"partialevaluation" — 2016/7/5 — 10:58 — page 1 — #1

Exploiting Partial Assignments for Efficient Evaluation of Answer Set Programs with External Source Access

Thomas Eiter Tobias Kaminski Christoph Redl Antonius Weinzierl

{eiter,kaminski,redl,weinzierl}@tuwien.ac.at

3. Extension to Partial Assignments

Partial assignment over atoms \mathcal{A} is set A of signed literals Ta, Fa and Ua s.t. for all $a \in \mathcal{A}$ exactly one of $Ta \in A$, $Fa \in A$ or $Ua \in A$ holds.

A *three-valued oracle function* $f_{\&g}$ for $\&g[\mathbf{p}](\mathbf{c})$ is a function such that $f_{\&g}(\mathbf{A}, \mathbf{p}, \mathbf{c}) \in \{\mathbf{T}, \mathbf{F}, \mathbf{U}\}$ for a partial assignment \mathbf{A} and all possible

- HEX-programs extend ASP by external sources
- Similar to SMT for SAT, but external source is black box
- Rule bodies may contain external atoms of the form $\&g[\mathbf{p}](\mathbf{c})$
 - g is an external predicate name
 - $\mathbf{p} = p_1, \dots, p_k$ are input predicate names or constants
 - $\mathbf{c} = c_1, ..., c_l$ are output terms

<u>Semantics</u>: Boolean oracle function $f_{\&g}$ s.t. $\&g[\mathbf{p}](\mathbf{c})$ is true iff $f_{\&g}(\mathbf{A}, \mathbf{p}, \mathbf{c})$, w.r.t. assignment \mathbf{A}

- Basic evaluation:
 - 1. replace $\&g[\mathbf{p}](\mathbf{c})$ by $e_{\&g[\mathbf{p}]}(\mathbf{c})$, add $e_{\&g[\mathbf{p}]}(\mathbf{c}) \lor ne_{\&g[\mathbf{p}]}(\mathbf{c})$
 - 2. run CDNL solver (e.g. Clasp)
- 3. check guess for $\& {\pmb{g}}[{\pmb{p}}]({\pmb{c}})$ when ${\pmb{p}}$ decided
- 4. learn io-nogoods when evaluating external atoms to avoid wrong guesses

Challenge: External sources cannot guide the solver effectively, they are **black boxes** evaluated under **complete** assignments!

values of p and c.

A three-valued oracle function $f_{\&g}$ is assignment-monotonic if $f_{\&g}(\mathbf{A}, \mathbf{p}, \mathbf{c}) = X, X \in \{\mathbf{T}, \mathbf{F}\}$, implies $f_{\&g}(\mathbf{A}', \mathbf{p}, \mathbf{c}) = X$ for all assignments $\mathbf{A}' \succeq \mathbf{A}$.

4. Nogood Learning with Partial Assignments

Nogood learning: Nogood only containing the decided part of a partial assignment learned as soon as oracle function evaluates to T or F Partial nogoods often significantly smaller

Nogood minimization: Given an io-nogood N, its minimized nogoods are $minimize(N) = \{N' \subseteq N \mid N' \text{ is an io-nogood}, f_{\&g}(N'', \mathbf{p}, \mathbf{c}) = \mathbf{U} \text{ for all } N'' \subsetneq N'_I\}.$

Nogoods with same input part can be minimized simultaneously

Example

Extension to three-valued oracle function:

 $\begin{cases} \mathbf{T} & \text{if } |\{\mathbf{Tarc}(X,Y) \in \mathbf{A}\}| \ge n \\ \mathbf{U} & \text{if } |\{\mathbf{Tarc}(X,Y) \in \mathbf{A}\}| \ge n \end{cases}$

Example

Oracle function for checking if size of predicate extension $\geq n$:

$$f_{\≥}(\mathbf{A}, p, n) = \begin{cases} \mathbf{T} & \text{if } |\{\mathbf{T}p(x, y) \in \mathbf{A}\}| \ge n \\ \mathbf{F} & \text{otherwise} \end{cases}$$

HEX-program:

 $\begin{aligned} vertex(a). \ vertex(b). \\ a(X,Y) \lor na(X,Y) \leftarrow vertex(X), vertex(Y). \\ \leftarrow e_{\&geq[a,2]}(). \end{aligned}$ $e_{\&geq[a,2]}() \lor ne_{\&geq[a,2]}() \leftarrow \end{aligned}$

 $\begin{array}{l} \mathbf{A} : \{\mathbf{Fe}_{\& geq[a,2]}(), \mathbf{Ta}(a,b), \mathbf{Fa}(b,a), \mathbf{Ta}(a,a), \mathbf{Fa}(b,b)\} \\ \mathbf{Learn} : \{\mathbf{Fe}_{\& geq[a,2]}(), \mathbf{Ta}(a,b), \mathbf{Fa}(b,a), \mathbf{Ta}(a,a), \mathbf{Fa}(b,b)\} \end{array}$

2. Main Contributions

Extension from two-valued to three-valued assignments, enables:

1. Early evaluation of external sources

 $f_{\&geq}(\mathbf{A}, arc, n) = \begin{cases} \mathbf{U} & \text{if } |\{Tarc(X, Y), Uarc(X, Y) \in \mathbf{A}\}| \ge n \\ \mathbf{F} & \text{otherwise} \end{cases}$

External source can already be checked under partial assignment: $A : \{Fe_{\& geq[a,2]}(), Ta(a,b), Fa(b,a), Ta(a,a), Ua(b,b)\}$ Learn : $\{Fe_{\& geq[a,2]}(), Ta(a,b), Fa(b,a), Ta(a,a)\}$ Learn minimal : $\{Fe_{\& geq[a,2]}(), Ta(a,b), Ta(a,a)\}$

5. Empirical Evaluation

- 2. External theory learning producing smaller nogoods
- 3. Nogood minimization techniques

New techniques applicable by user without expert knowledge Benchmarks show effectiveness of techniques

References

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits: *"A Uniform Integration of Higher- Order Reasoning and External Evaluations in Answer-Set Programming"*, IJCAI, 2005. Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl: *"Conflict-driven ASP solving with external sources"*, TPLP, 2012.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli: *"Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T)"*, ACM Journal, 2006.

average runtime over 50 instances (sec.) vs. instance size, (timeout 300 sec.)

- Significant improvements if not very many answer sets
- Tradeoff: time for evaluating external atom \leftrightarrow information gain
- Benefit of nogood minimization depends on size of nogoods

Der Wissenschaftsfonds.