{t1, . . . , tn : L1, . . . , Lm} ≺2 s2

where ti are terms, Li are literals, α is a function that evaluates the numerical
value of the aggregate, and ≺1/≺2 are comparison predicates that compare the
resulting value with the terms s1/s2. An aggregate is true if the comparison is
true with respect to evaluating α on those tuples t1, . . . , tn for which L1, . . . , Lm

in the aggregate body is true.
Supported aggregate functions α are #count , #sum, #times, #min, and

#max .

Example 3.12. Consider the following program where we want to count how
many employees of the company earn more than 1000.

r1: emp(1 , goofie, 1250 ).

r2: emp(2 ,willy , 750 ).

r3: emp(3 ,woody , 750 ).

r4: emp(4 , jerry , 900 ).

r5: emp(5 , tom, 1050 ).

r6: over1000 (I, S) : - emp(I,N, S), S > 1000.

r7: over1000nr(X) : - #count{I : over1000 (I,W )} = X,#int(X).

Intuitively the aggregate is expanded into

#count{over1000(1, 1250), over1000(5, 1050)}
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and the (symbolic) set of tuples I appearing in the aggregate looks as follows:

{〈1〉, 〈5〉}.

The aggregate function #count returns the cardinality of the symbolic set to
which it is applied, in this case it returns 2.

As a result this program has the following unique answer set.

{emp(1 , goofie, 1250 ), emp(2 ,willy , 750 ), emp(3 ,woody , 750 ),

emp(4 , jerry , 900 ), emp(5 , tom, 1050 ),

over1000 (1 , 1250 ), over1000 (5 , 1050 ), over1000nr(2 )}

Aggregate functions get as input the set of tuples from the aggregate and
they operate on the first item of these tuples.

Example 3.13. Suppose we want to know how much the company spends on
salaries, then we can use the following rule.

r8: salaryTotal(X ) : - #sum{S, I : emp(I ,N ,S )} = X.

The symbolic set for the rule r8 consists of 5 elements:

{〈1250, 1〉, 〈750, 2〉, 〈750, 3〉, 〈900, 4〉, 〈1050, 5〉}.

The #sum function returns the sum over the first elements of all tuples in the
set, therefore the answer set contains the fact salaryTotal(4700 ).

Note that the first term in the tuple is the salary S, but we need also the
second term I in order to get the correct result: consider the simplified rule

r′8: salaryTotal(X ) : - #sum{S : emp(I ,N ,S )} = X.

without I: the symbolic set with r′8 looks as follows.

{〈1250〉, 〈750〉, 〈900〉, 〈1050〉}

It contains only one element for both employees with salary 750, therefore we
obtain the incorrect result salaryTotal(3950 ).

The aggregate function #times computes the product of the first values
of tuples in the symbolic set. When applied over the empty set, #times re-
turns 1. The aggregate function #min (resp., #max ) returns the minimum
(resp., maximum) value of the first values of tuples in the symbolic set. Note
that one aggregate body can contain multiple symbolic set constructors of form
t1, . . . , tn : L1, . . . , Lm by separating them using “;”.

3.9 Optimization

Introducing weak constraints into hex-programs allows us to formulate several
optimization problems in an easy and natural way. While standard constraints
(integrity constraints, strong constraints) always have to be satisfied, weak con-
straints can be satisfied at a cost and the answer sets of a program P with a
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set W of weak constraints are those answer sets of P which minimize the cost
of violated weak constraints.

Weak constraints can be weighted according to their importance (the higher
the weight, the more important the constraint). In the presence of weights,
best models minimize the sum of the weights of the violated weak constraints.
Weak constraints can also be prioritized. Under prioritization, the semantics
minimizes the violation of the constraints of the highest priority level first; then
the lower priority levels are considered one after the other in descending order.

Weak constraints are specified as follows.

:∼ b1 , . . . , bn . [w@l , t1 , . . . , tm ]

As in aggregates, t1 , . . . , tm , m> 0, are terms that specify a symbolic set over
which the cost of constraint violations is computed. As in a normal rule,
b1 , . . . , bn , n> 0, are literals, and w and l are terms standing for a weight and
a level. If omitted, the level defaults to 0.

Example 3.14. Consider we want to compute the minimum spanning trees of
a weighed directed graph.

r1: root(a).

r2: node(a). node(b). node(c). node(d). node(e).

r3: edge(a, b, 4). edge(a, c, 3). edge(c, b, 2). edge(c, d, 3).

r4: edge(b, e, 4). edge(d, e, 5).

r5: in tree(X,Y,C) ∨ out tree(X,Y ) : - edge(X,Y,C), reached(X).

r6: : - root(X), in tree( , X,C).

r7: : - in tree(X,Y,C), in tree(Z, Y,C), X ! =Z.

r8: reached(X) : - root(X).

r9: reached(Y ) : - reached(X), in tree(X,Y,C).

r10: : - node(X),not reached(X).

r11: :∼ in tree(X,Y,C).[C@1, X, Y, C]

The fact r1 of the example above defines the root node of a tree. Nodes and
edges are defined in r2 and r3. Rule r5 guesses for each edge from node X to
a node Y (node X is already reached) whether it is in the minimum spanning
tree or out of it. The integrity constraint r6 ensures that there is no incoming
edge to the root node. Rule r7 eliminates all answer sets where there are two
outgoing edges going to the same node Y . In r8 and r9 we compute all reached
nodes and r10 removes all answer sets where there is some node which is not
reached.

Rule r11 is a weak constraint with weight C and level 1. Intuitively this
constraint says that using an edge has a cost corresponding to the weight of
the edge. As a consequence, minimizing cost of the answer set will find a tree
starting at the root node reaching all nodes with minimal cost, i.e., a minimal
spanning tree.

The best answer set has cost 12 at level 1 and is as follows (omitting facts).

{reached(a), reached(b), reached(c), reached(d), reached(e),
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out tree(a, b), out tree(d , e),

in tree(a, c, 3 ), in tree(b, e, 4 ), in tree(c, b, 2 ), in tree(c, d , 3 )}

The complete source code for this example is available at example 3 opti.hex.
To obtain all optimal answer sets execute the following command.

$ dlvhex2 example 3 opti.hex

To obtain all answer sets, even non-optimal ones execute the following.

$ dlvhex2 example 3 opti.hex --weak-allmodels

More examples can be found in the DLV-User Manual [1].

3.10 Higher-order Atoms

hex-programs are non-monotonic logic programs admitting high-order atoms,
which are atoms containing a variable predicate symbol (instead of a constant).
A high-order atom allows to quantify values over predicate names, and to freely
exchange predicate symbols with constant symbols, like in the rule

C(X)← subclassOf(D,C),D(X)

where C(X) and D(X) are high-order atoms. An atom can be seen as a
tuple (Y0, Y1, . . . , Yn), where Y0, Y1, . . . , Yn are terms and n ≥ 0 is the arity of
the atom. Intuitively, Y0 is the predicate name, and we thus also use the more
familiar notation Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant, it is
high-order if Y0 is a variable.

For example, (x, rdf : type, c), node(X), and D(a, b), are atoms; the first
two are ordinary atoms.

3.11 External Atoms

External atoms are the central feature that distinguishes hex-programs from
normal ASP programs.

Through external atoms, hex-programs can communicate with other sources
of computation; this can be used to model part of a program outside of ASP
(e.g., parts that cannot be modeled in ASP such as 3D simulations or Description
Logic reasoning) or to import knowledge into ASP (e.g., from Semantic Web
triplestores or from databases).

An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are the two lists of terms (called input and
output lists, respectively), and &g is an external predicate name.

Intuitively, an external atom provides a way for deciding the truth value
of an output tuple depending on the input tuple and depending on the truth
of input predicates in the answer set. An external atom can have three kinds
of inputs: predicate input provides the truth values of all atoms of a predicate
to the computation, while constant input only provides the constant symbol
to the computation. The third input type is tuple input which allows an arbi-
trary amount of constant inputs as arguments. The type of an input must be
specified when implementing the external computation in the dlvhex API (see
Section 5).
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Example 3.15. For instance, the rule

reached(X)← &reach[edge, a](X).

defines the predicate reached and takes values from the external predicate
&reach, which computes in an external program all the reachable nodes X
in the graph specified by predicates edge starting from node a. Here we assume
&reach takes a predicate as first input and a constant as second input. Then
edge is a predicate input: the computation of &reach depends on the truth
values of predicate edge in the answer set. On the other hand, a is a constant
input: the computation of &reach only uses the symbol a.

Note that because we used a predicate input in the previous example, the
above example can define reachability in a graph that is part of a guessed in
an answer set. This is a feature unique to dlvhex: it cannot be emulated by
externals in Gringo (which have to be computed during grounding, while dlvhex
computes external atoms during both grounding and solving).

In the next example we give a full program with external atoms including
their implementation.

Example 3.16. The following program concatenates strings specified by the
system predicate, computes a set difference, and then associates items in the
resulting set and the strings in a unique mapping.

r1: system(dlvhex ). system(clasp).

r2: sayhello(X ) : - &concat [hello,Y ](X ), system(Y ).

r3: set1 (a). set1 (b). set1 (c).

r4: set2 (b). set2 (c). set2 (d).

r5: set3 (X) : - &setdiff [set1 , set2 ](X ).

r6: pairs(X,Y ) : - &sortandmap[sayhello, set3 ](X,Y ).

r2 concatenates strings to produce messages in sayhello(X), r5 computes a set
difference in set3 (X), and r6 produces a unique mapping between hello messages
and the set difference.

There are three different external sources in this program, &concat has a
tuple input and one output and computes as output the concatenation of all
inputs, &setdiff uses two predicate inputs and also has one output and computes
as output the set difference of constants in the first and the second input, finally
&sortandmap has two predicate inputs and two outputs and computes a sorted
one-to-one mapping between constants in first and second inputs.

These external sources are implemented in the following Python plugin:

import dlvhex

# concat has one input parameter o f type t up l e
# (= a r b i t r a r i l y many cons tant s ) ,
# which s p e c i f i e s the terms to be concatenated
def concat ( tup ) :

# s t a r t wi th empty s t r i n g
r e t = ””
for x in tup :

# append a l l input cons tant s in sequence
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r e t = r e t + x . va lue ( )
# output the f i n a l s t r i n g
dlvhex . output ( ( ret , ) )

# computes the s e t o f a l l e lements in the
# ex tens ion o f unary p r ed i c a t e s p minus q
def s e t d i f f (p , q ) :

# go over a l l input atoms (p or q )
for x in dlvhex . getTrueInputAtoms ( ) :

# ge t p r ed i ca t e /argument o f atom
pred , arg = x . tuple ( ) # pred ( arg )
# check i f x i s o f form p( arg )
i f pred == p :
# produce atom q ( arg )
qatom = dlvhex . storeAtom ( (q , arg ) )
# check q ( arg ) i s NOT in input
i f dlvhex . i s F a l s e ( qatom ) :
# then put arg in to the output
dlvhex . output ( ( arg , ) )

# computes the ex t ens ion o f unary p r ed i ca t e s p and q
# re turns unique pa i r ing between sor t ed e lements
def sortandmap (p , q ) :

# ge t a l l t u p l e s
t u p l e s = [ x . tuple ( ) for x in dlvhex . getTrueInputAtoms ( ) ]
# p and q t u p l e s
ptup l e s = f i l t e r (lambda x : x [ 0 ] == p , t u p l e s )
q tup l e s = f i l t e r (lambda x : x [ 0 ] == q , t u p l e s )
# sor t ed p and q ex t ens ions
pext = sorted (map(lambda x : x [ 1 ] , p tup l e s ) )
qext = sorted (map(lambda x : x [ 1 ] , q tup l e s ) )
# output a l l pa i r s
for out in zip ( pext , qext ) :

dlvhex . output ( out )

# r e g i s t e r e x t e rna l atoms
def r e g i s t e r ( ) :

# s e t d i f f has two pred i ca t e input parameters
# and i t s output a r i t y i s 1
dlvhex . addAtom( ” s e t d i f f ” ,

( dlvhex .PREDICATE, dlvhex .PREDICATE) , 1)
# concat has a r b i t r a r i l y many input parameters
# of type constant (=TUPLE) and i t s output a r i t y i s 1
dlvhex . addAtom( ” concat ” , ( dlvhex .TUPLE, ) , 1)
# sortandmap has two pred i ca t e input parameters
# and i t s output a r i t y i s 2
dlvhex . addAtom( ”sortandmap” ,

( dlvhex .PREDICATE, dlvhex .PREDICATE) , 2)

Answer sets of the above program are obtained by invoking

$ dlvhex2 --pythonplugin=example 3 stringset.py \
example 3 stringset.hex

We obtain the following answer set.

{system(dlvhex ), system(clasp), set1 (a), set1 (b), set1 (c), set1 (d),

set2 (b), set2 (d), set3 (a), set3 (c), sayhello(hellodlvhex ), sayhello(helloclasp),

pairs(hellodlvhex , a), pairs(helloclasp, c)}

Note that we use this example demonstration purposes, in practice set difference
can easier be realized using rules. The complete source code for this example
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is available at https://github.com/hexhex/manual/tree/master/example_

3_stringset (example 3 stringset.hex and example 3 stringset.py).

4 Examples

We now present three real life examples which are encoded and solved by hex-
programs. In Section 4.1 we solve a basic problem about choosing a proper
swimming location [3]. In Section 4.2 we solve the traveling salesperson problem.
In Section 4.3 we show how we can use dlvhex to plan routes of one or multiple
agents in the dynamic environment controlled by the external atoms.

4.1 Swimming Example

In this example we present a program which selects the best swimming location
among some available choices for a swim in Vienna. Selecting a location has to
satisfy all constraints given from the user, and properties of swimming locations
are imported from external using an external atom.

The complete source code for this example is available at https://github.
com/hexhex/manual/tree/master/example_4_swim (example 4 swim.hex and
example 4 swim.py).

4.1.1 Problem

Imagine Alice wants to go for a swim in Vienna. She knows two indoor pools
called Margarethenbad and Amalienbad (represented by margB and amalB ,
respectively), and she knows that outdoor swimming is possible in the river
Danube at two locations called Gänsehäufel and Alte Donau (denoted gansD
and altD , respectively). She looks up on the Web whether she needs to pay
an entrance fee, and what additional equipment she needs. Finally she has the
contraint that she does not want to pay for swimming. Assume Alice finds out
that indoor pools in general have an admission fee, and that one also has to pay
at Gänsehäufel, but not at Alte Donau. Furthermore Alice reads some reviews
about swimming locations and finds out that she will need her Yoga mat for Alte
Donau because the ground is so hard, and she will need goggles for Amalienbad
because there is so much chlorine in the water.

The problem we will solve with hex is to find a suitable swimming location
for Alice.

4.1.2 Encoding

A hex-program used to select an appropriate swimming location is as follows.

r1: location(ind,margB). location(ind, amalB).

location(outd, gansD). location(outd, altD).

r2: swim(ind) ∨ swim(outd).

r3: need(inoutd, C) : - &rq [swim](C ).

r4: goto(X) ∨ ngoto(X) : - swim(P ), location(P,X).
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r5: go : - goto(X).

r6: : -not go.

r7: : - goto(X), goto(Y ), X ! =Y.

r8: need(loc, C) : - &rq [goto](C ).

r9: : -need(X,money).

This program above represents Alice’s reasoning problem. Rule r1 contains a
set of facts about possible swimming locations (where ind and outd are short for
indoor and outdoor, respectively). Rule r2 chooses indoor vs. outdoor swimming
locations, and r3 collects requirements that are caused by this choice using the
external atom. In r4 it is decided whether to visit indoor or outdoor locations.
By r5 we define go if at least one location is selected, and r6 removes answer
set candidates where no location is selected. Constraint r7 ensures that only a
single location is selected. Rule r8 collects all requirements caused by the choice
of goto location. Finally r9 states that all candidate solutions where Alice has
to pay are removed.

Resources are obtained from the external atom of the form

&rq [location-choice](required -resources)

which intuitively evaluates to true if a given location-choice requires a certain
required -resource and represents such resources and their origin (inoutd or loc)
using the predicate need . The external atom &rq has input and output arity
in(&rq) = out(&rq) = 1. Intuitively &rq [α](β) is true if a resource β is re-
quired when swimming is a place in the extension of predicate α. For example,
&rq [swim](money) is true if swim(ind) is true because indoor swimming pools
charge money for swimming.

The implementation of the external atom &rq in Python is discussed in
Example 5.2 on page 31.

4.1.3 Problem Solution

To obtain all answer sets of the above program, execute the following command.

$ dlvhex2 --pythonplugin=example 4 swim.py example 4 swim.hex

The dlvhex solver gives the following single answer set as output.

{location(ind,margB), location(ind, amalB), location(outd, altD),

location(outd, gansD), swim(outd), go, ngoto(gansD), goto(altD),

need(loc, yogamat)}

Under this answer set, the external atom &rq [goto](yogamat) is true and all
others (e.g., &rq [swim](money), &rq [goto](money)) are false.

Intuitively, the answer set tells Alice to take her Yoga mat and go for a
swim to Alte Donau (outside) which is free of charge. This is the only answer
set which satisfies the given constraints.

4.1.4 Additional Remarks

In this example, the external atom &rq uses a predicate as an input parameter.
If we want to use a constant input instead of a predicate then r3 and r8 should
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be replaced with

r′3: need(inoutd, C) : - &rq ′[Swim](C), swim(Swim).

r′8: need(loc, C) : - &rq ′[Goto](C), goto(Goto).

where &rq′ is implemented differently from &rq.
This will result in a larger grounding (the extensions of swim and goto are

expanded into rules).

4.2 Traveling Salesperson Example

In this section we consider the well-known traveling salesperson problem, where
the task is to decide whether there is a round trip that visits each node in a
graph exactly once and whose accumulated edge costs must not exceed some
budget B.

4.2.1 Problem

The traveling salesperson problem describes a salesperson who must travel be-
tween N cities. The order is not relevant as long as all cities are visited exactly
once and the route is closed. Each of the links between the cities has a weight
(or the costs) attached. The costs describe how “difficult” it is to traverse this
edge on the graph, and may be given, for example, by the cost of an airplane
ticket or train ticket, or perhaps by the length of the edge, or time required to
complete the traversal [10].

This example is interesting for us because it is a typical optimization prob-
lem. Among all answer sets dlvhex should select the best one according to
the weak constraints concept explained in Section 3.9. In the classical solver
we are able to load only small graphs because it is not feasible to load large
graphs completely into memory. In this example we are using an external atom
which is loading a graph from the external source edge by edge up to a specified
depth level what makes it able to solve problems with extremely large graphs by
considering only the part of the graph that is relevant for solving the problem.

The source code for this example is available at https://github.com/

hexhex/manual/tree/master/example_4_travel (example 4 travel.hex, exam-
ple 4 travel.py, and example 4 travel.graph).

4.2.2 Encoding

The hex-program for this problem is as follows.

r1: startingCity(austin).

r2: budgetB(11).

r3: cityOfDegree(P , 0 ,P , 0 ) : - startingCity(P).

r4: cityOfDegree(F1 ,DegPlus,F2 ,Cost) : - cityOfDegree( ,Deg ,F1 , ),

&edges[F1](F2, Cost),DegPlus = DegPlus + 1 , DegP lus < 4,

#int(DegP lus),#int(Deg)),#int(Cost).

r5: node(Y ) : - cityOfDegree(X ,V ,Y ,C ).
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Figure 2: Graph of cities for the Traveling salesperson example.

r6: edge(X,Y ) : - cityOfDegree(X ,V ,Y ,C ).

r7: cost(X,Y,C) : - cityOfDegree(X,V, Y, C).

r8: {cycle(X,Y ) : edge(X,Y )} = 1 : -node(X).

r9: {cycle(X,Y ) : edge(X,Y )} = 1 : -node(Y ).

r10: costCalculated(X) : - #sum{C,X, Y : cycle(X,Y ), cost(X,Y,C)} = X.

r11: withinBudget(B,C) : - budget(B), costCalculated(C), B >=C.

r12: : - budgetB(B), costCalculated(C),not withinBudget(B ,C ).

r13: reached(Y ) : - cycle(Start , Y ), startingCity(Start).

r14: reached(Y ) : - cycle(X,Y ), reached(X).

r15: : -node(Y ),not reached(Y ).

r16: :∼ cycle(X,Y ), cost(X,Y,C). [C@1, X, Y, C]

Fact r1 specifies the starting city, i.e., the city where the salesperson starts
and finishes the trip. Fact r2 defines the available budget of the salesperson.

The predicate cityOfDegree(R,D, S,C) keeps track of the cities newly dis-
covered defined as successor nodes S for the root node R, their distances from
the root node as D and the weight of the edge between R and S denoted as C.
Rule r3 defines the starting city for discovered cities, rule r4 defines a graph of
the discovered cities using the external atom &edges to load new cities from the
external file and use them in the program.

The external atom is of the form &edges[File, F1](F2, Cost) where File is
the file to load the graph from, and F1 represents the node for which we want
to know all successor nodes. The external atom semantics function returns all
pairs (F2,Cost) such that F2 is successor node of F1 and the edge has weight
Cost . DegPlus is limited to be less than 4, which means we can go at most
three edges far from the root node. There are several potential advantages of
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using an external atom of this type: (i) the graph may be very large and it is
not possible to load it at once as a set of edges specified manually, (ii) we do not
know the graph completely (e.g., due to limited capabilities of a web service),
or (iii) we want to analyze only a subgraph of the graph that is reachable from
the specified node.

In r5, r6 and r7 the program is extracting nodes, edges and costs of the edges
from the cityOfDegree atoms. Rules r8 and r9 assert that every node must have
exactly one outgoing and exactly one incoming edge, respectively, belonging to
the cycle. The syntax used in these rules is described in Section 3.7.

In r10 we use aggregates (cf. Section 3.8) to find the sum X of the costs over
the cycle(X ,Y ). In rule r11, an atom withinBudget(B ,C ) is true if the term of
the costCalculated(C ) is less than or equal to the term of budgetB(B) available.
The integrity constraint r12 ensures that in the answer set overall sum of the
costs for the cycle will be less than or equal to the budget available. The same
rules can be applied to limit length traveled or time spent.

Rules r13 and r14 define reachability of nodes, startin from the initial node
and using cycle candidates produced by the rules r8 and r9. The integrity
constraint r15 eliminates answer sets where some nodes are not reached [8].

In order to minimize costs, we add the weak constraint r16. Here, edges
belonging to the cycle are weighted according to their costs and dlvhex lists
optimal answer sets only. For weak constraint syntax see Section 3.9.

4.2.3 Plugin

The external atom &edge can be realized in Python as follows.

import dlvhex
import networkx as nx # for graph t a s k s

# ge t edges from given node in g iven f i l e
def edges ( f i leName , currentNode ) :

# Sources w i l l be loaded from the f i l e
g = nx . r e a d w e i g h t e d e d g e l i s t ( f i leName . va lue ( ) . s t r i p ( ’ ” ’ ) ,

nodetype=str , c r e a t e u s i n g=nx . DiGraph ( ) )
# Output succes sor nodes o f the current node inc l ud ing weight
for node in g . s u c c e s s o r s ( currentNode . va lue ( ) ) :

weight = g [ currentNode . va lue ( ) ] [ node ] [ ’ weight ’ ]
# produce one output t u p l e
dlvhex . output ( ( node , int ( weight ) ) )

def r e g i s t e r ( ) :
prop = dlvhex . ExtSourcePropert i e s ( )
# spe c i f y t ha t ” edges ” produces f i n i t e s e t o f output t u p l e s
prop . addFiniteOutputDomain (0 )
dlvhex . addAtom( ” edges ” , ( dlvhex .CONSTANT, dlvhex .CONSTANT) ,2 , prop )

This plugin uses the networkx Python module for comfortable processing of
graphs stored in plain text files. The plugin loads the graph, retrieves successor
nodes and returns them as output tuples. Note that this code is for demon-
strational purposes only, a more efficient implementation is certainly possible.
The “finite output domain” property tells dlvhex that the instantiation of the
external atom will be finite.

Details of the Python plugin API are given in Section 5.
The encoding and plugin load the graph from the file example 4 travel.graph.

The file describes the directed weighted graph shown in Figure 2; the first lines
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of that file as follows.

aus t in boston 2
aus t in ch icago 3
aus t in d e t r o i t 1
boston d e t r o i t 2
boston f r e s n o 4

4.2.4 Problem Solution

To obtain all optimal answer sets of the above program, and display only the
cycle predicate (which contains the solution) execute the following command.

$ dlvhex2 example 4 travel.hex --filter=cycle \
--pythonplugin=example 4 travel.py

The dlvhex solver gives a single optimal answer set as output.

{cycle(austin, boston), cycle(boston,memphis), cycle(detroit, austin),

cycle(chicago, detroit), cycle(memphis, fresno), cycle(fresno, chicago)}
< [11 : 1] > .

Note that only the cycle predicate is visible due to the --filter commandline
option. This makes the answer set easier to read. The cheapest route which
satisfies all given constraints is:

Austin → Boston → Memphis → Fresno → Chicago → Detroit → Austin

with the minimum cost of 11.

4.3 Pathfinding Example

The last example is from the group of planning problems and it considers
pathfinding for multiple agents.

4.3.1 Problem

Pathfinding for a single agent is the problem of planning a route from an initial
location to a goal location in an environment, going around obstacles. Pathfind-
ing for multiple agents also aims to plan such routes for each agent, subject to
different constraints, such as restrictions on the length of each path or on the
total length of paths, no self-intersecting paths, no intersection of paths/plans,
no crossing/meeting each other. It also has variations for finding optimal so-
lutions, e.g., with respect to the maximum path length, or the sum of plan
lengths. These problems are important for many real-life applications, such as
motion planning, vehicle routing, environmental monitoring, patrolling, com-
puter games [6]. An ASP formulation for this problem where multiple agents
need to find paths from their respective starting locations to their goal loca-
tions, ensuring that paths do not collide with static obstacles and that no two
agents collide with each other was described in [6]. We extend this formula-
tion by importing the graph using an external atom to consider only parts of a
(potentially very large) graph.

The full source code for this example is available at https://github.com/

hexhex/manual/tree/master/example_4_pathfind (example 4 pathfind.hex,
example 4 pathfind.py, and example 4 pathfind.graph).
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4.3.2 Encoding

We can encode this problem in the following hex-program.

r1: startingNode(one).

r2: nodeOfDegree(P, 0, P ) : - startingNode(P ).

r3: nodeOfDegree(F1, DegP lus, F2) : - nodeOfDegree( , Deg, F1),

&edges[F1](F2), DegP lus = Deg + 1,#int(DegP lus).

r4: node(Y ) : - nodeOfDegree(X,V, Y ).

r5: edge(X,Y ) : - nodeOfDegree(X,V, Y ).

r6: agent(1 ). agent(2 ).

r7: start(1 , one). start(2 , four).

r8: goal(1 , ten). goal(2 , eleven).

r9: clear(V ) : - node(V ), V ! = three

r10: path(I, 0, V ) : - start(I, V ).

r11: {path(I ,TP ,U ) : edge(U ,V )} : -

agent(I ), path(I ,T ,V ),TP = T + 1 ,#int(TP).

r12: : - agent(I ),#int(T ), 1 < #count{U : path(I ,T ,U )}.

r13: visit(I, V ) : - path(I, T, V ).

r14: : - goal(I, V ),not visit(I ,V ).

r15: : - path(I, T, V ), path(IP, T, V ), X <=XP.

r16: : - path(I, T, V ),not clear(V ).

r17: : - path(I ,T ,V ), path(I ,TP ,U ),TP = T + 1 ,not &check [I, U, V ]().

In r2–r5 we load part of the graph using the &edges external atom which
discovers nodes and edges from the external file, limited by the maximum integer
value. In r6–r8 we represent agents and their start and goal positions. Rule r9
represents that all vertices except “three” are obstacle-free.

Rules r10 and r11 guess a path for each agent, where the agent can visit a
new node using an edge, or do nothing. Constraint r12 eliminates all answer
set candidates in which there is more than one vertex visited by a single agent
at one time (no agent can be at two different locations at the same time). Rule
r13 defines which nodes are visited, using the path. Constraint r14 ensures that
each agent reaches its destination node. We ensure that agents do not collide
with each other using constraint r15. We also ensure that agents do not go
through obstacles using constraint r16.

Constraint r17 represents an external check of the form &check [I ,U ,V ]()
which checks if agent I is able to move from node U to node V . The external
atom decides whether that move is valid or invalid, for example because in
the abstract representation of the graph certain combinations of properties of
agents and edges (that can prevent successful movement) are not represented,
e.g., narrow corners, or doors that are too small for certain agents.

Note that by using an external check we can make the planning problem
more abstract by creating a sound (efficient) encoding and making it complete
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Figure 3: Simulation of the environment used by agents

using the external check.

4.3.3 Plugin

The external atoms &edge and &check are realized in Python as follows.

import dlvhex
import networkx as nx # for graphs

def edges ( currentNode ) :
# hardcoded source f o r graph
g = nx . r e a d w e i g h t e d e d g e l i s t ( ” example 4 path f ind . graph” ,

nodetype=str , c r e a t e u s i n g=nx . DiGraph ( ) )
# output succe s sor s
for node in g . s u c c e s s o r s ( currentNode . va lue ( ) ) :

dlvhex . output ( ( node , ) )

def check (A,V,U) :
i f A. value ()== ’ 1 ’ and V. value ()== ’ two ’ and U. value ()== ’ f i v e ’ :

pass # no path = no tup l e = atom f a l s e
else :

# empty t up l e = true , no t up l e = f a l s e
dlvhex . output ( ( ) )

# Reg i s t e r func t i on
def r e g i s t e r ( ) :

prop = dlvhex . ExtSourcePropert i e s ( )
prop . addFiniteOutputDomain (0 )
dlvhex . addAtom( ” edges ” , ( dlvhex .CONSTANT, ) , 1 , prop )
dlvhex . addAtom( ” check ” ,

( dlvhex .CONSTANT, dlvhex .CONSTANT, dlvhex .CONSTANT) , 0)

See Section 4.2.3 for an explanation of a similar plugin and Section 5 for the
Python API.

4.3.4 Problem Solution

Assume we solve the problem using the graph in Figure 3. The graph is again
loaded from the external file and not specified as a set of facts. We know that
there is an obstacle at node three, so any answer set with node three in the path
is removed.
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To obtain all answer sets of the above program, and display only the path
predicate (which contains the solution) execute the following command.

$ dlvhex2 example 4 pathfind.hex --filter=path --maxint=4 \
--pythonplugin=example 4 pathfind.py --heuristics=old

Note that here we also specify the maximum integer number. If we do not do
this, dlvhex uses the largest integer in the program which is in this case 2,
hence without --maxint no solution is found. We also specify an evaluation
heuristics for performance reasons.

The answer sets of this program are as follows:

{path(1, 0, one), path(2, 0, four), path(1, 1, four), path(2, 1, seven),

path(1, 2, seven), path(2, 2, nine), path(1, 3, nine), path(2, 3, eleven),

path(1, 4, ten)}

This means that agent 1 follows the path

one → four → seven → nine → ten

and at each time agent 2 follows

four → seven → nine → eleven

and does not perform a last step.
As the external check excludes the path via two and the internal knowledge

exludes paths via three there is only one answer set.

5 External Interfaces

This section discusses the implementation of external sources. One important
design principle was to provide a mechanism to easily add further external
atoms, as introduced in Section 3.11, without having to recompile the main
application.

Formally, an external atom is defined to evaluate to true or false, depending
on a number of parameters:
• An interpretation (a set of atoms)
• A list of input constants
• A list of output constants

However, it is more intuitive and convenient to think of an external atom not
as being boolean, but rather functional: depending on a given interpretation
and a list of input constants, it returns output tuples for which it is true. For
instance, the external atom to import triples from RDF files has the form:

&rdf [Uri ](X,Y, Z)

where Uri stands for a string denoting the RDF-source and X, Y, and Z are
variables that represent an RDF-triple (X,Y, Z) from the specified source.

5.1 Information Flow

The interface that is used by dlvhex to access a plugin follows very closely the
previously described “function” semantics. For each predicate (e.g., for &rdf ),
a retrieval function has to be implemented. This function receives a query
object and returns an answer object. The function is always called with ground
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input parameters. The query object carries the ground input parameters and
the input interpretation, while the answer object is a container for the ground
output tuples.

5.2 Types of Input Parameters

Previously we said that the semantic function of an external atom may use
the complete interpretation for its computation. For practial and for efficiency
reasons, often only small parts of the interpretation are used.

This leads to three types of input parameters:
• Constant parameters
• Predicate parameters
• Tuples
A parameter of type constant is not related to the interpretation at all, like

in the previous example of the RDF-atom where we have a string as a constant
input to the external atom.

A parameter is of type predicate indicates that all atoms with this predicate
in the interpretation are relevant for the semantic evaluation of the external
atom. As an example, assume an external atom that calculates the overall price
of a number of books given by their ISBN number:

&overallbookprice[isbn](X)

The single input parameter of this atom would be of type predicate, mean-
ing that not the constant itself is used by the atom’s function, but all atoms
isbn(Y ) ∈ I with this predicate. Assume the current answer set candidate I is

I = {isbn(“0-19-82183-6”), isbn(“0-201-99954-4”), p(a), q(b) . . . }
then the function implementing &overallbookprice will be called with the fol-
lowing filtered interpretation:

I = {isbn(“0-19-82183-6”), isbn(“0-201-99954-4”)}
where only atoms with predicate isbn remain.

A parameter of type tuple stands for an arbitrary number of constant input
parameters. This is, e.g., useful for string operations like concatenation

&concat [string1, string2, string3, . . . ](Out)

where the atom is true for the output constant which is the concatenation of all
input strings. (Note that for this functionality the interpretation is irrelevant
and the function implementing &concat will receive I = ∅.)

Specifying the type of input parameters not only helps to single out the
relevant part of the interpretation, but also supports dlvhex in calculating
the dependencies within a hex-program. Plugins can be implemented either in
Python or C++, as shown in the following two subsections.

5.3 Implementing External Atoms in Python

With dlvhex version 2.4.0, a Python plugin interface was introduced, which
supports Python scripts that provide functions to realise custom external atoms.

A Python plugin is a script that starts with import dlvhex and contains
the following functions:
• a register function that registers all external atoms, and
• for each external atom an evaluation function that has the same name as

the atom.
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5.3.1 Registering External Atoms

The register function has the following form:

def r e g i s t e r ( ) :
dlvhex . addAtom( ”Atom Name” , ( Input Parameters ) , Output Arity )

It contains a call of addAtom for each external atom. Each call specifies three
parameters:
• Atom_Name is the name of the external predicate;
• (Input_Parameters) is a tuple of arbitrarily many input parameter types.

Each type is one of dlvhex.CONSTANT, dlvhex.PREDICATE, or dlvhex.TUPLE,
corresponding to the concepts introduced in the previous section;

• Output_Arity is an integer value representing the output arity of an atom.
Consider the &concat external atom introduced in the previous section. It takes
an arbitrary number of strings as input and outputs their concatenation. Hence
the input type is dlvhex.TUPLE and the register function is as follows.1

def r e g i s t e r ( ) :
dlvhex . addAtom( ” concat ” , ( dlvhex .TUPLE, ) , 1)

If we assume that &concat only accepts two strings, the register function would
be as follows.

def r e g i s t e r ( ) :
dlvhex . addAtom( ” concat ” , ( dlvhex .CONSTANT, dlvhex .CONSTANT) , 1)

5.3.2 Implementing Semantics of External Atoms

Once an external atom is registered, it has to be implemented in the form of
another Python function with an appropriate number of input parameters and
output parameters.

5.3.2.1 Parameter Values (Input) As introduced in Section 5.2 dlvhex
supports three different input types (constant, predicate, and tuple). The
Python function implementing the external atom requires one parameter for
each element of the tuple given in addAtom. In general an external atom imple-
mentation looks as follows.

def Atom Name( Input Parameter 1 , Input Parameter 2 , . . . ) :
Implementation . . .

Each of the input parameter types is accessed in different way:
• To access data for input parameters of type CONSTANT, if the parame-

ter variable is called var one obtains its value by writing var.value().
Example 5.1 shows how to use a CONSTANT parameter.

• To access data for input parameters of type PREDICATE, if the parameter
variable is var then var.value() will just give the predicate given as argu-
ment. Method dlvhex.getTrueInputAtoms() provides a collection of all
atoms of relevant predicates that are true in the current candidate. Using
for atm in dlvhex.getTrueInputAtoms(): it is possible to enumerate
these atoms. An atom atm, for example edge(one, four) corresponds to

1Note the extra “,”: the Python syntax for creating a tuple with a single element is (a,).
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a tuple (edge, one, four) that can be obtained via atm.tuple(). In this
tuple, the value of each element again can be obtained using the method
.value(). Example 5.2 shows how to use a PREDICATE parameter.

• To access data for input parameters of type TUPLE, if the parameter vari-
able is var then this variable will obtain a tuple corresponding with the
ground input tuple. For each member x of that tuple var we obtain
its value using x.value(). Example 5.3 shows an implementation for
&concat using a TUPLE parameter.

The object returned by the .value() method is of type int or str.2

5.3.2.2 Creating Output Tuples An external atom returns output tuples
corresponding to the arity specified in the register function (cf. Section 5.3.1).
The dlvhex command used for output looks as follows:

dlvhex . output ( ( Output Parameter 1 , Output Parameter 2 , . . . ) )

Command to output a tuple containing a single value stored in variable item

looks as follows.

dlvhex . output ( ( item , ) )

The output command above returns a constant in a tuple of size one (cf. Ex-
ample 5.1). If we want for instance to return a tuple of size two containing an
integer as second element, the output command will be as follows.

dlvhex . output ( ( node , int ( j ) ) )

See also the example in Section 4.2. Note that the output type of the first
element can be integer, constant, or string, depending on what is stored in
node.

5.3.3 Examples

In the following we provide three examples, corresponding to the previously
explained input parameter types.

Example 5.1 (download example 5 1.py). This Example uses a constant (string)
input parameter. This plugin is used in Example 2.1 to query all direct friends
of the person of interest.

1 import dlvhex
2 import networkx as nx # for graph t a s k s .
3
4 # An ex t e rna l atom implementation i s s im i l a r to a r egu l a r func t i on
5 # in Java , C, e t c . f r iendsOfDegree i s name of the func t i on which
6 # has one input parameter ( per sonOf In tere s t ) . For each
7 # personOfIn tere s t e x t e rna l atom w i l l re turn i t s d i r e c t f r i e nd s .
8 def f r i endsOfDegree ( pe r sonOf In t e r e s t ) :
9 # graph o f the f r i e nd s w i l l be loaded from the e x t e rna l f i l e

10 g = nx . r e a d w e i g h t e d e d g e l i s t ( ” example 2 1 . e d g e l i s t ” ,
11 nodetype=str , c r e a t e u s i n g=nx . DiGraph ( ) )
12
13 # Take successor nodes o f the node o f i n t e r e s t .
14 f r i e n d L i s t = g . s u c c e s s o r s ( pe r sonOf In t e r e s t . va lue ( ) )

2The class providing the method .value() is of type dlvhex.ID, which is a data structure
that holds the internal ID of an atom/constant/term within dlvhex.
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15 # Output the successor nodes
16 for node in f r i e n d L i s t :
17 dlvhex . output ( ( node , ) ) # outputs ( t u p l e o f s i z e one )
18
19 # Reg i s t e r func t i on
20 def r e g i s t e r ( ) :
21 prop = dlvhex . ExtSourcePropert i e s ( )
22 prop . addFiniteOutputDomain (0 ) # spe c i f y t ha t the graph i s f i n i t e
23 dlvhex . addAtom( ” f r i endsOfDegree ” , ( dlvhex .CONSTANT, ) , 1 , prop )

The complete source code for this example is available at https://github.
com/hexhex/manual/tree/master/example_5_1.

Lines 1–2 import two libraries: every dlvhex-plugin must import dlvhex;
and the networkx library is needed in this particular example for comfortable
graph operations (loading a graph from a file, getting successors of a node).

Lines 8–17 implement the external atom &friendsOf which receives the
name of a person as string, loads a graph from disk in line 11, and returns all
direct friends of the person in the graph in line 17.

Lines 20–23 register &friendsOf with a single constant input parameter
and a single output parameter, and a futher parameter prop which provides
meta-information about the atom (required for liberal safety).3

Example 5.2 (download example 4 swim.py). This example shows the Python
plugin for external atom &rq from the Swimming Example. See Section 4.1 for
details of the corresponding program how to run it.

The source code of the plugin is as follows.

1 import dlvhex
2
3 RES = { ’ ind ’ : ’money ’ , ’ amalB ’ : ’ gogg l e s ’ ,
4 ’ altD ’ : ’ yogamat ’ , ’ gansD ’ : ’money ’ }
5
6 # return requ i red resources g iven swimming l o c a t i on s
7 def rq ( l o c p r e d ) :
8 for x in dlvhex . getTrueInputAtoms ( ) :
9 arg = x . tuple ( ) [ 1 ] . va lue ( ) # ge t argument

10 i f l o c p r e d == x . tuple ( ) [ 0 ] : # check pred i ca t e
11 i f arg in RES:
12 dlvhex . output ( (RES[ arg ] , ) )
13
14 # r e g i s t e r e x t e rna l atom
15 def r e g i s t e r ( ) :
16 dlvhex . addAtom( ” rq ” , ( dlvhex .PREDICATE, ) , 1)

This example uses a predicate input parameter for the external atom &rq.
This external atom checks requirements for a selected swimming location. In
the hex program the external atom is of the form

&rq [location choice](required resource)

which intuitively evaluates to true whenever a given location choice requires a
certain required resource.

From line 7–12 we implement the rq function. Line 9 extracts the location
from the atom, line 10 checks if the predicate of the current input atom is
equivalent to the value of location choice (which specifies the predicate of

3Advanced Topic: in this case we provide the meta-information that only finitely many
friends can be discovered this way, i.e., that the graph is finite.
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interest), line 11 checks if we know some requirement and if so line 12 returns
that requirements. Lines 15–16 register the external atom &rq.

For example, if goto(amalB) is true in the answer set candidate, then one of
the for loop iterations will contain in x the ID of the atom goto(amalB). Then
x.tuple() is a tuple of IDs of constants goto and amalB . Using the method
.value() we obtain the strings of these IDs: x.tuple()[0].value() = ’goto’

and inp = x.tuple()[1].value() = ’amalB’. Accordingly the if condition
in line 10 is true and line 12 returns (’goggles’,). This means that the external
atom &rq [goto](goggles) is true.

Example 5.3 (download example 5 3.py). The third example demonstrates
parameter type dlvhex.TUPLE which stands for an arbitrary number of con-
stant input parameters. As an example where this is useful we show string
concatenation.

1 import dlvhex
2
3 # concat has one input parameter o f type t up l e (= a r b i t r a r i l y
4 # many cons tant s ) , which s p e c i f i e s the terms to be concatenated
5 def concat ( tup ) :
6 # s t a r t wi th empty s t r i n g and s e qu en t i a l y append a l l inpu t s
7 r e t = ””
8 for x in tup :
9 r e t = r e t + x . va lue ( )

10
11 # output the f i n a l s t r i n g
12 dlvhex . output ( ( ret , ) )
13 # r e g i s t e r a l l e x t e rna l atoms
14 def r e g i s t e r ( ) :
15 # concat has a r b i t r a r i l y many input parameters
16 # of type constant (=TUPLE) and i t s output a r i t y i s 1
17 dlvhex . addAtom( ” concat ” , ( dlvhex .TUPLE, ) , 1)

The complete source code for this example is available at https://github.

com/hexhex/manual/tree/master/example_5_3.
This external atom receives a tuple of strings, concatenates them and outputs

them as a single string value. Line 7 initializes an empty string variable ret,
the loop appends input strings to ret and line 12 outputs one tuple with the
result.

5.3.4 Learning additional constraints

This section to be written.

5.3.5 Further Information

More information about methods in the dlvhex Python API is available online
at http://www.kr.tuwien.ac.at/research/systems/dlvhex/doc2x/group_

_pythonpluginframework.html.

5.4 C++

This section to be written.
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6 Command Line options

In this section, we briefly describe the meaning of the command line options
supported by dlvhex. Calling dlvhex without any arguments will show all
command line options available. For each option, we indicate whether it requires
an argument, and if so, we also describe it. An abstract invocation of dlvhex
looks as follows:

$ dlvhex2 [OPTION] FILENAME [FILENAME ...]

or for reading the program from standard input

$ dlvhex2 [OPTION] --

The following set of commands is related with Input, Output and Reasoning
options.

-- Parse from standard input.

-s --silent Do not display anything than the actual result

-f --filter=foo[,bar[,...]]

Only display instances of the specified predicate(s).

--nofacts Do not output EDB facts. EDB facts are the facts
of the program.

-n --number=<num> Limit number of displayed models to 〈num〉, Default
value is 0, which means to display all models.

-N --maxint=<num> Set maximum integer (# maxint in the program
takes precedence).

--weaksafety Skip strong safety check.

--strongsafety Applies traditional strong safety criteria.

--liberalsafety Uses more liberal safety condition than strong safety.

--mlp Use dlvhex+mlp solver (modular nonmonotonic
logic programs).

--forget Forget previous instantiations that are not involved
in current computation (mlp setting).

--split Use instantiation splitting techniques.

--noeval Parse the program, but do not evaluate it (only use-
ful with --verbose).

--keepnsprefix Keep specified namespace-prefixes in the result.

--keepauxpreds Keep auxiliary predicates in answer sets.

6.1 Plugin Options
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-p --plugindir=DIR Specify additional directory where to look for plugin
libraries (additionally to the installation plugin-dir
and $HOME/.dlvhex/plugins). Start with ! to reset
the preset plugin paths, e.g., “!:/lib” will use only
/lib/.

6.2 Performance Tuning Options

--extlearn[=none,iobehavior,monotonicity,functionality,
linearity,neg,user,generalize]

Learn nogoods from external atom evalua-
tion (only useful with --solver=genuineii or
--solver=genuinegi).

none: Deactivate external learning.

iobehaviour: Apply generic rules to learn input-output behaviour.

monotonicity: Apply special rules for monotonic and antimonotonic
external atoms.

functionality: Apply special rules for external atoms which are lin-
ear in all predicate parameters.

linearity: Apply special rules for external atoms which are lin-
ear in all predicate parameters.

neg: Learn negative information

user: Apply user-defined rules for nogood learning

generalize: Generalize learned ground nogoods to ground no-
goods.

By default all options above except “generalize”
are enabled.

--supportsets Exploits support sets for evaluation.

--evalall Evaluate all external atoms in every compatibility
check, even if previous external atoms already failed.
This makes nogood learning more independent of the
sequence of external atom checks. Only useful with
--extlearn.

--nongroundnogoods Automatically instantiate learned nonground no-
goods.

--flpcheck=[explicit,ufs,ufsm,aufs,aufsm,none]

explicit: Compute the reduct and compare its models with
the candidate

ufs: Use unfounded sets for minimality checking

ufsm: Use unfounded sets for minimality checking, do not
decompose the program for UFS checking.

34



aufs: Use unfounded sets for minimality checking by ex-
ploiting assumptions (default).

aufsm: Use unfounded sets for minimality checking by ex-
ploiting assumptions. Do not decompose the pro-
gram for UFS checking.

none: Disable the check.

--flpcriterion=[all,head,e,none]

Defines the kind of cycles whose absence is exploited
for skipping minimality checks.

all

(default):
Exploit head- and e-cycles for skipping minimality
checks

head: Exploit head-cycles for skipping minimality checks

e: Exploit e-cycles for skipping minimality checks

none: Do not exploit head- or e-cycles for skipping mini-
mality checks

--noflpcriterion Do no apply decision criterion to skip the FLP check.
(equivalent to --flpcriterion=none)

--ufslearn=[none,reduct,ufs]

Enable learning from UFS checks (only useful with
--flpcheck=[a]ufs[m]).

none: No learning

reduct: Learning is based on the FLP-reduct

ufs

(default):
Learning is based on the unfounded set

--eaevalheuristics=[always,periodic,inputcomplete,

eacomplete,post,never]

Selects the heuristic for external atom evaluation.

always: Evaluate whenever possible.

periodic: Evaluate in regular intervals.

incomplete: Evaluate whenever the input to the external atom is
complete.

eacomplete: Evaluate whenever all atoms relevant for the external
atom are assigned.

post: Only evaluate at the end (default).

never: Only evaluate at the end and also ignore custom
heuristics provided by plugins.

Except for heuristics ”never”, custom heuristics pro-
vided by external atoms overrule the global heuristics
for the particular external atom.
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--ufscheckheuristic=[post,max,periodic]

Specifies the frequency of unfounded set checks (only
useful with --flpcheck=[a]ufs[m]).

post: Do UFS check only over complete interpretations
(default).

max: Do UFS check as frequent as possible and over max-
imal subprograms.

periodic: Do UFS check in periodic intervals.

--modelqueuesize=N Size of the model queue, i.e. number of models which
can be computed in parallel. Default value is 5. The
option is only useful for clasp solver.

--solver=S Use S as ASP engine, where S is one of dlv,
dlvdb, libdlv, libclingo, genuineii, genuinegi,
genuineic, genuinegc (genuineii=(i)nternal
grounder and (i)nternal solver; genuinegi=(g)ringo
grounder and (i)nternal solver genuineic=(i)nternal
grounder and (c)lasp solver; genuinegc=(g)ringo
grounder and (c)lasp solver).

--claspconfig=C If clasp is used, configure it with C where C is parsed
by clasp config parser, or C is one of the predefined
strings frumpy, jumpy, handy, crafty, or trendy.

-e --heuristics=H Use H as evaluation heuristics, where H is one of

old: Old dlvhex behavior

trivial: Use component graph as eval graph (much overhead)

easy: Simple heuristics, used for LPNMR2011

greedy

(default):
Heuristics with advantages for external behaviour
learning

monolithic: Put entire program into one unit

manual:<file>: Read “collapse” 〈 idxs 〉 share 〈idxs〉 commands
from 〈file〉 where component indices 〈idx〉 are from
--graphviz=comp

asp:<script>: Use asp program 〈script〉 as eval heuristic

--forcegc Always use the guess and check model generator.

-m --modelbuilder=M

Use M as model builder, where M is one of (on-
line,offline).

--nocache Do not cache queries to and answers from external
atoms.

--iauxinaux Keep auxiliary input predicates in auxiliary external
atom predicates (can increase or decrease efficiency).
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--constspace Free partial models immediately after using them.
This may cause some models to be computed multi-
ple times. (Not with monolithic.)

6.3 Debugging and General Options

--dumpevalplan=F Dump evaluation plan (usable as manual heuristics)
to file F.

-v --verbose[=N] Specify verbose category (if option is used without
[=N] then default is 1):

1: Program analysis informations (including dot-file)

2: Program modifications by plugins

4: Intermediate model generation info

8: Timing information (only if configured with
--enable-benchmark)

Values are checked bitwise (sum up values for multi-
ple categories).

--dumpstats Dump certain benchmarking results and statistics
in CSV format. (Only if configured with –enable-
benchmark.)

--graphviz=G Specify comma separated list of graph types to ex-
port as .dot files. Default is none, graph types are:

dep: Dependency Graph (once per program)

cycinp: Graph for analysis cyclic predicate inputs (once per
G&C-eval unit)

comp: Component Graph (once per program)

eval: Evaluation Graph (once per program)

model: Model Graph (once per program, after end of com-
putation)

imodel: Individual Model Graph (once per model)

attr: Attribute dependency graph (once per program)

--version Shows version information.

Plugin help for dlvhex-manualevalheuristicsplugin[internal]:

--manualevalheuristics-enable

Enable parsing and processing of “#evalunit(...)”
instructions.

Plugin help for dlvhex-manualevalheuristicsplugin[internal]:

--query-enable=[true,false]

Enable or disable the querying plugin (default is dis-
abled).
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--query-brave Do brave reasoning.

--query-all Give all witnesses when doing ground reasoning.

--query-cautious Do cautious reasoning.

Plugin help for dlvhex-aggregateplugin[internal]:

--aggregate-enable[=true,false]

Enable aggregate plugin (default is enabled).

--aggregate-mode=[native,ext]

Enable aggregate plugin (default is enabled).

native

(default):
Keep aggregates (but simplify them to some basic
types).

ext: Rewrite aggregates to an external atoms.

--aggregate-allowaggextcycles

Allows cycles which involve both aggregates and ex-
ternal atoms. If the option is not specified, such
cycles lead to abortion; if specified, only a warn-
ing is printed but the models might be not minimal.
With --aggregate-mode=ext, the option is irrele-
vant as aggregates are replaced by external atoms
(models will be minimal in that case). See exam-
ples/aggextcycle1.hex..

Plugin help for dlvhex-strongnegationplugin[internal]:

--strongnegation-enable[=true,false]

Enable or disable strong negation plugin (default is
enabled).

Plugin help for dlvhex-weakconstraintplugin[internal]:

--weak-enable[=true,false]

Enable or disable weak constraint plugin (default is
enabled). --weak-allmodels Display all models also
under weak constraints.

Plugin help for dlvhex-functionplugin[internal]:

--function-maxarity=<N>

Maximum number of output terms in functionDe-
compose.

--function-rewrite Rewrite function symbols to external atoms.

Plugin help for dlvhex-choicePlugin[internal]:

--choice-enable[=true,false]

Enable choice rules (default is enabled).

Plugin help for dlvhex-conditionalLiteralPlugin[internal]:

--conditinal-enable[=true,false]
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Enable conditional literals (default is enabled).

Plugin help for dlvhex-pythonplugin[internal]:

--python-plugin=[PATH]

Add Python script ”PATH” as new plugin.

--python-main=PATH Call method ”main” in the specified Python script
(with dlvhex support) instead of evaluating a pro-
gram.

--python-arg=ARG Passes arguments to Python (sys.argv) (can be used
multiple times).

7 Input-related warnings and errors

This section explains the most frequent errors, warnings, and info messages
related to inappropriate inputs or command line options. All messages are
printed to the standard error stream.

Warning and error messages are prefixed with a number that indicates the
verbosity level of the message (see --verbose commandline option), this is
intended to allow for filtering using grep and similar tools.

7.1 Syntax Errors

In this section we consider errors emitted during the parsing and checking of
logic programs. These errors include information to ease finding and fixing the
problem. Each of the error messages shows a line in which the error appears,
followed by the type of the error and a short description.

8 unparsed "go : - goto(X)"

8 ----------^

8 GeneralError: Syntax Error: Could not parse complete input!

To correct this error, investigate the indicated location and make sure the in-
put conforms to the grammar in Section 3 (e.g., check for missing periods,
unmatched parentheses).

7.2 Plugin-related errors

In this section we explain exceptions and errors which may occur while working
with external atoms or plugins in which we have implemented desired external
atom functionality (e.g. Python or C++ plugin).

The following exception occurs whenever we try to load a plugin from a
nonexisting file, either from the Python or C++ file.

Exception: nonexisting file name.py: no such file

nonexisting file name.py does not exist in the current directory and should
be replaced with the right file which contains implementation for the external
atom(s) used in hex-program.
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The following error occurs if we do not provide an external atom specification
and implementation in the source file but we use it in the hex-program. The
error looks as below:

GeneralError: Fatal: did not find plugin atom for predicate

"ext atom"

From the description above we can see that there is no plugin atom for the
predicate ext atom in the source file which is passed as parameter from the
command line.

Another error occurs if the output arity (i.e., the number of arguments in
square or round brackes) of an external atom does not match its specification
in the source file. The error is given below:

GeneralError: External Atom &rq[ind](C,A) has a wrong

output arity (should be 1)

7.3 Safety Checking

If any of the variables used in the hex-program does not satisfy safety conditions
listed below, the program is not safe and an error occurs. We use some examples
and explanations from [1] in the following.

7.3.1 Regular Safety

dlvhex imposes a safety condition on variables in rules. This guarantees that
a rule has only finitely many ground instances.

7.3.1.1 Standard, Arithmetic and Comparative Predicates A vari-
able X in an aggregate-free rule is safe if at least one of the following conditions
is satisfied:

• X occurs in a positive standard predicate in the body of the rule

• X occurs in a strong negated standard predicate in the body of the rule

• X occurs in the last argument of an arithmetic predicate A and all other
arguments of A are safe.

A rule is safe if all its variables are safe.

Example 7.1. Safe rules and Constraints

a(X) : -not b(X), c(X).

a(X) : -X >=Y, node(X), node(Y ).

a(Y ) : -number(X),#precc(X,Y ).

a(Z) : -number(X),#succ(X,Y ), Z = X + Y.

: -number(X), number(Y ),#mod(X,Y, 2).

: - a(Y ), not b(Y ), not c(Y ).
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Example 7.2. Unsafe Rules and Constraints

a(X) : - b(Y ).

a(X) ∨ - a(X).

a(X) : -not b(X).

a(X) : -number(Y ), X = Y + Z.

a(X) : -number(Y ),#succ(X,Y ).

: - not number(X),#succ(X,Y ).

: - not b(Y ).

: -X >=Y, node(X).

7.3.1.2 Aggregates A variable X appearing in the symbolic set of an ag-
gregate is safe if it does not appear elsewhere outside the aggregate atom and
at least one of the following conditions is satisfied:

• X occurs in a positive standard predicate in the symbolic set

• X occurs in a true negated standard predicate in the symbolic set

• X occurs in the last argument of an arithmetic predicate A in the symbolic
set and all other arguments of A are safe

All other variables (including guards) appearing in an aggregate atom have to
be made safe by some other literal of the body.

Example 7.3. Safe Rules and Constraints with Aggregates

a(X) : -node(X),#count{V : edge(V,X)}>= 0.

a(X) : -node(X),not #count{V : edge(V,X)} = 0

: - #count{V : edge(V, Y ),not edge(Y, V )} = X,X ≥ 2.

: - not node(X),#count{V : edge(V, Y )} = X

Example 7.4. Unsafe Rules and Constraints with Aggregates

a(X) : - not node(X),#count{V : edge(V,X)}>= 0.

a(X) : -node(X),#count{V : edge(V,X)}>=Z.

a(X) : -node(X),#count{V : edge(V, Y ),not edge(V, Y )}>= 0.

: - #count{V : edge(V, Y )}>= 0, X > Y.

: - not node(X),#count{V : edge(V, Y )} > X.
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7.3.1.3 Arithmetic predicates By evaluating a program with arithmetic
predicates it is possible to derive new numeric constants, different from those
already occurring in the program. In case of arithmetic rules, this could cause
the non-termination of the evaluation so an error message is issued in this case.

Example 7.5. Non finite domain program

d(0).

d(Y ) : - d(X), Y = X + 1.

To safely evaluate this kind of programs an upper integer limit N has to be
specified either on the command-line (cf. Section 6) or in the program using

#maxint=N.

7.3.1.4 Complex Terms Evaluation of a program might not terminate if
a complex term occurs in the head of a recursive rule.

Example 7.6. Non finite domain program

p(0).

p(f(X)) : - q(X).

q(X) : - p(X).

Some programs can be safely evaluated even if there are complex terms ap-
pearing in the head of a rule. This is the case when all arguments of a functional
term are restricted to range over a finite domain thanks to the presence of some
other atoms in the body.

Example 7.7. Finite domain program

p(0). r(0).

p(f(X)) : - r(X), q(X).

q(X) : - p(X).

When a program is not recognized to have a finite domain and termination
thus cannot be guaranteed, an error is issued.

7.3.2 Strong Safety

By evaluating a program with external atoms it is possible to derive new numeric
constants, different from those already occurring in the program. Moreover
it is possible to generate a cycle over such a value-inventing external atom.
Such a cycle can cause the non-termination of the evaluation by generating
(inventing) more and more new constant terms. In such programs the strong
safety condition is violated.

An atom b = &g [X](Y ) in a rule r of the program is strongly safe if either
there is no cyclic dependency over b or every variable in Y occurs also in a
positive ordinary atom not depending on b. A program is safe, if every external
atom in a rule is strongly safe.

42



Example 7.8. Consider the following program:

r1: p(a).

r2: q(aa).

r3: s(Y ) : - p(X),&concat [X, a](Y ).

r4: p(X) : - s(X), q(X).

It is not strongly safe because Y in the cyclic external atom &concat [X, a](Y )
in r3 does not occur in an ordinary body atom that does not depend on
&concat [X, a](Y ). When we run the above program with commandline option
--strongsafety enabled (cf. Section 6), the following error is generated:

GeneralError: Syntax Error: [Rule] is not strongly safe!

Variable [Var] fails strong safety check in rule [Rule].

To make r3 strongly safe we could add an ordinary atom in order to break the
cycle. r3 could be modified as follows:

s(Y ) : - p(X),&concat [X, a](Y ), q(Y ).

Adding atom q(Y ) makes program strongly safe since Y appears in the body
atom which does not depend on &concat [X, a](Y ).

Along with the error message, the affected [Rule] and a list of all unsafe
variable occurrences [Var] are reported. The first action to take usually consists
of checking whether variable [Var] is actually in the scope of any atom (in the
positive body of [Rule]) that can bind it. It can also be helpful to check for
variables that occur in aggregate elements (cf. Section 3.8) or conditional literals
(cf. Section 3.7), it might be necessary to constraint them using additional
positive atoms in conditions.

7.3.3 Liberal Safety

Strong domain-expansion safety is overly restrictive, as it also excludes programs
that are clearly finitely groundable. To overcome unnecessary restrictions of
strong safety, liberal domain-expansion safety (lde-safety) has been introduced
[5], which incorporates both syntactic and semantic properties of a program.
All lde-safe programs have finite groundings with the same answer sets.

Unlike strong safety, liberal de-safety is not a property of entire atoms but of
argument positions of atoms which we call attributes. Intuitively, an attribute is
lde-safe, if the number of different terms in an answer-set preserving grounding
(i.e. a grounding which has the same answer sets if restricted to the positive
atoms as the original program) is finite. A program is lde-safe, if all its attributes
are lde-safe [3].

Since the program from Example 7.8 is finitely restrictable, the cycle is
“broken” by q(X ) in r4, it is also liberally safe. The program can be evaluated
successfully while option --liberalsafety is enabled (cf. Section 6). The
output is as follows.

{p(a),q(aa),p(aa),s(aa),s(aaa)}

For more details about liberal safety we refer to [5].
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