
Answer Set Programming
with External Source Access?

Thomas Eiter1, Tobias Kaminski1, Christoph Redl1, Peter Schüller2, and
Antonius Weinzierl1

1 Technische Universität Wien, Institut für Informationssysteme, Knowledge Based
Systems Group, Vienna, Austria

{eiter,kaminski,redl,weinzierl}@kr.tuwien.ac.at
2 Marmara University, Faculty of Engineering, Department of Computer

Engineering, Istanbul, Turkey
peter.schuller@marmara.edu.tr

Abstract. Access to external information is an important need for An-
swer Set Programming (ASP), which is a booming declarative problem
solving approach these days. External access not only includes data in
different formats, but more general also the results of computations,
and possibly in a two-way information exchange. Providing such access
is a major challenge, and in particular if it should be supported at a
generic level, both regarding the semantics and efficient computation.
In this article, we consider problem solving with ASP under external
information access using the dlvhex system. The latter facilitates this
access through special external atoms, which are two-way API style
interfaces between the rules of the program and an external source.
The dlvhex system has a flexible plugin architecture that allows one
to use multiple predefined and user-defined external atoms which can
be implemented, e.g., in Python or C++. We consider how to solve
problems using the ASP paradigm, and specifically discuss how to use
external atoms in this context, illustrated by examples. As a showcase,
we demonstrate the development of a HEX program for a concrete real-
world problem using Semantic Web technologies, and discuss specifics
of the implementation process.

1 Introduction

The rise of the World Wide Web and a growing trend towards computation
in distributed systems has increased the need for accessing external informa-
tion sources in logic programs. More and more also multiple sources must be
accessed, which moreover may be of different kind and provide their informa-
tion in heterogeneous formats. There is a broad range from light-weight data
access (e.g., based on XML, RDF, or relational data repositories) to knowledge-
intensive access (e.g., OWL resp. description logic knowledge bases), and from
access to information sources that merely provide data (as, e.g., in dictionaries

? This research has been supported by the Austrian Science Fund (FWF) projects
P27730 and W1255-N23, and by the Scientific and Technological Research Council
of Turkey (TUBITAK) Grant 114E777.

or thesauri), to sources providing computation services that are instantaneously
executed (as, e.g., route planning to get from A to B) or may return a result
at a later stage of a computation.

The variety of source access with its dynamic aspects poses a challenge
for proper modelling and efficient evaluation in the context of declarative pro-
gramming, where desired computation results are semantically described rather
than obtained after running through a prescribed sequence of computation com-
mands. This is in particular true for Answer Set Programming (ASP) [73,77,84],
which is a declarative problem solving approach in which a problem is described
by the rules of a nonmonotonic logic program such that the answer sets [59]
(i.e., specific models) of the program correspond to the solutions of the prob-
lem. After computing the answer sets using an ASP solver, the solutions can
be extracted from them. Due to the availability of increasingly efficient and
expressive such solvers (e.g., smodels [96], dlv [70], ASSAT [75], Gringo plus
Clasp [56, 57]), and WASP [1], the ASP approach has been successfully used
for applications in different areas and disciplines, cf. [14, 48]. However, these
solvers provide no or only limited support for external information access.3

The need for external information access in ASP has been recognized early
on and led to theoretical formalisms such as logic programs with generalized
quantifiers [38], and later to dlv-ex programs [18] and the more expressive
HEX programs [42]. The latter pick up notions in [18,38] and provide a bidirec-
tional interface between a nonmonotonic logic program and other sources, via
designated external atoms. These atoms abstractly define external predicates
whose valuation is determined by external computation. For example, a rule

pointsTo(X,Y)← &hasHyperlink [X](Y), url(X)

may informally determine pairs (X,Y) of URLs, where X actually links Y on
the Web. Here, &hasHyperlink is an external predicate that is associated with an
external source; X is the input for the latter and Y is a result returned, which
is determined in whatever (computable) way. Notably, the input of external
atoms can also comprise predicate names, not only constants; e.g.,

pointsTo(X,Y)← &hasAdmissbleHyperlink [X, black list](Y), url(X)

would be a variant of the previous rule, where black list is a predicate that
contains URLs which should be excluded from retrieval.

The abstract concept of an external atom has been realized in the open-
source software dlvhex4 as an API, which provides a suite of external atoms
and, by means of a plugin mechanism, allows the user to tailor external atoms
for her needs using Python or C++. This makes the system very powerful; de-
pending on the external evaluation cost, HEX programs offer a range of problem
solving capacity, fromΣp

2 for polynomial-time external atoms in the ground case
to Turing-completeness in general. Moreover, external atoms may return values
that do not occur in the program itself (this is known as value invention), which
by recursion may in principle lead to an infinite domain; this is in analogy to

3 For more information, see the related work section.
4 www.kr.tuwien.ac.at/research/systems/dlvhex

2

www.kr.tuwien.ac.at/research/systems/dlvhex

the infinite universes of existential rules or description logic ontologies, which
result from skolemization.

The generic nature of external atoms, which are blackboxes in general, com-
bined with possible predicate input and/or value invention poses a big challenge
for the development of an efficient solver for HEX programs. In the last years,
a number of advanced methods and techniques have been researched which
have led to significant improvements [29–31,34,35]. Furthermore, an open soft-
ware architecture that supports a flexible plugin mechanism and is easy to use
also for non-experts poses a further challenge, which has been addressed in
parallel [90].

In this paper, we present in a tutorial style fashion the HEX formalism
as well as the dlvhex system, which constitutes the state-of-the-art solver
for HEX programs. At this, we take a user-centric view, where we omit many
technical details. Particular attention is payed to the use of HEX programs and
dlvhex for interoperability on the Semantic Web – and indeed the original
development of HEX programs was driven by this issue, as a generalization of a
concrete combination of rules and ontologies, a topic that emerged as necessary
in the Semantic Web Layer cake proposed by Tim Berners-Lee and has led to
a stream of works and a plethora of different approaches [26, 83]. While HEX

programs support problem solving at different levels of abstraction, we focus
here on the basic end-user level where external atoms can be utilized in different
ways in order to enrich the problem solving capacity of ASP.

More specifically, the presentation is structured along the following sec-
tions:

– In the next section, we give an introduction to the syntax and semantics
of answer set programs and HEX programs. The part on ordinary answer set
programs is kept deliberately short and compact, as a number of texts exist that
provide an ample introduction to the subject, e.g. [5,13,14,39]; see also Section 7
for further pointers. Furthermore, we do not consider the full repertoire of
language constructs that is available in ASP, but concentrate on a core part
that is sufficient from a conceptual perspective.

– In Section 3 then, we turn to the issue of using HEX programs. We provide
a basic methodology to this end, which enhances the methodology of ordinary
ASP programs with the use of external atoms; different such uses, for informa-
tion outsourcing and computation outsourcing, respectively, will be discussed
following [47], as well as typical kinds of external sources. Furthermore, we will
go over example encodings of two quite diverse HEX application scenarios, viz.
RDF graph exploration in the Semantic Web and the AngryHEX agent for
playing Angry Birds, which has been suggested as a low-cost AI challenge for
developing programs that outperform human capabilities.5

– In Section 4, based on [90] we introduce the dlvhex system, which is an
elaborated software platform for designing and evaluating HEX programs. We
will present the system architecture, the Python programming interface for
developing external atom implementations, and specific annotations of external
source properties that are important for deciding whether a finite portion of

5 https://aibirds.org/

3

https://aibirds.org/

the instantiated rules is sufficient for evaluation and moreover, for evaluation
efficiency.

– In Section 5 we go over a full-fledged case study in the area of semantic
route planning, that is route planning under further semantic constraints. The
application program will be developed stepwise, where in each step additional
aspects are addressed; code examples show the implementation of simple ex-
ternal sources, and access to an ontology in a lightweight Description Logic
through an external atom is illustrated.

– In the subsequent Section 6, we provide an overview of further HEX ap-
plications and HEX extensions. Furthermore, we discuss related work, where
in particular we compare dlvhex to the Clingo system6 [56, 57], its closest
relative.

– We conclude the paper in Section 7 with a brief summary and outlook;
pointers to further material and resources can be found in the appendix.

2 ASP and HEX Programs

In this section, we formally introduce the syntax and semantics of HEX pro-
grams; for more details and background, see e.g. [29, 42,43,94].

2.1 ASP

In this section we briefly introduce ASP and its underlying concepts. For a
more detailed introduction see [39].

From Procedural Programming to Logic Programming. In computer science, all
students are taught programming in procedural programming languages like
Java, C/C++, Python, and many others. The basic building blocks of pro-
cedural programming differ a lot from logic programming and providing a full
introduction is beyond the scope of this article. The following paragraphs, how-
ever, may help bridging the gap. A procedural programming language is about
the contents of the machines memory, i.e., bits organized in basic data types
of bytes, integers, characters, arrays, and potentially structures as well as ob-
jects. Procedural programs modify data using instructions that are executed
one after another, i.e., instructions like addition, subtraction for basic bit ma-
nipulation; if, else, and switch for conditional checks; various loops for repeating
instructions, and functions or methods to organize sequences of instructions.

In contrast to that, logic programming is about a statement being either true
or false. A statement itself may be structured or not: a statement can be un-
structured like jaguar is an animal or structured like is bigger than(45 , 42).
A logic program expresses whether a statement is true or false by rules, basi-
cally just if-then expressions. In principle, a logic program can only influence
whether a statement is true or false, it cannot otherwise modify statements.
Data in logic programs is represented by structured statements, called atoms.

6 A tutorial covering hybrid answer set solving with the Clingo system can also be
found in this volume [67].

4

An atom is composed of a predicate name (e.g., is bigger than) and a sequence
of terms, e.g., (42 , 45). Terms can be simple constants, or again be structured
using function symbols. For readability, however, we will ignore function sym-
bols in the most of what follows. Terms and atoms originate from formal logic,
specifically from first-order logic, the most prominent logic formalism that is
widely used in mathematics.

An alternative view on atoms is based on relational data bases (e.g. SQL):
every predicate can be considered the name of a table while its terms are the
values of attributes in the table. In that view, a true atom at(t1, . . . , tn) is a
tuple (t1, . . . , tn) that is in the table at while a false atom is simply not in the
table. Hence, logic programming may be seen as a (powerful) form of database
querying. Formally, statements are expressions in a relational language or first-
order language.

Syntax Statements of the form relation name(t1, . . . , tn) where each ti is a
constant or a variable, are formalized as relational languages. A relational lan-
guage is the set of all statements that can be expressed over a relational signa-
ture.

Definition 1 (Relational signature). A relational signature is a tuple S =
(C,P,X) of pair-wise disjoint sets of constants, predicate symbols, and vari-
ables, respectively. We assume that predicate symbols p ∈ P come with an
associated arity n ∈ N, denoted by p/n ∈ P.

Intuitively, a constant denotes something the logic program speaks about,
i.e., it denotes an entity like the number 43 or tomatoes. Predicate symbols are
used to denote relations, e.g., the ≤ relation or is edible. Variables may denote
any element out of a set of possible candidates. Variables may occur in any
place where a constant may occur.

Usually constants in C are denoted with first letter in lower case while
variables in X are denoted with first letter in upper case.

Definition 2 (Terms, Atoms). Given a relational signature S = (C,P,X),
an element of C ∪ X is called a term. Furthermore, if p/n ∈ P is a n-ary
predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atom. The
set of all atoms is denoted by AS.

If the signature S is clear from the context, one also writes simply A for AS .
Given the is edible relation and the constant tomatoes, one can form the

atom is edible(tomatoes) to denote that tomatoes are edible. Atoms may con-
tain variables as, e.g., in is edible(X). An atom that contains no variables is
called ground. Hence, is edible(tomatoes) is ground while is edible(X) is not.
We likewise say a term is ground, if it contains no variable; that is, if it is from
C.

Note that is edible(43) also forms an atom, which intuitively is a false state-
ment while is edible(tomatoes) intuitively is a true statement. On the other
hand, however, a rotten tomato should not be considered edible and we may
even think of a fantasy story where a mythical creature is eating numbers.
Statements therefore may be true or false depending on their interpretation.

5

Formally, an interpretation for logic formulas (an ASP program is a set of
a certain kind of formulas) interprets all constants of the logic formula with
entities or individuals, which are called the universe of discourse. For classical
logic, the universe may be any set, e.g. the set of natural numbers, and an
interpretation is then free to interpret the constant tomatoes with the number
51.7 Since this kind of freedom is not always intuitive and not needed, logic
programs consider interpretations where the universe is from the set of symbols
of the relational signature and each symbol is interpreted by itself, i.e., tomatoes
is interpreted as tomatoes and 43 is interpreted as 43.

Definition 3 (Herbrand Universe, Herbrand Base, Interpretation).
Given a relational signature S = (C,P,X), the Herbrand universe HU is the
set of all ground terms wrt. S and the Herbrand base HB is the set of all
ground atoms wrt. S. An (Herbrand) interpretation is any set I ⊆ HB. Here
a ∈ I is read as a is true under I, and false otherwise.

In the following, we will assume the relational signature to be given im-
plicitly by the program at hand. Readers knowledgeable in formal logic may
observe that the given notion of an interpretation is very simplified compared
to the usual notion, yet an interpretation in our terms can be easily extended
to a first-order logic interpretation I on the universe HU .

Observe that Herbrand interpretations cannot interpret two different con-
stants by the same entity, they implicitly assume that different constants denote
different entities. They follow the so-called unique-name-assumption (UNA).

Logic Programs. Logic programs are comprised of rules. A rule expresses that
if something holds, other things have to hold, i.e., a rule is simply an if-then ex-
pression. The if-part may contain several conditions, some possibly containing
negation, which all have to hold while the then-part may also contain several
conditions of which at least one has to hold whenever the if-part holds.

Definition 4 (Rule). A (disjunctive) rule r is of the form

A1 ∨ . . . ∨Am ← L1 . . . , Ln, m, n ≥ 0 (1)

where A1, . . . , Am are atoms and L1, . . . , Ln are literals, i.e., an atom or a
negated atom, written as not b, where b is an atom. A rule is ground, if all
atoms occurring in it are ground.

The intuition of a rule is that: if L1 to Ln all hold, then one of A1 to
Am must also hold. Given an interpretation I, an atom a holds if a ∈ I while
a negated atom not a holds if a /∈ I. The atoms occurring left of the ← are
called the head atoms while the literals occurring right of it are the body atoms.
Formally, for a rule r of the form (1), the head is the set head(r) = {A1, . . . , Am}
while the body is the set body(r) = {L1, . . . , Ln}. Rules then can be read as “if
the whole body holds, some element of the head must hold”.

A rule r with empty body, i.e., body(r) = ∅, is called a fact and a rule with
empty head, i.e., head(r) = ∅, is called a constraint.

7 As the elements of C need to be interpreted they are thus called constant symbols
in classical logic.

6

Example 1. Consider the following three rules:

day ∨ night .

← sunshine, raining .

sunshine ← day ,not raining .

The first rule is a fact which expresses that it is day or night. The second
rule is a constraint and expresses that it cannot be the case that both the sun
shines and it is raining. The third rule is neither a fact nor a constraint, and it
expresses that whenever it is day and not raining, then the sun shines. Observe
that all rules are ground.

The not in rule bodies is called default negation in ASP since atomic pieces
of information that are not known to be true are presumed to be false by default.
In this way, ASP implements reasoning under the Closed World Assumption
(CWA), where complete knowledge about atomic facts is assumed. For instance,
in Example 1, the atom raining is not stated as a fact and cannot be derived
by any of those rules, therefore raining is false by default. Subsequently, the
body of the last rule is satisfied if day is true.

Rules that contain variables have to be safe, i.e., all variables that occur
in the rule must also occur in some positive literal of the rule. Effectively, this
allows an implementation to ensure that the relevant range of variables is finite
whenever the set of constants C is finite.

Example 2. Consider the following rules:

r1 : p(X)← q(X,Y), at ,not r(X).

r2 : p(X)← not t(Z).

Rule r1 is safe because every variable (X and Y) occurring in it occurs in its
positive body, specifically, in q(X,Y). Rule r2 on the other hand is not safe for
two reasons: X occurs not in its positive body and neither does Z. Intuitively,
it is not clear which value for X should be chosen once the body of r2 is true.
Letting p(X) hold for all possible values of X, i.e., for the whole universe HU ,
seems far too much. Likewise, for Z in the negative body. If one lets it range
over HU , it expresses that the rule fires unless for every u ∈ HU it holds that
t(u) is true. Intuitively, it thus makes sense to exclude rules that are not safe.
From a computational perspective, not-safe rules are also hard to deal with
since the universe may be infinite and hence it is impossible to treat each atom
individually within finite time.

In the following we consider only safe rules.

Example 3. The following rule expresses that whenever some X is reachable
from Y and Y is reachable from Z, then Z is reachable from X.

reachable(X,Z)← reachable(X,Y), reachable(Y,Z).

This rule is not ground as it contains the variables X, Y , and Z. They are
variables, because their initial letters are in upper case. Variables occurring in

7

a rule can be seen as implicitly universally quantified, i.e., the if-then statement
expressed by the rule has to hold for all X, Y , and Z. Note that the rule is
safe, because all variables X, Y , and Z occur in the positive body.

Logic programs are simply sets of rules, formally:

Definition 5 (Logic Program). A logic program is a finite set of rules.

A program P is ground, if all rules r ∈ P are ground.

Example 4. The following is a logic program consisting of three rules:

reachable(X,Y)← connection(X,Y).

reachable(X,Z)← reachable(X,Y), reachable(Y,Z).

not reachable(X,Y)← location(X), location(Y),not reachable(X,Y).

The program can be used to compute all pairs of locations (e.g. in a city) which
are not reachable from each other by taking connections in the public transport
system alone. For this, facts such as connection(a, b) and location(a) need to
be added, representing a concrete problem instance, i.e., a public transport
network in a city.

The first rule states that one location is reachable from another one if it is
possible to take a direct connection. The second rule computes the transitive
closure of the connection relation as described in Example 3. In the third rule,
default negation is used to obtain all pairs of locations that are not in the
transitive closure. Note that for this rule to be safe, the variables X and Y must
be bound by the positive atoms location(X) and location(Y). Otherwise, not
all variables would occur in a positive body atom. Further note that variables
having the same name but occurring in different rules are treated like distinct
variables.

Semantics In order to define the semantics of rules and programs, we first
need to define when an interpretation satisfies a rule; this in turn depends on
the satisfaction of its components. Based on this, answer sets of a program can
be defined as special interpretations that satisfy all rules in a program. We first
consider the ground case, which can then be naturally lifted to programs with
variables.

Satisfaction for ground programs For ground rules, satisfaction for rules is as
in classical logic.

Definition 6 (Satisfaction, Model). An interpretation I satisfies

– a ground atom a, denoted I |= a, if a ∈ I,
– a negated ground atom not a, denoted I |= not a if I 6|= a,
– a conjunction L1, . . . , Ln of ground literals, denoted I |= L, . . . , Ln, if for

each i ∈ {1, . . . , n} it holds that I |= Li,
– a disjunction A1 ∨ . . . ∨ Am of ground atoms, denoted I |= A1 ∨ . . . ∨ Am,

if there exists k ∈ {1, . . . ,m} with I |= Ak, and

8

– a ground rule r, denoted I |= r, if I |= body(r) implies that I |= head(r),
i.e., if all literals in the body hold at least one atom in the head is true.

An interpretation I is a model of a ground program P , if I |= r for each rule
r ∈ P . A model I is minimal if there is no other model I ′ ⊂ I.

Given a rule r and an interpretation I, if the body of r holds under I, i.e.,
if I |= body(r), then the rule r is said to fire under I.

The correct semantics of ground rules containing negation was heavily dis-
cussed in the past and multiple approaches have been introduced. For programs
without negation, however, there was early consensus that the minimal models
are most fitting. It best captures the intuition that a rule’s head should only
hold, if the body of the rule holds.

Example 5. Consider the following program:

P =
{
b. a← b. c← d.

}
The interpretation I = {a, b, c} is a model of P , i.e., I |= P , because I satisfies
each rule of P . Note that I |= c ← d, which may not seem intuitive, because
the head of the rule is true although its body is not true. The notion of a model
is therefore not sufficient to capture the intuitive meaning of this program. The
(unique) minimal model I ′ = {a, b} also satisfies all rules of P and for this
program, it is close to our intuitive understanding of a rule, namely that its
head atom is only there if the body is satisfied. Note that a← b fires under I ′

while c← d does not fire under I ′.

Example 6. Consider the program P = {a∨ b}. Clearly, this program has three
models, viz. I1 = {a}, I2 = {b} and I3 = {a, b}, of which intuitively I1 and I2
are preferable to I3 because that model contains an unnecessary atom; however,
by the perfect symmetry between a and b in the program, it is not justified
to prefer I1 over I2 or vice versa. If we add the rule b ← a, for the resulting
program

P ′ = {a ∨ b. b← a.}
I1 is no longer a model; in this case, {b} is the only intended model.

Answer Sets ASP adopts a multiple models approach, i.e., a given program P
can have multiple models that are considered to be correct and these models can
be disjoint from each other; this may even be the case if the program does not
contain disjunctive rules. Intuitively, an answer set is a model of the program
that can be (re-)constructed by rule application. Once a rule is applicable and
fires, it has to stay applicable throughout the whole construction and also in
the final model.

Example 7. Consider a program with negation as follows:

P =
{
a← not b. b← not a.

}
This program has two minimal models, I = {a} and I ′ = {b}. Under I the
first rule fires while the second does not, while under I ′ it is the other way

9

round. Answer-set semantics now declares both models to be correct, because
each captures the intuitive meaning of the rules: in I the atom a is true and b
is false, so the first rule does fire, deriving a and the second rule does not fire,
hence not deriving b. Intuitively, I can be reconstructed from P by letting the
first rule fire to obtain a, ensuring that it will fire later on fixes b to be false,
hence the second rule is not applicable and I is successfully reconstructed. Thus
I is an answer set. Considering I ′, the same holds vice versa, i.e., both I and
I ′ capture the meaning of the rules in P .

In order to define answer sets formally, the notion of a reduct is important.
Intuitively, the reduct with respect to an interpretation I and a program P is
obtained by removing all rules from P which cannot fire under I.

Definition 7 (FLP-Reduct). Given a program P and an interpretation I,
the FLP-reduct P I of P wrt. I is obtained as follows: delete from P all rules
r with I 6|= r, i.e., P I = {r ∈ P | I |= r}.

Answer sets of a program P are then defined as follows:

Definition 8 (Answer-Set). An interpretation I is an answer set of P if I
is a minimal model of P I .

Intuitively, an answer set is such an interpretation which is (re-)construct-
able under the rules that fire in the interpretation. Due to this, answer sets are
also called stable models.

Example 8. Consider the following program P containing a fact and two rules
using default negation:

restaurant(osteria).

indoor(osteria)← restaurant(osteria),not outdoor(osteria).

outdoor(osteria)← restaurant(osteria),not indoor(osteria).

Intuitively, the program states that osteria is a restaurant , and that it is either
an outdoor or an indoor restaurant. Now, we consider all interpretations that
satisfy the rules in P , and start with:

I1 = {restaurant(osteria), indoor(osteria)}.

Since I1 does not satisfy the last rule, the corresponding FLP-reduct P I1 is the
following:

restaurant(osteria).

indoor(osteria)← restaurant(osteria),not outdoor(osteria).

As the atom outdoor(osteria) is not contained in I1, the body of the remaining
rule is satisfied under I1, and outdoor(osteria) needs to be true in every model
of P I1 . Hence, we can verify that I1 is a minimal model of P I1 , such that I1
qualifies as an answer set of P . Analogously, we derive that

I2 = {restaurant(osteria), outdoor(osteria)}

10

is an answer set as well. Because restaurant(osteria) must be true in any model
of P due to the fact in the program, there is only one remaining interpretation
to consider, which is:

I3 = {restaurant(osteria), indoor(osteria), outdoor(osteria)}.

The FLP-reduct P I3 only contains the fact restaurant(osteria). as none of the
two rule bodies in P are satisfied by I3. Because both indoor(osteria) and
outdoor(osteria) could be removed from I3 while the interpretation would still
satisfy P I3 , I3 is not a minimal model of the FLP-reduct, and thus, not an
answer set of P .

Example 9. Next, we consider the following program P , which, in addition to
default negation in rule bodies, also employs disjunction in the head of a rule:

restaurant(osteria).

indoor(osteria) ∨ outdoor(osteria)← restaurant(osteria).

eat(osteria)← indoor(osteria), raining .

eat(osteria)← outdoor(osteria),not raining .

Accordingly, P encodes that osteria is an indoor or an outdoor restaurant
(now, by using a disjunctive head), and that we eat there if it is an indoor
restaurant and it is raining , or if it is an an outdoor restaurant and it is not
raining . Again, we check for different interpretations if they are answer sets by
constructing the respective FLP-reducts. First, consider the interpretation

I1 = {restaurant(osteria), indoor(osteria)}.

In the FLP-reduct P I1 , the last two rules are both removed since osteria is not
an outdoor restaurant and I1 does not contain the atom raining , resulting in
the reduct:

restaurant(osteria).

indoor(osteria) ∨ outdoor(osteria)← restaurant(osteria).

It is easy to see that I1 is indeed an answer set because it is not a model of
P I1 anymore if one of the two atoms is removed from the interpretation. When
checking the interpretation

I2 = {restaurant(osteria), outdoor(osteria), eat(osteria)}

we obtain a reduct P I2 that still contains the last rule as osteria is now assumed
to be an outdoor restaurant :

restaurant(osteria).

indoor(osteria) ∨ outdoor(osteria)← restaurant(osteria).

eat(osteria)← outdoor(osteria),not raining .

11

By checking minimality we find that I2 is another answer set for P . Finally,
consider the following interpretation, which also contains the atom raining :

I3 = {restaurant(osteria), indoor(osteria), raining}.

The corresponding FLP-reduct P I3 is identical to P I1 , but now assumes that
it is raining , which is not supported by any rule or fact, such that I3 does not
represent an answer set. In fact, there are no further answer sets for P . Note
that any interpretation containing both indoor(osteria) and outdoor(osteria)
cannot be a minimal model of the respective reduct because the head of the
first rule is already satisfied when only one of them is true.

Historically, there are several slightly different notions of a reduct (e.g. the
seminal GL-reduct [58,59], which removes negative literals from rules), but for
ASP programs as introduced above, they are equivalent. In fact, there are many
quite diverse definitions of answer set, cf. [74], which indicates some intrinsic
interest of this notion.

Answer Sets of Nonground Programs The semantics for ground programs can
be extended to programs with variables by transforming the latter into an
equivalent ground program. This is achieved by substituting each occurring
variable with all possible constants. For this, let a substitution σ : X ∪ C → C
be a mapping from terms to constants such that σ is the identity function on
constants, i.e., σ(c) = c for any c ∈ C. Given an atom a = p(t1, . . . , tn) the
ground atom obtain from applying σ to a, denoted by aσ is p(t1σ, . . . , tnσ).
Given a rule r of the form (1), the ground rule obtained from applying σ to r,
denoted by rσ is A1σ ∨ . . . ∨Amσ ← L1σ . . . , Lnσ.

Definition 9 (Grounding). The grounding of a rule r, denoted by grnd(r)
is the set of all possible substitutions applied to r, i.e., grnd(r) = {rσ |
σ is a substitution}. The grounding of a program P is the grounding of each
rule, i.e., grnd(P) =

⋃
r∈P grnd(r).

The answer-sets of a non-ground program P are then simply the answer-sets
of grnd(P).

Example 10. Reconsider two of the non-ground rules from Example 4 forming
the following program P :

reachable(X,Y)← connection(X,Y).

reachable(X,Z)← reachable(X,Y), reachable(Y, Z).

Since P does not contain any constants, we obtain grnd(P) = ∅. Intuitively,
this makes sense because there are no locations for which reachability could
be derived. Hence, the only answer set of P is the empty set. We introduce
constants into the encoding by extending P in the following way:

P ′ = P ∪
{

connection(a, b). connection(b, c).
}

We obtain the grounding of P ′ by replacing all variables by constants in all
possible ways and aggregating the resulting ground rules. The ground program
grnd(P ′) is represented by the following rules:

12

reachable(a, b) ← connection(a, b).
reachable(b, a) ← connection(b, a).
reachable(b, c) ← connection(b, c).

reachable(c, b) ← connection(c, b).
reachable(c, a) ← connection(c, a).
reachable(a, c) ← connection(a, c).

reachable(a, b)← reachable(a, b), reachable(a, b).

reachable(b, a)← reachable(b, a), reachable(b, a).

reachable(b, c)← reachable(b, c), reachable(b, c).

reachable(c, b)← reachable(c, b), reachable(c, b).

reachable(c, a)← reachable(c, a), reachable(c, a).

reachable(a, c)← reachable(a, c), reachable(a, c).

The resulting program grnd(P ′) has the single answer set {connection(a, b),
connection(b, a), reachable(a, b), reachable(b, c), reachable(a, c)}, because infor-
mally speaking, b can be reached from a, and c from b, with a single connection,
and c can be reached from a via b.

Note that the grounding contains many rules that do not fire w.r.t. the
mentioned answer set. However, the essential point is that the set of ground
rules which is needed for deriving the correct answer set is over-approximated
by the grounding step, such that grnd(P ′) has the same answer set(s) as P ′.

Properties of Answer Sets All answer sets satisfy certain properties, of
which we present some in the following. First, it holds that each answer set is
a minimal model.

Proposition 1. Given a program P and an answer set A of P , then A |= P
and there exists no answer set A′ 6= A of P with A′ ⊆ A.

From minimality follows that answer sets are incomparable wrt. ⊆. For-
mally:

Corollary 1. Given two different answer sets A,A′ of a program P , then A 6⊆
A′ and A′ 6⊆ A both hold.

Given a program P , an interpretation I, and an atom a occurring in P ,
then a is said to be supported in I, if there is a ground rule r ∈ grnd(P) such
that I |= body(r) and a ∈ head(r). Intuitively, an atom is supported in I, if its
presence is supported by the rules that fire in I, i.e., a is contained in the head
of a firing rule. A model I is supported, if each atom a ∈ I is supported in I.

Proposition 2. Let A be an answer set of a program P , then A is a supported
model.

In Example 7, we have already illustrated that atoms which are not sup-
ported should not be derived because there is no necessity for them to appear
in a model. However, not all supported models are also answer sets. In fact,
answer sets adhere to a stronger property called foundedness, which intuitively
excludes positive cycles supporting itself.

13

Example 11. Consider the program

P =
{
a← b. b← a.

}
,

where there is a cyclic dependency involving the atoms a and b. This program
has two models, namely I = {a, b} and I ′ = ∅. According to our previous
observation, only I ′ should be the intended model as it represents a subset
of I, i.e. it is the minimal model. Intuitively, this makes sense because, even
though both atoms are supported by a positive rule body under I now, this
support is cyclic and hence, not founded by a positive rule body depending on
neither a nor b. In other words, we have no reason independent from a and b
to believe either of them.

Example 12. Although every answer set is a minimal supported model, the
converse does not hold. Consider the following program:

P = { a← a. a← not a. }

The interpretation I1 = ∅ satisfies the body of the second rule, but not its head,
therefore I1 is not a model of P , i.e., I 6|= P . The interpretation I2 = {a} on
the other hand satisfies the heads of both rules, therefore I2 |= P . Furthermore,
each atom in I2 is supported by some rule, namely the first one. Thus, I2 is
a supported model and since I1 is not a model, I2 is the minimal supported
model of P .

Considering answer sets now, we observe that I1 is not an answer set because
it is not an model of P . The reduct wrt. I2 is P I2 = {a← a.} and the minimal
model of this program is I ′ = ∅. Therefore I2 is not a minimal model of P I2 and
hence I2 is not an answer set of P . In fact, P has no answer sets. Intuitively,
the first rule of P is only deriving a from the presence of a while the second
rule is contradictory in itself and can only be satisfied if a is true. Together P
requires a to hold but gives only a self-cyclic reason for a to hold, which is not
enough. Therefore it makes sense for P to have no answer sets.

In conclusion, the notion of answer set is different from the notion of min-
imal supported model and answer sets have to satisfy more conditions than
minimal supported models even. In some sense, answer sets are minimal deriv-
able models, specifically excluding positive self-support.

The computational complexity of finding answer sets that contain no dis-
junction in any rule heads is NP, i.e., under common assumptions, there is
no feasible algorithm to construct answer sets. The best known algorithms for
constructing answer sets have an exponential run time in the worst case.

Proposition 3 (Computational Complexity: Non-Disjunctive Pro-
grams [78]). Given a ground program P without disjunction, deciding whether
P has an answer set is NP-complete.

If the input program contains disjunction, the complexity rises even further.
Formally, the complexity is at the second level of the polynomial hierarchy.
This means that an algorithm to construct answer sets of a disjunctive logic
program following an NP-style guess and check approach would need to solve
subproblems that are by themselves NP-complete.

14

Proposition 4 (Computational Complexity: Disjunctive Programs
[28]). Let P be a ground program including disjunction, then deciding whether
P has an answer set is ΣP

2 -complete in the worst case.

Luckily, despite these results, ASP solving works quite well in practice; this
is because the worst case is often not encountered in practical problems. For
further background and results on the complexity of logic programs, we refer
to [23].

Further ASP Constructs The rules presented so far already allow to express
many problems, but some conditions are cumbersome to express using rules
only. Therefore ASP allows more constructs, mainly for more convenience. One
of those constructs are aggregates in rule bodies to count or sum over some
values. Briefly, an aggregate atom starts with # followed by the name of the
aggregate function, e.g., count , sum, min, max , avg , a collection of aggregate
elements {t1, . . . , tm : l1, . . . , ln} followed by a relation symbol, e.g., ≤, <, or=
and a term. The aggregate elements t1, . . . , tm : l1, . . . , ln are comprised of
terms t1, . . . , tm and literals l1, . . . , ln.

Example 13. Assume one wants to count the number of stations in a train
network where each station is given by the predicate station(Name). This is
possible using rules alone but very inconvenient. An aggregate allows counting
directly as follows:

num stations(C)← #count{X : station(X)} = C.

Intuitively, the aggregate #count{X : station(X)} = C counts all X which are
station names and assigns the number of such to the variable C.

In order to find optimal answer sets, weak constraints may be used. In-
tuitively, a weak constraint is like an ordinary constraint but an answer set
may violate the weak constraint incurring a penalty of some specified cost. In
the presence of weak constraints, answer sets with lowest cost are considered
optimal. A weak constraint is of the form

 Body . [C@L, t1, . . . , tn] (2)

where additional cost C at level L is added to the answer sets if Body is satisfied,
and t1, . . . , tn are terms. Cost C can be incurred on different priority levels L:
cost on higher levels is minimized before cost on lower levels is minimized. The
terms t1, . . . , tn serve to count multiple times those same cost, e.g., 3@0, that
appear in different rules.

Example 14. Consider some route planner where the duration of a trip should
be minimized with highest priority and the number of stops should be minimal,
but is less important than the duration.

 trip duration(T).[T@2]

 trip stop(X).[1@1, X]

15

For a duration T of a trip, the first rule incurs cost T at level 2. The second
rule incurs a cost of 1 at level 1, and in order to count the cost of every stop,
the term X is used in [1@1, X]. For illustration, assume that the above weak
constraints are part of a larger program with three answer sets,

A1 = {trip duration(5), trip stop(a)},
A2 = {trip duration(3), trip stop(a), trip stop(c), trip stop(d)}, and

A3 = {trip duration(3), trip stop(e), trip stop(d)}.

Then the cost of A1 are 5@2 and 1@1, the cost of A2 are 3@2 and 3@1 while the
cost of A3 are 3@2 and 2@1. Higher levels have higher minimization priority,
so A1 is less optimal than A2 and A3. Both A2 and A3 have the same cost on
level 2, so the lower level 1 is used for comparison and here the answer set A3

has smaller cost. Therefore A3 is the optimal answer set given the above weak
constraints.

Example 15. To illustrate the usage of the terms in weak constraints consider
the following programs:

P1 = {a. a.[3@0, t] a.[4@0, t]}
P2 = {a. a.[3@0, t] a.[3@0, t]}
P3 = {a. a.[3@0, t] a.[3@0, o]}

P1 has one answer set A = {a} with cost 7@0. P2 has the same answer set A
with cost 3@0 although both weak constraints are violated. P3 has the answer
set A with cost 6@0, because the different terms lead to 3@0 being present
twice, once with t and once with o as term.

For interoperability of different ASP implementations, the ASP language
has been standardized in the ASP-Core-2 input language format [19] which
allows several more constructs like choice rules (e.g. a rule 2 ≤ {a, b, c} ≤ 2←
d. which expresses that whenever d holds exactly two of a, b, and c have to
hold), conditional literals, and queries.

2.2 Important Classes of Logic Programs

Often one can formulate a specific problem without making use of all constructs
available in logic programming and it turns out that restricted programs are
often easier and faster to evaluate.

Recall that the computational complexity of programs with disjunction is
significantly higher than the complexity of programs without it. In some cases,
however, the disjunction can be removed by shifting it from the head into the
body using negation. Consider a rule a ∨ b ← c,not d. and observe that this
rule has the same answer sets as the two rules

a← c,not d,not b.

b← c,not d,not a.

16

where the disjunction has been shifted into the rule bodies. The intuition behind
this shifting is that whenever the original rule fires, one of a or b becomes true,
but not both. The latter two rules express this directly making use of negation
to avoid that both become true at the same time. Of course, this is only correct,
if no other rule has a and b in the head, because otherwise both might be true.
Shifting can be done if the program is head-cycle free (cf. [7, 70] for a formal
definition).

Furthermore, a program P is called normal, if each rule r ∈ P is normal, that
is |head(r)| ≤ 1; thus P is normal if it contains no disjunction at all. The seman-
tics of normal programs is easier to evaluate (cf. Proposition 3) and the minimal
models of such programs can be operationally computed. The immediate conse-
quences operator TP : HB → HB for a normal program P is an operator on in-
terpretations such that TP (I) 7→ I ′ where I ′ = {head(r) | r ∈ P, I |= body(r)}.
Intuitively, the operator takes an interpretation and returns the heads of all
rules that fire in the given interpretation. Answer sets of a normal logic pro-
gram P can be characterized as the least fixpoint of the operator applied to
the corresponding reduct, formally: I is an answer set if I = lfp(TP I (∅)). The
least fixpoint is obtained simply by applying the operator recursively until its
result no longer changes.

Example 16. Consider the program

P = { a← not b. b← not a. c← a. }

and note that it is a normal program. Consider the interpretation I = {a, c}
which yields the reduct P I = { a← not b. c← a. }. Applying the immediate
consequences operator yields

I ′ = TP I (∅) = {a}; I ′′ = TP I (I ′) = {a, b}; I ′′ = TP I (I ′′) = {a, b}

thus I ′′ = I is the least fixpoint, i.e., lfp(TP I) = I and consequently I is an
answer set of P .

Another important class of logic programs is the class of Horn programs.
A logic program is Horn, if it is normal and each rule of the form (1) contains
in its body only positive literals, i.e., the body is a conjunction of atoms. The
complexity of Horn programs is in P and thus Horn programs are far easier to
evaluate than normal programs. In fact, every Horn program that has a model
has a unique minimal model and this model is its (single) answer set.

2.3 HEX Program Syntax

HEX extends ASP by external atoms, that are special atoms to access external
information sources. As such, external atoms may only occur in the body of a
rule, since the external source can only be queried for information. To distin-
guish external atoms from ordinary atoms, the names of external atoms start
with the & symbol. The set of external predicate names is denoted by G, which
is disjoint from the set of terms and variables. A relational signature for a HEX

program therefore is a quadruple S = (C,P,X ,G).

17

External atoms may receive as input ordinary terms as well as the extensions
of predicates. To specify that an external atom shall receive as input the whole
extension of a predicate, the predicate name, i.e., an element from P, is provided
as input.

Definition 10 (External Atom). An external atom over a relational signa-
ture S = (C,P,X ,G) is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm) (3)

where Y1, . . . , Yn is a list (called input list) of terms and predicate names from
C∪X ∪P and X1, . . . , Xm is a list of terms from C∪X (called output list), and
&g ∈ G is an external predicate name. We assume that &g has fixed lengths
in(&g) =n and out(&g) =m for input and output lists, respectively.

In the ground case, the input terms Y1, . . . , Yn intuitively consist of indi-
vidual constants (e.g. tomatoes) and predicate names (e.g. edge). An external
atom provides a way for deciding the truth value of an output tuple depending
on the input tuple and a given interpretation.

Example 17. Consider an external atom &concat [X,Y](Z) that takes two in-
put constants and returns an output constant representing the string obtained
from concatenating the string representations of the two input constants. This
external atom depends only on constants from the program with which the
external atom is instantiated during grounding. For instance, in the following
rule the external atom is called with a first name and a last name, and the full
name is retrieved.

fullname(Z)← &concat [X,Y](Z),firstname(X), lastname(Y).

When grounding the HEX program containing the previous rule as well as the
two facts firstname(bob) and lastname(dylan), we obtain a rule that contains
the ground instance &concat [bob, dylan](bobdylan) of &concat [X,Y](Z). The
atom &concat [bob, dylan](bobdylan) evaluates to true, and fullname(bobdylan)
can be derived.

Often terms alone do not suffice as input to an external atom. This is the
case whenever the output of an external atom (respectively the truth value of
a ground external atom), depends on the extension of one or more predicates
in a given HEX program.

Example 18. For instance, suppose we want to retrieve reachability information
w.r.t. the transport network from Example 4 via an external atom instead of
computing it by means of program rules, e.g. in order to apply a dedicated
algorithm.

The external atom &reachable[connection, a](X) may be devised for com-
puting the nodes which are reachable from node a in a graph represented by
atoms of form connection(u, v). In this case, the external atom has a predicate
name as well as a constant term as input parameters.

18

Intuitively, given an interpretation I, &reachable[connection, a](X) will be
true for all ground substitutions X 7→ b such that b is a node in the graph
whose set of edges is {(u, v) | connection(u, v)∈ I}, and there is a path from a
to b in that graph.

An external atom of the form (3) for which it holds that n = 0 is an atom
that only imports external information, while an external atom with m = 0
imports no information but can be either true or false. Hence, the latter behaves
like a Boolean predicate and may be used as an external checker, e.g., to run a
specific checking algorithm.

Example 19. Consider an external atom &importConnections[](X,Y) which re-
turns all connections of some public transport network. Here, we have that
n = 0 and thus, the evaluation of the external atom does not depend on infor-
mation derived from the HEX program in which it is used. However, a rule of
the form

connection(X,Y)← &importConnections[](X,Y), location(X), location(Y).

could be used to, e.g., import all connections between locations from a given
set into the program from Example 4.

Alternatively, consider the atom &distanceLessThan[connection,X, Y,N](),
which does not have any output parameters, i.e. m = 0. Suppose it consti-
tutes a Boolean predicate that evaluates to true if and only if location X has
distance less than N from location Y in the transport network represented by
the extension of the predicate connection. Then, it could be used in a HEX

program in a constraint such as

← not &distanceLessThan[connection,X, Y, 5](), location(X), location(Y).

to ensure that no two locations have distance greater or equal 5 from each other
in the network induced by the predicate connection.

A HEX-literal is either an ordinary literal, an external atom, or a default-
negated external atom. Rules in HEX then are exactly like ordinary rules in
ASP except that the literals in the body may contain external atoms.

Definition 11 (HEX rule). A HEX rule r is of the form

A1 ∨ . . . ∨Am ← L1 . . . , Ln. (4)

where all Ai are atoms, and all Lj are either literals or HEX-literals, for 1 ≤
i ≤ m, 1 ≤ j ≤ n, m,n ≥ 0.

In the following, we call HEX-rules just rules.

Example 20. Consider an external atom to query a web-based weather report
which receives as input a set of pairs of dates and locations one is interested
and reports the set of all weather conditions that occur at some of the locations
on the specified date as output. Such an external atom might be

&weatherreport [dateLocationPredicate](WeatherConditions).

19

Let goto be a predicate containing pairs of days and cities to be visited. Then,
the following constraint excludes extensions of the predicate goto where bad
weather occurs in some city on the day of visit:

← &weatherreport [goto](W), badweather(W).

Definition 12 (HEX program). A HEX program is a set P of (HEX) rules.

A rule is ordinary if no external atom occurs in it, and a program is ordinary
if all its rules are ordinary. The notions of constraint and fact carry over from
ordinary rules. In practice, we shall be interested in finite programs only, while
theoretically, programs may be infinite.

Example 21 (continued). Consider the following program Πgoto to decide on
what day to go to which city for planning a city trip, but exclude trips where
the (external) weather report indicates that bad weather occurs during the trip.

badweather(rain). badweather(snow).

goto(1 , paris) ∨ goto(1 , london).

goto(2 , paris) ∨ goto(2 , london).

← &weatherreport [goto](W), badweather(W).

The facts in the first row state that snow and rain are bad weather, the rules
in the second and third line choose a destination for the first and second day,
respectively, which can be Paris or London (and possibly the same city for both
days), and the constraint excludes extensions of the predicate goto such that
bad weather is expected on the chosen trip.

2.4 HEX Program Semantics

The semantics of HEX programs generalizes the answer-set semantics of ordi-
nary programs. The notion of a Herbrand base HB for HEX is analogous to
ordinary ASP, i.e., HB is the set containing all ground ordinary atoms and
all ground external atoms. The grounding of a rule r, grnd(r), is defined ac-
cordingly, and the grounding of P is given by grnd(P) =

⋃
r∈P grnd(r). Unless

specified otherwise, the relational signature S = (C,P,X ,G) is implicitly given
by P , but different from the ‘usual’ ASP setting, the set C of constants used
for grounding a program is only partially given by the program itself; in HEX,
external computations may introduce new constants that are relevant for se-
mantics of the program.

The notion of interpretation for ordinary logic programs naturally extends
to HEX programs, where the valuation of external predicates depends only on
(i) the valuation of the ordinary predicates and (ii) some external semantics.
Formally, we define interpretations of HEX programs as follows.

Definition 13 (HEX interpretation). An interpretation relative to a HEX

program P is any subset I ⊆HB that contains no external atoms.

20

Satisfaction of ordinary atoms with respect to an interpretation I is then
as usual; for external atoms, we use the notion of an oracle function.

Definition 14 (Oracle Function). Every external predicate name &g ∈ G,
has an associated decidable (n+m+1)-ary Boolean function f&g , called oracle
function, which maps each tuple (I, ~y, ~x) to either T or F, where I ⊆HB is
an interpretation, ~y = y1, . . . , yn, n = in(&g), ~x = x1, . . . , xm, m = out(&g),
xi ∈ C, yj ∈C ∪ P, and m,n ≥ 0.

In the following we make the restriction that for any oracle function f&g ,
interpretation I and input vector ~y, there are only finitely many vectors ~x such
that f&g(I, ~y, ~x) = T.

This definition of external atom semantics is very general; indeed an external
atom may depend on every part of the interpretation. For practical reasons,
external atom semantics is usually restricted so that it depends only on the
extension of those predicates in I that are given in the input list.

Example 22 (continued). Suppose that the weather report for paris is sun on
day 1 and day 2 of the trip, and for london the forecast indicates rain for
both days. The oracle function f&weatherreport(I, goto,W) corresponding to this
information evaluates to T if and only if:

{goto(1 , london), goto(2 , london)} ⊆ I and W = rain,

{goto(1 , london), goto(2 , paris)} ⊆ I and W = sun or W = rain,

{goto(1 , paris), goto(2 , london)} ⊆ I and W = sun or W = rain, or

{goto(1 , paris), goto(2 , paris)} ⊆ I and W = sun.

In all other cases, f&weatherreport(I, goto,W) evaluates to F.

Definition 15 (Satisfaction of External Atom). An interpretation I ⊆
HB is a model of a ground external atom a = &g [~y](~x), denoted I |= a, if
f&g(I, ~y, ~x) = T.

The notion of satisfaction for ordinary atoms, literals, rules, and programs
carries over directly from disjunctive logic programs.

Given a HEX program P , the FLP-reduct P I of P with respect to I ⊆ HB
is the same as for ordinary programs, i.e., P I is the set of all r ∈ grnd(P) such
that I |= body(r).

Definition 16 (Answer Set of a HEX Program). An interpretation I ⊆
HB is an answer set of a HEX program P if, I is a minimal model of P I . We
denote by AS(P) the set of all answer sets of P .

Observe that if P has no external atoms, then the answer sets according to
the above definition are exactly the answer sets for ordinary ASP programs.
In other words, HEX programs are a conservative extension of disjunctive [59]
(resp., normal [58]) logic programs under the answer set semantics.

21

Example 23 (continued). Suppose that the weather report for paris is sun
on day 1 and day 2 of the trip, and for london the forecast indicates rain
for both days, i.e., f&weatherreport(I, goto,W) from Example 22 is employed.
In this case, I |=&weatherreport [goto](sun) holds if I |= goto(1 , paris) or if
I |= goto(2 , paris). Moreover, it holds that I |=&weatherreport [goto](rain) if
I |= goto(1 , london) or if I |= goto(2 , london), and Πgoto has one answer set:{

goto(1 , paris), goto(2 , paris), badweather(snow), badweather(rain)
}

If weather reports of both cities are sunny for the two days, i.e., if another
oracle function is employed, we obtain three further answer sets where London
is visited on the first, the second, or on both days, respectively. Finally if the
weather report for both cities is snow for days 1 and 2, there is no answer set.

3 Methodology

We next present basic methodology for using HEX to solve declarative prob-
lems. At this, applying the methodology presented in this section not only helps
in formulating a HEX encoding for a problem at hand, but also has a potential
impact on the efficiency of the solving process. In practice, when computing the
answer sets of a HEX program, the evaluation of external sources for determin-
ing the truth values of external atoms is interleaved with ordinary answer set
search. In this way, it is ensured that all answer sets computed for a given HEX

program comply with the formal semantics based on oracle functions (which
abstract external sources). More details on the evaluation of HEX programs
can be found in Section 4.

In Section 3.1 we provide methodology specifically for using external atoms
and distinguish typical kinds of external sources. They can be classified as

1. outsourcing of computation,

2. outsourcing of information, or

3. combination thereof.

A primary use case of HEX is the direct usage as a formalism for modeling user
applications. Section 3.2 describes several application scenarios with examples.

In each of these scenarios, all types of external sources can be used.

Basic Methodology. HEX is an extension of ASP, therefore all modeling tech-
niques from ASP may also be used in HEX programs. One of the most important
examples is the guess and check paradigm, where default negation or disjunctive
rules are used to generate a superset of the intended solutions (guessing part),
and constraints are used to eliminate spurious candidates (checking part). For
instance, if we assume that facts over predicates node and edge define a graph,
then the well-known graph 3-colorability problem can be solved by guessing all
possible colorings of the nodes of a graph using the disjunctive rule

g : color(red , X) ∨ color(green, X) ∨ color(blue, X)← node(X), (5)

22

and eliminating all colorings which assign the same color to adjacent nodes
using the constraint

c : ← color(C,X), color(C, Y), edge(X,Y). (6)

However, unlike in ASP, HEX programs allow for using external atoms in ad-
dition. They can occur both in the guessing and in the checking part. In the
former case, they may be used to import individuals over which guessing is
performed. For instance, one may replace the atom node(X) in the body of
rule (5) by &node[](X) to import the nodes of the graph. In the latter case,
external atoms can be used in the body of constraints to check given conditions.
For instance, rule c may be replaced by

c′ : ← not &check [color , edge](), (7)

where &check [color , edge]() is true if color is a valid 3-coloring wrt. edge and
false otherwise. Here, the external atom &check [color , edge]() implements a
Boolean check, such that no output terms are required. This type of usage is
common when external atoms are utilized for external checks.

The saturation technique [37] is an advanced modeling technique for solving
problems up toΣP

2 -completeness, by exploiting the subset-minimality of answer
sets for checking whether a property holds for all guesses in a search space [39].
A typical example is the check if a graph is not 3-colorable, i.e., all possible
colorings are invalid. Also here, the checking part may employ external atoms.

For more details about ASP modeling techniques we refer to [39,53].

3.1 Methodology for Using External Atoms

In general, one can roughly distinguish between two main usages of external
sources that we call computation outsourcing and information outsourcing, re-
spectively, and combinations thereof. We stress that this distinction concerns
the usage in applications, as both usages are based on the same language con-
structs. For each of them we will describe some typical use cases that serve as
usage patterns for external atoms when writing HEX programs.

Computation Outsourcing means to send the definition of a subproblem
to an external source and retrieve its result. The input to the external source
uses predicate extensions and constants to define the problem at hand and the
output terms are used to retrieve the result, which can in simple cases also be
a Boolean decision.

On-demand constraints are of the form← &forbidden[p1, . . . , pn](). They elim-
inate certain extensions of predicates p1, . . . , pn and are a special case of com-
putation outsourcing, see also the 3-colorability example above. The external
evaluation of such a constraint can return reasons for conflicts to the reasoner
in order to restrict the search space and avoid reconstruction of the same con-
flict [30]. This technique avoids explicitly grounding a set of ordinary ASP
constraints representing the forbidden combinations and by this, reduces the
size of the ground program. On-demand constraints have been used for effi-
cient planning in robotics where external atoms verify the feasibility of a 3D
motion [49,63].

23

Computations that cannot (easily) be expressed by rules. Outsourcing compu-
tations also allows for including algorithms which cannot (easily or efficiently)
be expressed by rules. As a concrete example, an artificial intelligence agent
for the skills and tactics game AngryBirds needs to perform physics simula-
tions [21]. This requires floating point computations which cannot be done by
rules in a practical way (this would either come at the costs of very limited
precision or a blow-up of the grounding). Therefore, the physics simulations
are integrated with game playing rules as external atoms in a HEX program.

Complexity lifting. This is another kind of computation outsourcing that al-
lows for realizing computations with a complexity higher than the complexity
of ordinary ASP programs. The external atom serves then as an ‘oracle’ for
deciding subprograms. While for the purpose of complexity analysis of the for-
malism, it is often assumed that external atoms can be evaluated in polynomial
time8 [50], as long as external sources are decidable, there is no practical reason
for limiting their complexity. External sources can also be other ASP or HEX

programs, which allows for encoding other formalisms of higher complexity in
HEX programs, e.g., abstract argumentation frameworks [27].

Information Outsourcing refers, in contrast to computational outsourcing,
to external sources which import information, while reasoning itself is done in
the logic program.

A typical example can be found in Web resources which provide information
for import, e.g., RDF triple stores [68] or geographic data [82]. More advanced
use cases are multi-context systems, which are systems of knowledge-bases (con-
texts) that are abstracted to acceptable belief sets (roughly speaking, sets of
atoms) and interlinked by bridge rules that range across knowledge bases [12]
(see also Section 6.1); access to individual contexts has been provided through
external atoms [9]. Also sensor data, as often used when planning and exe-
cuting actions in an environment, is a form of information outsourcing (cf.
ACTHEX [6]).

Combinations. It is also possible to outsource computation and information
at the same time. A typical example are logic programs with access to Descrip-
tion Logic knowledge bases (DL KB), called DL-programs [41]. A DL KB not
only stores information, but also provides reasoning services. This allows for in-
terleaving reasoning within the DL KB and the logic program with information
that flows across the external atom API in both directions.

3.2 Concrete Application Scenarios

The HEX language can be directly used for modeling a problem at hand and
computing its solutions. Note that the problem instance formally consists both
of the HEX program and the external sources, but external sources may be
reused for different applications if suitable.

The typical procedure when modeling an end user application starts with
identifying and realizing the required external sources, followed by writing a

8 Under this assumption, deciding the existence of an answer set of a propositional
HEX program is ΣP

2 -complete.

24

HEX program which makes use of these external sources. The two steps may be
repeated in order to refine the encoding, i.e., while writing the HEX program,
the need for further or modified external sources may arise. In some cases,
external atoms of other applications can be reused. Some existing plugins are
generic and useful for different applications, e.g., string manipulation functions
and an interface to RDF triple stores.

We next give concrete application scenarios including HEX example code.

Semantic Web Applications In the context of the Semantic Web, HEX

was applied to connect SPARQL and RDF querying with logic programming
rules [87]. Moreover, HEX was used for archaeological research in order to com-
bine geographical and cultural knowledge from various ontologies [82], and
for adapting user interfaces targeted at elderly and disabled people by com-
bining ontologies about user profiles with rules about potential user interface
styles [100].

The following example uses the FOAF (Friend-of-a-friend) RDF schema to
return all pairs of nicknames that know each other, as stored in a FOAF RDF
datasource such as can be obtained from www.livejournal.com.

explore(”http://〈Nick〉.livejournal.com/data/foaf”). (8)

triple(S ,P ,O)←&rdf [What](S, P,O), explore(What). (9)

knows(Nick1 ,Nick2)← triple(Id1 , ”http://xmlns.com/foaf/0.1/knows”, Id2),

triple(Id1 , ”http://xmlns.com/foaf/0.1/nick”,Nick1), Nick1 <Nick2 ,

triple(Id2 , ”http://xmlns.com/foaf/0.1/nick”,Nick2). (10)

knows(A,C)← knows(A,B), knows(B ,C). (11)

We start with a fact (8) that represents FOAF-URLs of users that we want
to explore, where we substitute the nickname for 〈Nick〉. Rule (9) uses the
external atom &rdf to retrieve all RDF-triples from the URL instantiated as
input argument What , i.e., all URLs that we specified in predicate explore.
The external atom &rdf is true for all RDF-triples found in the resource,
therefore they are represented in the predicate triple. Rule (10) uses the FOAF
relations ‘knows’ and ‘nick’ to build all pairs of nicknames of people that know
each other, and define the predicate knows as result. Finally, we obtain the
transitive closure of knows using rule (11). As a result, we represent all pairs
of nicknames who know each other directly or indirectly.

In the above example, the set of URLs to retrieve was given explicitly in
the predicate explore.

25

www.livejournal.com

In the following example, a FOAF RDF-graph is explored implicitly by
following URLs retrieved via RDF.

explore to(What , 3)← explore(What). (12)

triple at(S ,P ,O ,D)←&rdf [Uri](S, P,O), explore to(Uri ,D), D > 1 . (13)

explore to(U ,D2)←D2 = D1 − 1 ,

triple at(Id , ”http://www.w3.org/2000/01/rdf-schema#seeAlso”,U ,D1),

triple at(Id , ”http://xmlns.com/foaf/0.1/nick”,Nick ,D1). (14)

found(Nick)← triple at(S , ”http://xmlns.com/foaf/0.1/nick”,Nick ,D). (15)

To avoid excessive exploration, we limit following URLs in RDF up to a fixed
depth. Resources of interest are again assumed to be given as facts of the
predicate explore. Rule (12) defines explore to for these resources of interest
with a fixed exploration depth of 3. In (13) we retrieve RDF triples for resources
where the exploration depth is above zero and represent triples together with
their exploration depth. To follow links, in (14) we define explore to also for
all RDF links that are associated with nicknames in the RDF graph. This
indirection decreases exploration depth by one. Finally (15) defines predicate
found to represent all nicknames found during exploration, independent from
the depth.

The RDF examples are available in the repository of the dlvhex manual.9

AngryHEX. The annual AIBirds Competition10 is a competition for AI
agents based on the popular Angry Birds11 game, which is about using a
slingshot to shoot birds of different types at pigs placed on a scene in order to
destroy them. The pigs are usually protected by obstacles of different types.
The game uses a realistic physics simulation, including gravity and statics. In
the competition, agents are given the positions and dimensions of the objects
in the scene and need to return the angle and velocity for shooting the next
bird.

The AngryHEX agent [20] is implemented on top of HEX programs. The
basic strategy is to maximize the estimated damage to obstacles and pigs for
all possible targets. Plain ASP is ill-suited for this application as the computa-
tion involves physics simulation and floating point numbers. Therefore, a HEX

program was used to realize the basic strategy including the optimal selection
of the target, while low-level numeric computations have been outsourced. The
agent participated in the competition since 2012 and ranked second in 2015.

A very simplified example of the tactics layer of AngryHex, which is evalu-
ated for each shot, is shown in Figure 3.2 Intuitively, (16) uses external atom
&shootable to determine which objects O in the scene can be hit by shoot-
ing with trajectory Tr, velocity V , and bird type B, given that the slingshot
(which ejects the bird) is located at coordinates Sx, Sy and has width Sw
and height Sh, and given that bb represents bounding boxes of all objects in

9 https://github.com/hexhex/manual/RW2017/rdf/
10 https://aibirds.org
11 https://www.angrybirds.com

26

https://github.com/hexhex/manual/RW2017/rdf/
https://aibirds.org
https://www.angrybirds.com

shootable(O ,Type,Tr)←&shootable[O ,Tr ,V ,Sx ,Sy ,Sw ,Sh,B , bb](O),

birdType(B), velocity(V), objectType(O ,Type),

slingshot(Sx ,Sy ,Sw ,Sh), trajectory(Tr). (16)

tgt(O ,Tr)∨ntgt(O ,Tr)← shootable(O ,Type,Tr). (17)

← target(X ,), target(Y ,),X 6= Y . (18)

← target(,T1), target(,T2), T1 6= T2 . (19)

target ex← target(,). (20)

←not target ex . (21)

directDmg(O ,P ,E)← target(O ,Tr), objectType(O ,T), birdType(Bird),

dmgProbability(Bird ,T ,P),

energyLoss(Bird ,T ,E). (22)

exDirectDmg(O)← directDmg(O , ,). (23)

nexDirectDmg(O)←not exDirectDmg(O), objectType(O ,). (24)

goodObject(O)← objectType(O , pig). (25)

goodObject(O)← objectType(O , tnt). (26)

 nexDirectDmg(O), goodObject(O). [1@4, O, nexDirectDmg] (27)

 nexDirectDmg(O). [1@1, O, nexDirectDmg] (28)

Fig. 1. AngryHex tactics layer (somplified)

the scene. The vision module of the AngryHex client represents the scene in
facts of form birdType(Type), objectType(O ,Type), slingshot(Sx ,Sy ,Sw ,Sh),
and bb(O, Type,X, Y,Width,Height, Angle) where O is a unique object ID.
Moreover, possible velocities (a set of integers) and trajectories (either low or
high) are present as facts. External atom &shootable extracts the extension
of the bb argument, builds a 2D representation of the world in the Box2D li-
brary,12 and simulates the shot specified in arguments O, . . . , B. If the shot hits
the object, the atom is true for that object.

Rule (17) guesses whether a shootable object shall be the target of the next
shot, and (18)–(21) ensure that a single target is chosen. Rule (22) represents
direct damage to objects that are hit by the shot, using background knowledge
about damage probability and energy loss (disadvantage) of the bird type with
respect to the object type. Presence and absence of direct damage is represented
in (23)–(24).

Objects that are of type pig or tnt (explosive blocks) are defined as ‘good’
objects to hit in (25)–(26), and weak constraint (27) incurs a cost of 1 with
priority level 4 for each good object that does not obtain direct damage. More-
over weak constraint (28) incurs a cost of 1 for each object that does not obtain
direct damage, however with a lower priority (1) than for good objects.

Recall from (2) that weak constraints are of form Body . [C@L, . . .] and
add cost C at level L to answer sets that satisfy Body . Answer sets with lowest
cost are considered optimal and minimizing cost on higher levels has priority.

12 http://box2d.org/

27

http://box2d.org/

The full encoding of AngryHex uses several more external atoms, for exam-
ple &next [O, Tr, Sx, Sy, Sw, Sh, bb](Idx,O′) is true for a set of pairs 〈Idx,O′〉
that represent the sequence of objects that a bird shot at object O with parame-
ters Tr, . . . , Sh would pass through: O′ is the Idx’th object hit in the trajectory.
Another external atom is &firstbelow [O, bb](O′), which yiedls true for pairs of
objects O, O′ such that O would hit O′ before hitting any other object when
falling down. These and further external atoms are used to select the target
and trajectory that will inflict the most useful direct and indirect damage to
all objects of the scene. The AngryHex project is publicly available.13

Route planning. While many commercial and free route planning applica-
tions exist (Google Maps is currently perhaps the most popular), the supported
query types are usually limited. In contrast, an implementation in HEX pro-
grams allows for an easy addition of side constraints and thus tailoring to very
specific settings. As a concrete use-case, [32] considered tours with multiple
stops (e.g. at shops, a pharmacy, kindergarden, etc) using an external source
that supports only point-to-point queries. Side constraints may include restric-
tions on the order of stops, the tour length, or opening hours at the stops.

Related to route planning is a trip planning scenario. When planning a
holiday trip with multiple stops, the order of the stops is often irrelevant, but
one wants to spend a certain number of days at each location. However, due
to shifts of the dates, the overall price often differs significantly with different
sequences. In addition to the sequence of the locations, also other considerations
affect the price. E.g. instead of a multi-stop flight through all locations, one may
book a return flight to one of them plus local flights from there to the others;
sometimes special offers for two-way-tickets make this more attractive. A logic
program can automatically generate flight plans according to the constraints
and enquire their ticket prices by an external atom that internally uses an online
flight booking service. An additional weak constraint can select the cheapest.

Our case study in Section 5 provides details for route planning with HEX.

Description Logic Programs. Description logics (DLs) provide a logical
formalism for ontologies that are well-suited for the Semantic Web [64] or in
medical applications [65]. Ontologies represent classes of objects, referred to as
concepts, and the relations between objects, called roles. Concepts and roles
correspond to unary and binary predicates in first-order logic, respectively.
A description logic knowledge base consists of a Tbox (the terminology) that
defines concepts and roles and represents relations between them, and an Abox
(assertions), that contains specific information on membership of individuals
in concepts resp. of pairs of individuals in roles.

Example 24. Suppose PhDStudent , Student and Professor are concepts and
isAssistantOf is a role. The Tbox may contain the concept inclusion axiom
PhDStudent v Student , which states that the class of PhD students is a sub-
class of all students. The Abox contains concept membership assertions like

13 https://github.com/DeMaCS-UNICAL/Angry-HEX

28

https://github.com/DeMaCS-UNICAL/Angry-HEX

Professor(smith) and PhDStudent(johnson), representing that smith is a pro-
fessor and johnson a PhD student. An assertion isAssistantOf (johnson, smith)
states that johnson is an assistant of professor smith. ut

Typical reasoning tasks over description logic knowledge bases include con-
cept and role retrieval, i.e., listing all individuals or pairs of individuals which
are members of a given concept or role, respectively. In the example above one
may ask for all members of Student and expects as answer johnson as he is a
PhDStudent and thus, by the terminological knowledge, also a Student .

Combining ontologies and answer set programming is especially valuable as
existing domain knowledge can be accessed from logic programs. To this end,
DL-programs have been developed by [40,41] which have been implemented on
top of HEX programs with dedicated external atoms; where the external source
features external atoms for concept and role queries. Prior to query evalua-
tion, concepts and/or roles are enriched by the contents designated unary resp.
binray predicates that occur in the ASP program. This allows for advanced rea-
soning tasks such as terminological default reasoning or closed world reasoning
on description logic knowledge bases [24].

As description logics are monotonic, default reasoning can only be realized
by the (cyclic) interaction of rules and the DL knowledge base. To this end, ap-
propriate encodings and an implementation were developed [24]. DL-programs
have, e.g., been applied in complaint management for e-government [101].

Our case study in Section 5 contains a code example and a walkthrough for
integrating DL reasoning with logic programming using the HEX formalism.

4 The dlvhex System

In this section we present the dlvhex system14 for evaluating HEX programs.
The system is implemented in C++ and available as open-source software for
all major platforms (Linux, OS X, Windows). Pre-compiled binaries are also
provided. External sources are implemented using a plugin interface, which is
currently available for C++ and Python.

At the beginning of the dlvhex project, the system focused on applications
for the Semantic Web. Early versions of the system were based on dlv15 and
extended it with higher-order and external atoms. Higher-order atoms allow
for using variables in place of a predicate symbol, such as in the rule C(X)←
subClassOf (D,C), D(X) to model a general subclass relation; while they are
still supported, they were less emphasized in later versions as they can be
compiled away. External atoms were introduced for accessing arbitrary external
sources and are a generalization of DL-atoms, which allow only for interfacing
a description logic reasoner.

The first evaluation algorithms used dlv as a blackbox backend for single-
shot evaluation of ordinary ASP programs. In a nutshell, the traditional HEX-
algorithm translates the HEX-program into an ordinary ASP program which

14 http://www.kr.tuwien.ac.at/research/systems/dlvhex
15 http://www.dlvsystem.com

29

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.dlvsystem.com

guesses the values of external atoms (disregarding the actual semantics), eval-
uates this ASP program using the backend, and performs for each answer set a
post-check to ensure that the guesses were correct and that minimality wrt. the
FLP-reduct is given. As this approach did not scale to real applications, the
evaluation algorithms were improved over time, which required a tighter in-
tegration with the backend (such as separate access to the grounding and the
solving component of the backend, a callback interface, etc). In context of these
improvements, the default backend was replaced by Gringo and Clasp from
the Potassco suite16; the original system name dlvhex was kept and should
now be read as Datalog with disjunctions, higher-order and external atoms.
However, our interface allows for the integration of further solver backends.
For instance, in order to make the system self-contained and for testing pur-
poses, we further provide as another alternative an internal grounder and solver,
which do not rely on any third-party components. Also dlv is still supported as
an alternative to Gringo and Clasp (used with the traditional algorithms).

We will first discuss the basic evaluation approach and the system architec-
ture, before we switch to the user perspective and point out system features
which distinguish dlvhex from ordinary ASP solvers and also from previ-
ous versions. However, since this paper focuses on the usage of HEX-programs
rather than evaluation algorithms, we refer to [89] for details.

4.1 Evaluation Approach and System Architecture

In practice, external sources are evaluated wrt. truth assignments computed
by the employed ASP solver. Hereby, the information that can be gained from
external evaluations depends on the semantic properties of external sources
and the extent of the solver assignment at the point of evaluation. Because a
solver only assigns truth values to a subset of the Herbrand base during model
search, we explicitly represent truth valuations of ground atoms by means of
assignments A. An assignment A is a consistent set of literals of form Ta or
Fa, where a is an atom which is said to be true in A if Ta ∈ A, false if Fa ∈ A,
and undefined otherwise. We say that A is complete over a program P if for
all atoms a in grnd(P) either Ta ∈ A or Fa ∈ A holds. The interpretation I
corresponding to a complete assignment A is I = {a | Ta ∈ A}.

Traditionally, ground HEX programs have been evaluated by replacing each
external atom &e[~p](~c) by an ordinary atom e&e[~p](~c) and introducing a rule
e&e[~p](~c)∨ne&e[~p](~c)← to guess its truth value; the resulting program is evalu-
ated by an ordinary ASP solver (such as Gringo and Clasp) to produce model
candidates. Since the ordinary ASP solver is not aware of the actual semantics
of external atoms, each candidate A is subsequently checked by testing (i) if
the external atom guesses are correct, i.e., if A |= e&e[~p](~c) iff A |= &e[~p](~c)
for all external atoms &e[~p](~c), and (ii) if assignment A is a subset-minimal
model of fΠA. If both conditions are satisfied, an answer set has been found.
However, this approach did not scale well because there are exponentially many
independent guesses in the number of external atoms in the ground program.

16 https://potassco.org

30

https://potassco.org

To overcome the problem, novel evaluation algorithms based on conflict-
driven techniques have been introduced [30]. As in ordinary ASP solving, the
input program is translated to a set of nogoods, i.e., a set of literals which
must not be true at the same time. Given this representation, techniques from
SAT solving are applied to find an assignment which satisfies all nogoods [57].
Notably, as the encoding as a set of nogoods is of exponential size due to loop
nogoods which avoid cyclic justifications of atoms, those parts are generated
only on-the-fly. Moreover, additional nogoods are learned from conflict situa-
tions, i.e., violated nogoods which cause the solver to backtrack; this is called
conflict-driven nogood learning.

The extension of this algorithm towards the integration of external sources
into the learning component works as follows. Whenever an external atom
&e[~p](~c) is evaluated under an assignment A in the checking part (i), the actual
truth value under the assignment becomes evident. Then, regardless of whether
the guessed value was correct or not, one can add a nogood which represents
that e&e[~p](~c) must be true under A if A |= &e[~p](~c) or that e&e[~p](~c) must be
false under A if A 6|= &e[~p](~c). If the guess was incorrect, the newly learned
nogood will trigger backtracking, if the guess was correct, the learned nogood
will prevent future wrong guesses.

Example 25. Suppose &diff [p, q](X) computes the set difference between
the extensions of predicates p and q and that it is evaluated under A =
{Tp(a),Tp(b),Fq(a),Tq(b)} with Herbrand universe C = {a, b}. Then one can
add the nogood {Tp(a),Tp(b),Fq(a),Tq(b),Fe&diff [p,q](a)} in order to learn
that A |= e&diff [p,q](a), i.e., whenever p(a), p(b), q(b) are true and q(a) is false,
then &diff [p, q](a) must not be false. Conversely, one can learn that A 6|=
&diff [p, q](b) by adding nogood {Tp(a),Tp(b),Fq(a),Tq(b),Te&diff [p,q](b)}.

Experimental results show a significant, up to exponential speedup [35].
This is explained by the exclusion of up to exponentially many guesses by the
learned nogoods.

The system architecture is shown in Figure 2. The arcs model both control
and data flow within the system. The evaluation of a HEX program works as
follows. First, the input program is read from the file system or from standard
input and passed to an evaluation framework 1©, which may partition the
input program depending on the chosen evaluation heuristics. This results in a
number of acyclically interconnected evaluation units, which can be evaluated
independently and interplay only by their input and output interpretations.
While this interplay of the units is managed by the evaluation framework, the
individual units are handled by model generators of different kinds depending
on the different program classes. Each instance of a model generator takes care
of a single evaluation unit, receives input interpretations from the framework
(which are either output by predecessor units or come from the input facts for
leaf units), and sends output interpretations back to the framework 2©, which
manages the integration of these interpretations to final answer sets.

Internally, the model generators make use of a grounder and a solver for or-
dinary ASP programs. The architecture of our system is flexible and supports
multiple concrete backends which can be plugged in. Currently it supports

31

HEX
program

Evaluation
Framework

Answer
Sets

Model
Generators

ASP Solver

ASP
Grounder

HEX-
Grounder

Post
Propagator

UFS-Checker SAT Solver

Plugins

dlvhex core

1

2

3

4

5

6

7

8

9 10

11

12

Fig. 2. Architecture of dlvhex

Gringo and Clasp, dlv, and an (unoptimized) internal grounder and solver,
which serve mainly as a fallback option and for testing purposes. The rea-
soner backends Gringo and Clasp are statically linked to our system, thus
no interprocess communication is necessary. The model generator within the
dlvhex core sends a non-ground program to the HEX-grounder, and receives
a ground program 3©. The HEX-grounder in turn uses an (intelligent) ordi-
nary ASP grounder (e.g. Gringo, dlv’s grounder, etc) as submodule 4© and
accesses external sources to handle value invention, i.e., values returned by ex-
ternal sources that do not occur in the input program 5©. The ground-program
is then sent to the solver and answer sets of the ground program (i.e. candi-
date compatible sets) are returned 6©. Note that the grounder and the solver
are separated and communicate only through the model generator, which is in
contrast to previous implementations of dlvhex where the external grounder
and solver were used as a single unit (i.e., the non-ground program was sent
and the answer sets were retrieved). Separating the two units became necessary
because the dlvhex core needs access to the ground-program in order to obtain
important structural information (e.g. cyclicity) for optimization purposes.

The solver backend makes callbacks to the post propagator in the dlvhex
core once a model has been found or after deterministic propagation has been
finished. During the callback, a complete or partial model is sent from the
solver backend to the post propagator, and learned nogoods are sent back
to the external solver 7©. In case of Clasp as backend, we exploit its SMT
interface, which was previously used for the special case of constraint answer
set solving. The post propagator performs checks to eliminate spurious answer
set candidates, which requires calls to the plugins, which implement the external

32

sources. The input list is sent to the external source and the truth values and
possibly user-defined learnt nogoods are returned to the post propagator 9©.
Moreover, the post propagator also sends the (complete or partial) model to the
unfounded set checker (UFS checker). UFS checking is one possible realization
of minimality checking wrt. the reduct. While foundedness (cf. Section 2) means
that each true atom is supported by some rule, this additional step is necessary
to exclude self-justified atoms due to cyclic dependencies. While the ordinary
ASP solver already performs such a check, it does not know the semantics of
external sources and thus cannot detect all unfounded sets, which makes an
additional check necessary. For this, the UFS checker employs a SAT solver 11©,
which can either be Clasp or the internal solver. More precisely, a specific SAT
instance depending on the current answer set candidate and the semantics of
the external atoms wrt. this candidate is constructed, such that the models of
this instance correspond to unfounded sets. In order to consider the semantics
of external atoms during UFS detection for constructing the SAT instance,
it needs to call the external sources 10©. The UFS checker possibly returns
nogoods learned from unfounded sets to the post propagator 8©. The post
propagator sends all learned nogoods back to the ASP solver. This makes sure
that eventually only valid answer sets arrive at the model generator 6©.

Finally, after the evaluation framework has built the final answer sets from
the output interpretations of the individual evaluation units, they are output
to the user 12©.

For more details we refer to [89].

4.2 Using the dlvhex System

The system is provided as a command-line tool called dlvhex2 which expects
as only mandatory parameter the filename of the HEX program to evaluate
(or -- to read from standard input). Plugins are loaded from a global plugin
directory where they need to be installed before. Thus, the simplest possible
call is of form dlvhex2 prog.hex where prog.hex refers to a program.

However, the system provides numerous command-line options to customize
the reasoning process. They include technical options such as the possibility
to load plugins from custom locations (e.g. --plugindir=$HOME/myplugin),
options for customizing the output such as to project answer sets to certain
predicates (e.g. --filter=p) or restrictions of the maximum number of answer
sets to compute (e.g. -n=7), and options for tuning the reasoning algorithms;
the latter may be used to select heuristics and reasoning techniques based
on the problem to be solved. For an exhaustive overview of the usage of the
system and its command-line options, we refer to its manual [46]. The system
also provides online help, which can be retrieved by calling dlvhex2 -h.

In the following we focus on recently added features which distinguish the
dlvhex system from other similar systems and from earlier versions.

While previous releases were mainly prototypes for empirically evaluating
algorithms and research results, recent releases also aim at practical applica-
bility of the system for implementing real applications. To this end, important
system features have been added to improve the overall user’s convenience by

33

simplifying its usage, to speed up the evaluation, and in order to reduce syn-
tactic restrictions. The enhancements can be organized in two main groups: (i)
usability and system features, including a novel convenient programming
interface for providers of external sources and the integration of support for
popular ASP extensions and interoperability, and (ii) enhancements based on
exploiting external source properties towards scalability boosts and in-
creased language flexibility based on liberal safety, which is a safety criterion
that is less restrictive than previous notions of safety. We describe these features
in the following.

4.3 Usability and System Features

In this section we present recent work on the system side to improve the user’s
convenience. We start with general remarks on the dlvhex software and its
dissemination. dlvhex was previously only available in source format (released
under GNU LGPL) and only for Linux platforms. This deployment method
turned out to be inconvenient for ASP programmers who want to use the system
as is without custom modifications, We thus now provide pre-built binaries
for all major platforms (Linux-based, OS X and Windows) in addition. We
further created an online demo of the system under http://www.kr.tuwien.

ac.at/research/systems/dlvhex/demo.php which allows for evaluating HEX

programs directly in the browser (the user may specify both the logic program
and custom Python-implemented external atoms in two input fields). The demo
comes with a small set of examples to demonstrate the main features of the KR
formalism. We further provide a manual to support new users of the system [46].

Next, the following two subsections give an overview of the new Python
programming interface and interoperability of the system.

Python Programming Interface With earlier versions of the system, users
who wanted to integrate custom external sources had to write plugins in C++.
While this was natural as the reasoner itself is implemented in C++, it was
cumbersome and introduced development overhead even for experienced devel-
opers. This is because multiple configuration, source and header files need to
be created even when realizing only a small and simple plugin. Also the compi-
lation and linking overhead during development and debugging was considered
inconvenient.

As a user-friendly alternative, dlvhex 2.5.0 introduces a plugin API for
Python-implemented external sources. A plugin consists of a single file (un-
less the user explicitly wants to use multiple files), which imports a dedicated
dlvhex package and specifies a single method for each external atom. Thanks
to higher-level features of Python and modern packages, this usually results in
much shorter and simpler code than with C++-implemented plugins. A central
register method exports the available external atoms and (optionally) their
properties to dlvhex.

Example 26. The following snippet implements &diff [p, q](X) for computing
the values X which are in the extension of p but not in that of q.

34

http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

1 import dlvhex
2

3 def d i f f (p , q) :
4 for x in dlvhex . getTrueInputAtoms () : # for a l l true input atoms
5 i f x . tuple () [0] == p : # i s i t of form p(c)?
6 i f dlvhex . i s F a l s e (dlvhex . storeAtom (# i s q (c) f a l s e ?
7 (q , x . tuple () [1]))) :
8 dlvhex . output ((x . tuple () [1] ,)) ; # then c i s in the output
9

10 def r e g i s t e r () :
11 dlvhex . addAtom(” d i f f ” , (dlvhex .PREDICATE, dlvhex .PREDICATE) ,
12 1 , prop)

The following example illustrates the usage of an external atom in a HEX

program, for which the corresponding Python plugin is created subsequently.

Example 27. Consider the program

Π=

{
r1 : start(s).
r2 : scc(X)← start(X). r3 : scc(Y) ← scc(X),&edge[X](Y).

}

where r1 selects a node s from an externally defined (finite) graph, and r2 and
r3 recursively compute the strongly connected component of s. To this end,
the external atom &edge[X](Y) is used, which is true if Y is directly reachable
from X (and false otherwise).

The implementation of &edge[X](Y) may look as follows:

1 def edge (x) :
2 graph =((1 , 2) , (1 , 3) , (2 , 3)) # s i m p l i f i e d example implementation
3 for edge in graph : # search for outgoing edges
4 i f edge [0]==x . intValue () : # of node x
5 dlvhex . output ((edge [1] ,)) # output edge t a r g e t

On the command-line, the call

dlvhex2 --python-plugin=plugin.py prog.hex

loads the external atoms defined in plugin.py and then evaluates HEX program
prog.hex.

In the system, the Python programming interface is realized as a wrapper of
the generic C++ interface as shown in Figure 3, where arcs model both control
and data flow. That is, the Python interface uses only the C++ interface but
does not communicate with the core reasoning components otherwise. This
turns the Python interface in fact into a special C++ plugin. The performance
gap between C++ and Python plugins is normally negligible (the update of
the Python data structures is in the worst case linear in the number of input
atoms), unless the plugin is itself computationally expensive. Wrappers for
other languages such as Java or C# can be added similarly and can also be
implemented externally, i.e., they do not necessarily need to be part of the
dlvhex solver.

For a complete API description we refer to the system website.

35

Reasoning
Component

C++ Program-
ming Interface

C++ Plugins

Python Program-
ming Interface

Python Plugins

dlvhex

Fig. 3. Architecture of the Python Programming Interface

ASP-Core-2 Standard, Extensions and Interoperability In the course
of the organization of the fourth ASP competition, the input language of ASP
systems was standardized in the ASP-Core-2 input language format [19].17 The
dlvhex system in its current version supports all features defined in the stan-
dard, including function symbols, choice rules, conditional literals, aggregates,
and weak constraints. The supported language is therefore a strict superset of
the standard.

The system further supports input and output in CSV format to improve
interoperability with other systems such as Unix commands or spreadsheet ap-
plications. That is, facts may be read from the lines of a CSV file, where the
different values are mapped to the arguments of a predicate. After the compu-
tation, the extension of a specified predicate may be written in CSV format to
allow a seamless further processing by other applications. For instance, consider
salary.csv:

joe,smith,2000

sue,johnson,2200

It can be read as facts emp(1, joe, smith, 2000) and emp(2, sue, johnson, 2200)
(where the first element is the original line number if relevant) using the dlvhex
command-line option --csvinput=emp,salary.csv. Conversely, results can be
output in CSV format.

4.4 Exploiting External Source Properties

External sources were seen as black boxes in earlier versions of dlvhex. It was
assumed that the system does not have any information about them, except
that there is an oracle function which decides satisfaction of an external atom
under a complete assignment. As a consequence, the room for optimizations in
the algorithms was limited because the value of an external atom under one
assignment did not allow for drawing any conclusions about its behavior under
other assignments.

However, in many practical applications the provider of an external source
and/or the HEX programmer have additional knowledge about the behavior of
the source, for instance, that the source is monotonic, functional, has a limited

17 https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

36

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

domain, returns only elements which are smaller than the input (according
to some ordering), etc. Knowing such properties allows for implementing more
specialized algorithms which are tailored to the particular external sources used
in a program. We therefore identified a set of properties that external sources
might have, and allow the user to specify the ones which are fulfilled by a
concrete external source. Note that specifications by the user are assumed to
be correct and cannot be further checked by the system, either due to high
computational costs or undecidability of some properties.

Example 28. Suppose &tail [X](Y) is true whenever Y is the string which re-
sults from string X if the first character is dropped. Then the output is always
smaller than the input wrt. string length.

The system exploits these properties automatically, mainly for two pur-
poses: in the learning algorithms for scalability enhancements and in the
grounding component for more flexibility of the language due to reduced syn-
tactic limitations. In addition, there are several other system components
which exploit the properties to further speed up the evaluation, such as
skipping various checks if their result is definite due to known behavior of
external sources, partitioning a reasoning task into smaller independent tasks,
avoiding unnecessary evaluations of external atoms, and drawing deterministic
conclusions rather than guessing.

However, as this section presents the system from a user’s perspective, we
focus on which properties can be specified, how the user can do that, and give
a rough idea of how the system makes use of this information, but we refrain
from discussing the involved algorithms in detail. This is in line with the goal
of these properties: the user can benefit from the advantages when specifying
them, but without the need to care about how the system is going to exploit this
information. Instead, the user can generally expect that the more information
is available to the system, the more efficient evaluation will be; if the added
information does not yield a speedup, it does at least no harm.18 Some of the
properties, such as monotonicity, do even lead to a drop of complexity from ΣP

2

to NP for answer set existence checking over ground disjunction-free programs,
provided that external sources are polynomial [51].

Furthermore, properties also serve as assertions: if the reasoner observes
a behavior of external sources which contradicts the declared properties, ap-
propriate error messages are printed. However, a systematic check of asserted
properties is not performed because of high computational costs or even unde-
cidability of some properties.

Specifying Properties The specification of properties is supported in two
ways. The first option is to declare them as part of the external source im-

18 The only property related to potential performance decrease is provision of a three-
valued semantics as additional calls of the external source are sometimes counter-
productive [44]. However, even then the property itself does not harm since it is only
exploited by certain (non-default) evaluation heuristics selected via command-line
options.

37

plementation via the external source interface. The second option is to specify
them as part of the HEX program using so-called property tags.

Specification via the External Source Interface. Properties are mostly specified
via the (C++ or Python) programming interface for external sources. To this
end, the procedural code which implements external atoms calls specific setter
methods provided by the programming interface to inform the system that the
source has certain properties.

Example 29. The implementation of &md5 [X](Y) which computes for a string
X its MD5 hash value Y might call prop.setFunctionality(true) to let
dlvhex know that for each X there is exactly one Y . This allows the system, for
instance, to conclude that &md5 [x](y2) is false without evaluating the external
source, if it has already found a value y1 6= y2 such that &md5 [x](y1) is true.

If a property is declared in this way, the source is meant to always provide a
certain behavior, independent of its usage in a HEX program, like in case of the
computation of a hash value. Another example is &diff [p, q](X) from Example
26, which computes all valuesX in the extension of p but not in that of q wrt. as-
signment A (formally, these are all values x s.t. f&diff (A, p, q, x) = T). This
external atom is always monotone/antimonotone in the first/second parameter,
which can be specified by calling prop.addMonotonicInputPredicate(0) and
prop.addAntimonotonicInputPredicate(1).

Example 30. Reconsider the external atom &diff [p, q](X) from Example 26. It
is monotonic in p and antimonotonic in q. We adopt the implementation of the
external source as follows in order to inform the reasoner about the properties,
which typically leads to efficiency improvements.

1 import dlvhex
2

3 def d i f f (p , q) :
4 for x in dlvhex . getTrueInputAtoms () : # for a l l true input atoms
5 i f x . tuple () [0] == p : # i s i t of form p(c)?
6 i f dlvhex . i s F a l s e (dlvhex . storeAtom (# i s q (c) f a l s e ?
7 (q , x . tuple () [1]))) :
8 dlvhex . output ((x . tuple () [1] ,)) ; # then c i s in the output
9

10 def r e g i s t e r () :
11 prop = dlvhex . ExtSourcePropert i e s () # inform dlvhex about
12 prop . addMonotonicInputPredicate (0) # monotonicity/antimon .
13 prop . addAntimonotonicInputPredicate (1)# in f i r s t /second parameter
14 dlvhex . addAtom(” d i f f ” , (dlvhex .PREDICATE, dlvhex .PREDICATE) ,
15 1 , prop)

Specification via Property Tags. However, it might also be the case that only a
specific usage of an external source in a concrete program has a property. Then
the implementer of the external source cannot declare it yet; instead, only the
implementer of the HEX program has sufficient knowledge and can declare the
property as part of an external atom in the program.

Example 31. Suppose &greaterThan[p, 10]() checks if the sum of integer values
c s.t. p(c) is true is greater than 10. It is not monotone in general if negative

38

integers are allowed, but it is monotone if a program uses only positive integers.
While the provider of the external source cannot assert the property, the user
of the external source in a concrete program, who knows the context, can.

To this end, the HEX language and implementation were extended such that
external atoms can be followed by property tags of form 〈list of properties〉,
where the list of properties is comma-separated. Each property is a whitespace-
separated list of constants, consisting of a property type (first element in the
list), and a number of property parameters (remaining elements in the list),
whose number depends on the property type and may also have default val-
ues. For example, &diff [p, q](X)〈monotonic p, antimonotonic q〉 specifies two
properties which declare that the external atom is monotonic in p and anti-
monotonic in q wrt. their extension in the input assignment. Here, the first
property monotonic p uses the property type monotonic and the property pa-
rameter p, while the second property antimonotonic q uses the property type
antimonotonic and the property parameter q. Another example is the exter-
nal atom &greaterThan[p, 10]()〈monotonic〉, which declares that the external
source is monotonic in all parameters (because it is monotonic in p and it is
trivially monotonic in constant input parameters because they are independent
of the input assignment); the property type is monotonic and no property pa-
rameters are explicitly specified, which indicates by default that the source is
monotonic in all inputs. Properties declared by tags are understood to hold in
addition to those declared via the external source interface (stating conflicting
properties is not possible with the currently available ones).

Supported properties. The following list gives an overview about the currently
available properties and how to specify them if the property tag language is
used (but all of them can be specified both via the external source interface
or in property tags). Each property is explained with an example in order to
show the property type and the expected property parameters.

– Functionality: &add [X,Y](Z)〈functional〉
The external atom adds integers X and Y and is true for their sum Z. The
source provides exactly one output value for a given input. There are no
property parameters.

– Monotonicity in a parameter: &diff [p, q](X)〈monotonic p〉
The external atom computes the difference of the extensions of p and q.
The source is monotonic in predicate parameter p (i.e., if the extension
of p increases, the output does not shrink), as indicated by the property
parameter.

– Global monotonicity: &union[p, q](X)〈monotonic〉
The source computes the set union of the extensions of p and q. It is mono-
tonic in all parameters (indicated by the default value of the missing prop-
erty parameter). Another example are queries over DL ontologies and RDF
queries as mentioned in Section 3.2.

39

– Antimonotonicity in a parameter: &diff [p, q](X)〈antimonotonic q〉
The source is antimonotonic in predicate parameter q (i.e., if the extension
of q shrinks, the output does not shrink).

– Global antimonotonicity: &complement [p](X)〈antimonotonic〉
The source computes the complement of the extension of p wrt. a fixed
domain. It is antimonotonic in all parameters.

– Linearity on atoms: &union[p, q](X)〈atomlevellinear〉
We have domain independence on the level of atoms, i.e., the source can be
separately evaluated for each input atom s.t. the final result is the union
of the results of all evaluations. For instance, the evaluation under assign-
ment A = {Tp(a),Tp(b),Tq(c)}, which yields {a, b, c}, can be split up into
three evaluations under A1 = {Tp(a)}, A2 = {Tp(b)} and A3 = {Tq(c)},
which yield {a}, {b} and {c}, respectively, and their union the result of the
evaluation under A. There are no property parameters.

– Linearity on tuples: &diff [p, q](X)〈tuplelevellinear〉
We have domain independence on the level of tuples in the extensions of
predicate input parameters, i.e., the source can be separately evaluated for
each pair of atoms p(~c) and q(~c) for all vectors of terms ~c s.t. the final result
is the union of the results of all evaluations. For instance, the evaluation
under A = {Tp(a),Tp(b),Fq(a),Tq(b)}, which yields {a}, can be split up
into two evaluations under A1 = {Tp(a),Fq(a)} and A2 = {Tp(b),Tq(b)},
which yield {a} and ∅, respectively, and their union in the result of the
evaluation under A. However, it would not be correct to split A2 further
up into A2.1 = {Tp(b)} and A2.2 = {Tq(b)} as they would yield the results
{b} and ∅, which would put b into the final result, which differs from the
evaluation under A. There are no property parameters.

– Finite domain: &edges[graph.dot](X,Y)〈finitedomain 0 ,finitedomain 1 〉
Imports the edges of a predefined graph. Both output values can have only
finitely many different values. To this end, we specify two properties with
type finitedomain with property parameters that identify the output terms
X and Y by index (0 and 1, respectively).
In the route planning application mentioned in Section 3.2, and shown
in more detail below, accesses to external maps fulfill this property since
real-world maps are always finite.

– Finite domain wrt. the input: &diff [p, q](X)〈relativefinitedomain 0 0 〉
Only constants which already appear in the 0-th input (indicated by the
first property parameter 0; points in this case to the predicate p) may
occur as first output term (indicated by the second property parameter 0).
Informally, the difference between sets represented by predicates p and q
can only contain elements which appear in the set represented by p.

– Finite fiber: &sqrt [X](Z)〈finitefiber〉
The source computes the square root of X. Each element in the output is
only produced by finitely many different inputs (in this case, in fact, only
by a single input value). There are no property parameters.

40

– Well-ordering wrt. string lengths: &tail [X](Z)〈wellorderingstrlen 0 0 〉
The source drops the first character of string X and returns the result in Z.
The 0-th output (indicated by the second property parameter 0) is no longer
than the longest string in the 0-th input (indicated by the first property
parameter 0).

– General well-ordering: &decrement [X](Z)〈wellordering 0 0 〉
The external atom decrements a given integer. There is an ordering of all
constants such that the 0-th output (second parameter) is no greater than
the 0-th input (first parameter) wrt. this ordering.

– Three-valued semantics: &g [~X](~Y)〈providespartialanswer〉
The external source can be evaluated under partial assignments, i.e., it
can handle assignments which do not define all atoms, but may evaluate
to undefined (U) in this case (can be used with any external source if
implemented).

Note that properties are only useful if they are exploited by at least one
solving technique or algorithm implemented in the reasoner. It is therefore not
intended that typical users introduce custom properties, but only tag external
atoms with existing ones from the above list. However, for advanced users who
contribute to or customize the reasoner itself, the framework supports easy
extension of the parser and data structures. Exploiting such a new property
in the algorithms might be more sophisticated depending on the particular
property and the envisaged goal.

Scalability Boost Recall that the current evaluation algorithm for HEX-
programs employs a conflict-driven approach, which learns nogoods from ex-
ternal sources to exclude incorrect guesses. This basic approach can be further
improved by keeping the learned nogoods small by exploiting external source
properties or external source evaluation under partial assignments.

Exploiting external source properties. In Example 25, atoms p(a) and q(a) in
the assignment are in fact irrelevant when deciding whether &diff [p, q](b) is
true because constants a and b are independent (similarly for p(b) and q(b)
when deciding &diff [p, q](a)). If this information is available to the system, it
can be exploited to shrink nogoods to the relevant part such that the search
space is pruned more effectively.

One way to gain the required information is to make use of external source
properties. In particular, the independence of a and b in the previous exam-
ple can be derived from the property ‘linearity on tuples’. Then we can re-
duce the nogood {Tp(a),Tp(b),Fq(a),Tq(b),Fe&diff [p,q](a)} to {Tp(a),Fq(a),
Fe&diff [p,q](a)} and nogood {Tp(a),Tp(b),Fq(a),Tq(b), Te&diff [p,q](b)} to the
smaller nogood {Tp(b), Tq(b),Te&diff [p,q](b)}. If monotonicity in p is known in
addition, then nogood {Tp(b), Tq(b),Te&diff [p,q](b)} can be further simplified
to {Tq(b),Te&diff [p,q](b)} by dropping Tq(a) because &diff [p, q](b) will remain
false even if q(a) becomes false.

41

Exploiting three-valued oracle functions. Alternatively or in addition to exter-
nal source properties, also three-valued oracle functions can be exploited for
shrinking learned nogoods to the essential part [44]. If the truth value is al-
ready known and will not change when the assignment becomes more complete,
then the set of yet unassigned atoms is irrelevant for the output of the external
source. This is exploited for nogood minimization as follows. Whenever a no-
good is learned, the system iteratively tries to remove one of the input atoms
and evaluate again in order to check if the truth value is still defined. If so, the
according atom is not necessary and can be removed from the nogood.

For instance, a proper three-valued oracle function in the previous exam-
ple allows for reducing the nogood {Tp(a),Tp(b),Fq(a),Tq(b),Te&diff [p,q](b)}
from above to {Tq(b),Te&diff [p,q](b)}, because whenever Tq(b) is in the assign-
ment, it is already definite that &diff [p, q](b) is false.

Discussion and Extensions. Whether to exploit external source properties,
three-valued oracle functions, or both, largely depends on the use case. De-
pending on the type of external source to be realized, the implementation of a
three-valued oracle function might be more challenging than that of a Boolean
one (implementing an algorithm which decides over partial assignments is in
general more difficult than if all information is known). However, it allows for
exploiting application-specific knowledge in an optimal way [44]. In contrast,
tagging external sources with properties from a list is easy and can still lead
to good efficiency.

Language Flexibility based on Liberal Safety As already discussed, ex-
ternal atoms may introduce constants which do not appear in the program
(value invention). Obviously, this can in general lead to programs Π where no
finite subset of the full, possibly infinite grounding grnd(Π) of the program has
the same answer sets as Π. Since this inhibits grounding in general, it is crucial
to identify classes of programs for which the existence of such a finite grounding
is guaranteed; we call this property finite groundability. Traditionally, strong
safety was used, which basically forbids value invention by recursive external
atoms (i.e., external atoms whose input possibly depends on its own output
wrt. the predicate dependency graph, for a formal definition cf. [43]). If only
non-recursive external atoms introduce new values, termination is guaranteed.
However, it turns out that this is only a sufficient but not a necessary criterion,
i.e., strong safety is overly restrictive.

Example 32. The program Π from Example 27 is not strongly safe because
&edge[X](Y) is recursive (output Y may be input to the same external atom
by another application of r3) but may introduce values for Y which do not
appear in Π. However, if one knows that the graph is finite, one can conclude
that the recursive addition of new values will end at some point.

In the example, the criterion may be circumvented by importing the full
domain a priori and adding domain predicates, i.e., adding node(Y) to the
body of r3 and another rule node(X)← &node[](X) to import all nodes. Then
&edge[X](Y) does no longer invent values because all possible values for Y are

42

determined in a non-recursive fashion using &node[](X). However, this comes
at the price of importing the whole graph although only a small set of nodes
might be in the strongly connected component of s.

Therefore, new safety criteria have been introduced which allow for exploit-
ing both syntactic and semantic conditions to derive finite groundability, where
the latter are based on external source properties. For instance, if it is known
that the input to an external atom can have only finitely many different values,
then (due to the restrictions for oracle functions introduced in Section 2.4) also
the set of possible output values will be finite. Furthermore, if an external atom
is acyclic, then the set of relevant output values will also be finite. Such con-
siderations have been formalized by the notion of liberally safe HEX programs,
which are guaranteed to have a finite grounding that can be computed using
a novel algorithm [34]. Formally, the notion is based on attribute positions of
external atoms; however, since the technical details are more elaborated, we
give only an intuitive overview here.

Example 33. Let &tail [X](Y) drop the first character of string X and return
it as Y . Then Y is no longer than X and – even if used recursively – it is
guaranteed that it can generate only finitely many strings because there are
only finitely many strings with a length up to the one of X.

In addition to the declaration of predefined properties, the generic frame-
work is also extensible in such a way that custom knowledge about external
sources can be exploited. To this end, providers may implement additional
safety criteria, which are integrated into the safety check. The safety check
itself is fast (at most quadratic in the size of the non-ground program).

The system combines the available information, given by syntactic condi-
tions, specified semantic properties, and safety plugins in order to check safety
of the program. This does not only allow for writing programs with fewer syn-
tactic restrictions, but the implementation of some applications may become
possible in the first place. For instance, in route planning applications, import-
ing the whole map material a priori is practically impossible due to the large
amount of data, while a selective import using liberal safety makes the appli-
cation possible [34], as is the case for the route planning application described
in the next section.

In case a program is not safe, the system prints hints such as the rule and
the variable for which finiteness during instantiation could not be proven. This
information is intended to guide the user when providing more information in
order to make the program safe, e.g., by adding properties which constrain the
values of this variable further. Alternatively, a command-line option allows to
disable the safety check altogether, in which case there is no guarantee that the
reasoner terminates.

5 Case Study

In this section, a case study is presented, where we describe the practical treat-
ment of a realistic problem by employing dlvhex, following the methodology

43

introduced in Section 3. This section also serves as a tutorial covering the
basic usage of dlvhex, as well as some advanced features. For this purpose,
we develop a HEX-encoding step by step, which is more elaborated than the
example programs considered in the previous section, and discuss possible effi-
ciency improvements that can be achieved by exploiting facilities provided by
the dlvhex-system. More details on implementing HEX applications can be
found in the dlvhex user guide [46]. The code snippets presented in this sec-
tion are fragments of the complete implementation for this case study available
at https://github.com/hexhex/manual/tree/master/RW2017/.

The problem of our case study is from the route planning domain, which
has already been considered for HEX before, e.g. in [34,46,47,90]. Suppose one
wants to plan a trip through the city of Vienna, where a number of places
should be visited on the way. For planning the trip, we rely on data about
metro, tram and bus stations, which can be obtained from data.wien.gv.at.
It contains tuples of the form (l, l′, c, t), where l and l′ are locations in Vienna,
for example ‘Karlsplatz’ or ‘Wien Mitte’, t is a means of transport that connects
both locations, e.g. ‘Bus 65A’ or ‘Metro U4’, and c is an integer representing
the associated costs, e.g. the amount of time required to travel from l to l′

by using t. For our implementation, the data is contained in a file which is
structured as shown in Figure 4.

1 Museumsquartier Kar l sp l a t z 1 U2
2 F l o e t z e r s t e i gb ru e ck e Matschgasse 3 51A
3 WaehringerStrasseVolksoper Kutschkergasse 2 40
4 . . .

Fig. 4. vienna transport.graph

For instance, line 1 states that ‘Karlsplatz’ can be reached from ‘Museum-
squartier’ taking ‘U2’ at cost 1.

5.1 Sequence Generation

Given a subset of all possible locations contained in the data set, the general
goal is to compute a sequence of locations that satisfies a number of criteria,
which we are going to introduce in several stages. We start developing our
encoding by generating all possible sequences in which a number of destinations
could be visited, by means of the HEX program shown in Figure 5 (which will
be extended in the sequel of this section). This corresponds to the guessing part
of the encoding as described in the basic methodology in Section 3.

The first rule generates a guess for each combination of locations that should
be visited and possible position in the resulting sequence. Here, the locations
that should be visited are assumed to be all locations contained in the extension
of the predicate destination, and C is the number of such locations obtained
by using the #count-aggregate. The constraints in lines 4 and 5 state that each
location should only appear once in the sequence, and that two locations cannot

44

https://github.com/hexhex/manual/tree/master/RW2017/
data.wien.gv.at

1 sequence (I , L) v nsequence (I , L) :− de s t i n a t i on (L) ,
2 #int (I) , #int (C) , C = #count{N : de s t i n a t i on (N)} , I < C.
3

4 :− sequence (I1 , L) , sequence (I2 , L) , I1 != I2 .
5 :− sequence (I , L1) , sequence (I , L2) , L1 != L2 .
6

7 inSequence (L) :− sequence (I , L)} .
8 :− de s t i n a t i on (L) , not inSequence (L) .
9

10 haveLocation (I) :− sequence (I , L) .
11 :− sequence (I , L) , I1 < I , #int (I1) , not haveLocation (I1) .

Fig. 5. route planning.hex

be visited at the same time, respectively. The rules in lines 7 to 11 ensure that
every destination appears in the sequence and that there are no gaps in the
sequence.

If we add two destinations via the facts destination("Stephansplatz")

and destination("Karlsplatz"), and execute the program by making the
command-line call:

$ dlvhex2 route planning.hex --filter=sequence --maxint=10

the dlvhex-system returns the following two answer sets:

{sequence(1,"Stephansplatz"),sequence(0,"Karlsplatz")}
{sequence(0,"Stephansplatz"),sequence(1,"Karlsplatz")}

By using the command line option --filter, we can limit the output to a
specific predicate, and --maxint sets an upper limit for the integers that occur
in the grounding of the program. The latter value needs to be chosen large
enough depending on the program. The returned answer sets correspond to all
possible sequences in which the given destinations can be visited.

5.2 Trip Planning

Next, we want to exploit the information we have in our data set about con-
nections between locations (via metro, tram or bus) in order to retrieve which
means of transport we can use regarding a particular visit sequence. In addition,
based on the associated costs for each trip via a certain means of transport, we
are interested in the fastest connections between destinations in the sequence.
For this reason, the next step in the development of our encoding consists
in creating an external source that computes the shortest path between two
locations in Vienna, by employing a dedicated algorithm. The plugin should
retrieve the fastest connection together with the required costs and the traffic
lines that need to be taken. At this, the corresponding plugin method needs
access to our data set file.

Our goal is to implement an external source that can be interfaced by means
of an external atom of the following form:

&route[File,Location1,Location2](Station1,Station2,Costs,Line)

45

Given the name of a file containing the transport data (‘vienna transport.graph’
in our case) and two location names, the external source should yield all tuples
representing direct connections between stations that need to be visited in or-
der to travel from Location1 to Location2 with minimal costs, together with
the costs for each connection and the transport line used. Thus, the shortest
path from one location to another needs to be computed externally by the cor-
responding plugin. This corresponds to computation outsourcing as described
in Section 3.

Here, we utilize the Python interface of dlvhex to implement the plugin,
which allows faster prototyping than the alternative C ++ interface, on which
the Python interface is based. By outsourcing the computation of the optimal
connection between two locations, we can access an off-the-shelf implementa-
tion contained in a Python library for this task. The plugin implementation is
realized as shown in Figure 6.

1 import dlvhex
2 import networkx as nx

. . .

6 def route (graph , s ta r t , end) :
7 G = nx . r e a d e d g e l i s t (graph . value () [1 : −1] , nodetype=str ,
8 data=[(’ weight ’ , f loat) , (’ l a b e l ’ , str)] ,
9 c r e a t e u s i n g=nx . MultiDiGraph ())

10 shortes tPath = nx . sho r t e s t pa th (G, source=s t a r t . va lue () [1 : −1] ,
11 t a r g e t=end . value () [1 : −1] , weight=’ weight ’)
12

13 for i in range (0 , len (shortes tPath)−1):
14 c o s t s = 10
15

16 for edge in G. edges (data=True) :
17 i f edge [0] == shortes tPath [i] and
18 edge [1] == shortes tPath [i +1] and
19 edge [2] [’ weight ’] < c o s t s :
20 c o s t s = edge [2] [’ weight ’]
21 t ranspor t = edge [2] [’ l a b e l ’]
22

23 dlvhex . output ((’ ” ’ + shortes tPath [i] + ’ ” ’ ,
24 ’ ” ’ + shortes tPath [i +1] + ’ ” ’ ,
25 int (c o s t s) , ’ ” ’ + t ranspor t + ’ ” ’))

. . .

56 def r e g i s t e r () :
57 prop = dlvhex . ExtSourcePropert i e s ()
58 prop . addFiniteOutputDomain (0)
59 prop . addFiniteOutputDomain (1)
60 prop . addFiniteOutputDomain (2)
61 prop . addFiniteOutputDomain (3)
62 dlvhex . addAtom(” route ” , (dlvhex .CONSTANT, dlvhex .CONSTANT,
63 dlvhex .CONSTANT) , 4 , prop)

Fig. 6. route plugin.py

First, we need to import the Python library dlvhex, and the networkx

package for performing graph computations. The implementation of the ex-
ternal source mirrors the input-output structure of external atoms, in that a

46

plugin is constituted by a Python method with arguments corresponding to the
input parameters of the external atom; and output tuples of an external atom
are added via the interface method dlvhex.output(), representing the results
of the plugin method. In this respect, it is essential that the plugin method im-
plements a stateless behavior where the same set of output tuples is returned
for a specific input each time the method is called, as the semantics of HEX

and the dlvhex-algorithm rely on this property.

Inside the plugin method starting at line 6, we first import the transport
network using the file name provided in the call of the external source. The
respective input constant can be retrieved by calling the method value() on
the first argument of the plugin method. As the transport network does not
change between calls of the external source, the graph could additionally be
cached in the implementation, so that it would not need to be reloaded each
time the source is evaluated. However, we omit the caching here to keep the code
listing succinct. Afterwards, we compute and store the shortest path between
the locations provided as input constants by means of the library function
nx.shortest path, in line 10. Finally, in lines 13 to 25, we build the output
tuples representing separate connections on the way from the start to the end
location, together with the traffic line taken in each step and the associated
costs; and we return them via the method dlvhex.output().

For dlvhex to be able to call the plugin method for evaluating the truth
value of an external atom, we need to register all plugins in a designated method
called register (line 56). This is done via the method dlvhex.addAtom in
line 62, which takes the method name corresponding to the external atom
name, a tuple defining the input parameter types, the output arity, and a
properties-object as arguments. For the external atom at hand, all input pa-
rameters are declared to be constants. If the evaluation of an external atom
depends on the extension of some input predicate in the given interpretation,
the type dlvhex.PREDICATE is used instead (as will be demonstrated below). A
properties-object is obtained via the method dlvhex.ExtSourceProperties()

and stored in the variable prop in line 57. It can be used to declare the ex-
ternal source properties described in Section 4. Here, we just define that each
element of the output tuple can take only finitely many different values since
our transport network is finite.

Now, we can extend our encoding by further rules that utilize the external
atom named &route as shown in Figure 7.

We extend the file route planning.hex by a rule that retrieves all connections
we have to take regarding a given visit sequence from the external source,
in line 13. Note that, besides the locations in the extension of the predicate
destination which we add to the program, the encoding does not contain any
other locations. Thus, these need to be introduced by value invention by the
external atom, restricted to the relevant stations. Moreover, we want to obtain
the connections we are taking during the trip in sequential order. For this, we
reference the overall length of the computed trip via the predicate pathLength,
in line 17. In lines 19 to 26, we aggregate the connections between stations
in form of a new sequence containing the whole trip in tripTmp, where we
take connections between two destinations in line 21, and transitions between

47

11 . . .
12

13 connect ion (L1 , L2 ,X,Y,C,T) :− sequence (N, L1) , sequence (Next , L2) ,
14 Next = N + 1 ,
15 &route [” v i enna t ranspo r t . graph ” ,L1 , L2] (X,Y,C,T) .
16

17 pathLength (L) :− L = #count{L1 , L2 ,X,Y : connect ion (L1 , L2 ,X,Y,C,T)} .
18

19 tripTmp (0 , X, L2 , X, Y, C, T) :− sequence (0 , X) ,
20 connect ion (X, L2 , X, Y, C, T) .
21 tripTmp (S , L1 , L2 , Y, Z , C2 , T2) :− tripTmp (P, L1 , L2 , X, Y, C, T) ,
22 connect ion (L1 , L2 , Y, Z , C2 , T2) , S = P + 1 , #int (S) ,
23 pathLength (L) , S <= L .
24 tripTmp (S , Y, L3 , Y, Z , C2 , T2) :− tripTmp (P, L1 , Y, X, Y, C, T) ,
25 connect ion (Y, L3 , Y, Z , C2 , T2) , S = P + 1 , #int (S) ,
26 pathLength (L) , S <= L .
27

28 t r i p (S , X, Y, C, T) :− tripTmp (S , L1 , L2 , X, Y, C, T) .

Fig. 7. route planning.hex - second part

destinations from the initial sequence in line 24. For this, we use the variables
L1 and L2 to associate sub-paths with trips between destinations, which we
project away in line 28 to obtain the relevant trip information.

Now, assume we indicate a starting position by means of the fact sequence
(0,"Volkstheater"), and add the facts destination("Taubstummengasse"),
destination("Stephansplatz") and destination("Volkstheater") to the
encoding. If dlvhex is called by

$ dlvhex2 route planning.hex --python-plugin=route plugin.py

--maxint=10 --filter=trip

the following possible trips are returned:

{ trip(0,"Volkstheater","Museumsquartier",1,"U2"),
trip(1,"Museumsquartier","Karlsplatz",1,"U2"),

trip(2,"Karlsplatz","Taubstummengasse",1,"U1"),

trip(3,"Taubstummengasse","Karlsplatz",1,"U1"),

trip(4,"Karlsplatz","Stephansplatz",1,"U1")}
{ trip(0,"Volkstheater","Herrengasse",1,"U3"),
trip(1,"Herrengasse","Stephansplatz",1,"U3"),

trip(2,"Stephansplatz","Karlsplatz",1,"U1"),

trip(3,"Karlsplatz","Taubstummengasse",1,"U1")}
When calling dlvhex with a program containing an external atom for which

the corresponding plugin is implemented in a Python file, the path to the file
needs to be provided via the option --python-plugin.

Consequently, there are two different options we can choose from, where
the second trip is shorter. In order to only obtain the shortest trip, we could
make use of weak constraints as introduced in Section 2, by adding the fol-
lowing to our encoding: :∼ trip(S, X, Y, C, T). [C@1,S,X,Y,C,T]. As a
consequence, by minimizing overall costs, dlvhex only returns the answer set
where the sum of costs of trip-atoms in the answer set is minimal. Computing
shortest trips is related to the traveling salesperson problem.

48

5.3 Cyclic Dependencies

Next, suppose we want to refine our encoding further by also taking the re-
quirement into account that if the whole trip is longer than a certain value, we
want to include a destination that has a restaurant for having lunch in our trip.
For this, we can introduce another external atom that checks whether we need
a restaurant, by making use of the fact that it is easy to combine several exter-
nal sources in a program with dlvhex. We create the Python implementation
for an external atom of the form &needRestaurant[trip,Limit](). It should
simply evaluate to true if the sum of the costs of the connections contained in
the true extension of trip (relative to the current solver assignment) exceeds
the constant value Limit. In contrast to &route, this external atom does not
provide any output values, which is often the case when external atoms are
used for checks or constraints in a HEX program. We extend our plugin file as
shown in Figure 8.

25 . . .
26

27 def needRestaurant (t r ip , l im i t) :
28 t r ipLength = 0
29

30 for x in dlvhex . getInputAtoms () :
31 i f x . tuple () [0] == t r i p and x . i sTrue () :
32 t r ipLength += int (x . tuple () [4] . va lue ())
33

34 i f t r ipLength > int (l im i t . va lue ()) :
35 dlvhex . output (())

. . .

56 def r e g i s t e r () :

. . .

65 prop = dlvhex . ExtSourcePropert i e s ()
66 prop . addMonotonicInputPredicate (0)
67 dlvhex . addAtom(”needRestaurant ” ,
68 (dlvhex .PREDICATE, dlvhex .CONSTANT) , 0 , prop)

Fig. 8. route plugin.py - second part

In the plugin method, we iterate over all input atoms and filter those that
have the predicate name which has been passed to the external source, and
which are true in the current solver assignment, in lines 30 and 31. Then, we
add up all according costs by accessing the fourth argument of the respective
atom. Finally, we define that the external atom evaluates to true if the provided
limit is exceeded, by returning an empty output tuple, in line 35. If the output
method of a Boolean external atom is not called at all, dlvhex interprets this
as an evaluation to false.

Here, we can declare that the external atom behaves monotonically on the
first input parameter because once the costs associated to some trip exceed the
limit, the external atom cannot be false when further connections are added
to the trip. Defining such properties often has a large impact on the efficiency

49

of the solving process. For instance, if we call the plugin method for a trip
containing only one connection, the costs of which already exceed the limit,
the truth value of the external atom is implied for any other trip as soon as it
contains that connection, due to monotonicity of the external source. However,
this cannot be detected by dlvhex if the corresponding property declaration
is missing. Also, in contrast to the first plugin, we now declare the external
atom to have a predicate input parameter, which causes dlvhex to pass the
complete extension of the predicate occurring in the ground HEX program
(and, in the standard configuration, to postpone the external evaluation until
the truth values of all its instances are decided during solving).

The additional external atom is used in the extension of our HEX-encoding
shown in Figure 9 in order to decide whether a location having a restaurant
needs to be included in the trip.

27 . . .
28

29 needRestaurant v notNeedRestaurant .
30 needRestaurant :− &needRestaurant [t r ip , 3] () .
31 notNeedRestaurant :− not &needRestaurant [t r ip , 3] () .
32

33 chooseRestaurant (R,L) v nchooseRestaurant (R,L) :− needRestaurant ,
34 r e s tau rant (R,L) .
35 :− needRestaurant , chooseRestaurant (R1 , L1) ,
36 chooseRestaurant (R2 , L2) , R1 != R2 .
37 chosen :− needRestaurant , chooseRestaurant (R,L) .
38 :− needRestaurant , not chosen .
39

40 de s t i n a t i on (L) :− needRestaurant , chooseRestaurant (R,L) .

Fig. 9. route planning.hex - third part

Here, we apply the external atom &needRestaurant to decide if we need a
restaurant or not, in lines 29 to 31. Then, we choose exactly one location that
has a restaurant from all locations that are declared to have a restaurant by the
predicate restaurant, in lines 33 to 38. Finally, we add the chosen restaurant
location to our destinations.

We test the extended HEX program with the same destinations and start-
ing location as before, and state that the location ‘Museumsquartier’ has a
restaurant by adding the fact restaurant("Museumsquartier"). We use the
following command:

$ dlvhex2 route planning.hex --python-plugin=route plugin.py

--maxint=10 --filter=trip --aggregate-mode=ext

where the additional option --aggregate-mode=ext activates the internal ag-
gregates implementation of dlvhex. This is necessary whenever there is a cycle
in a HEX program that contains aggregates as well as external atoms. Overall,
the call yields six answer sets as both of the two trips from before have costs
greater than 3 and an additional restaurant location needs to be added to the
respective sequences. The shortest trip from before is not viable anymore since

50

it does not include a restaurant location, but a detour to ‘Museumsquartier’
can be inserted, so that the following answer set is a solution regarding our
new encoding:

{trip(0,"Volkstheater","Herrengasse",1,"U3"),
trip(1,"Herrengasse","Stephansplatz",1,"U3"),

trip(2,"Stephansplatz","Karlsplatz",1,"U1"),

trip(3,"Karlsplatz","Museumsquartier",1,"U2"),

trip(4,"Museumsquartier","Karlsplatz",1,"U2"),

trip(5,"Karlsplatz","Taubstummengasse",1,"U1")}

Note that now the information retrieved from the external atom named
&route influences the input of the same atom since the extension of the predi-
cate destination, and in turn of the predicate sequence, depends on the costs
for the retrieved connections. Such loops over external atoms potentially make
the grounding of a HEX program infinite, even when only finitely many val-
ues are introduced by each separate call of an external source. In general, this
can be avoided by imposing the strong safety condition [34], which, informally
speaking, forbids cyclic dependencies over external atoms that introduce new
values.

However, the strong safety condition is overly restrictive, and we observe
that our encoding can be handled without problems by dlvhex, even though
value invention is employed. This is because the liberal safety condition is used
by dlvhex by default, which has been introduced in Section 4 and ensures that
programs that are not strongly safe still have a finite grounding. This is the
case for our program as the traffic network is finite. Using the command line
option --strongsafety would yield a warning. To make our program strongly
safe, we could add a domain predicate to the rule in line 12 of the encoding
containing all possible connections in the transport network. However, this is
infeasible in our case due to the large size of the network, of which only a small
fraction is relevant for planning the trip.

5.4 Partial Evaluation

During solving, dlvhex incrementally extends the set of truth assignments
for ground atoms such as trip(0,"Volkstheater","Herrengasse",1,"U3")

and destination("Museumsquartier"). The external source for the atom
&needRestaurant[trip,3]() is invoked as soon as all ground atoms with
predicate name trip have a truth value because the truth value of the ex-
ternal atom could still change before the complete true/false extension of trip
is known.

When calling the plugin method needRestaurant(trip,limit), dlvhex
provides information concerning all ground instances of atoms with predicate
name trip via the interface method getInputAtoms(), as demonstrated in
Figure 8. Their respective truth values can be queried in Python by means of
the methods isTrue() and isFalse(). Based on the truth values of atoms
in its input extension, the plugin declares the corresponding output tuples.
Accordingly, all ground external atoms that instantiate one of these output

51

tuples need to evaluate to true under the given assignment, and the remaining
ground instances are assumed to be false. The according input-output relations
obtained from an external call are then added as nogoods to the solver, so that
the correct truth values for the respective ground external atoms are implied.

For instance, when the method needRestaurant(trip,limit) is called un-
der an assignment that assigns true to six ground atoms with predicate trip,
each associated with a cost of 1, and false to all other trip-atoms, a nogood
is generated that implies that &needRestaurant[trip,3]() is true whenever
the respective six atoms are true in an assignment. However, note that the
truth value of &needRestaurant[trip,3]() is already fixed as soon as just
four trip-atoms have been assigned the value true (assuming costs of 1 for
each connection), even though all other atoms might still be unassigned. On
the other side, if the plugin method in Figure 8 would be called by dlvhex
under an assignment only containing three true trip-atoms (while all others
are not assigned), &needRestaurant[trip,3]() would be inferred to be false
whenever the three trip-atoms are true, which does not hold in general. Hence,
external sources cannot directly be called under partial assignments without
taking care of the latter issue.

For this reason, dlvhex enables partial evaluation of external atoms by
providing the additional output method outputUnknown() for declaring that
the correctness of some output tuple cannot be determined without information
about further truth assignments. This corresponds to the three-valued oracle
functions from Section 4. We exploit this feature in a variant of the method
from Figure 8, as shown in Figure 10.

An external source is only called under partial input assignments by dlvhex
if the property setProvidesPartialAnswer(True) is set. In this case, it is the
responsibility of the source developer to make sure that all outputs that may
potentially be derived when the assignment is extended are declared via the
method outputUnknown(). The additional implementation effort for allowing
partial evaluations often pays off, since partial external sources allow dlvhex
to evaluate external atoms earlier during search. This leads to an earlier detec-
tion of wrong guesses and smaller (thus, more general) input-output nogoods,
resulting in efficiency improvements. Moreover, external sources allowing par-
tial evaluations can also be used by dlvhex for minimizing nogoods to find the
“essential” part of an input assignment on which a given output depends, as
described in Section 4.

Regarding our needRestaurant-plugin, in addition to counting the costs of
trip-atoms that are true in the given assignment, we now also need to keep
track of the maximal costs that may result from extending the assignment. For
this purpose, in lines 35 to 37, we count the costs for all atoms that are true or
not assigned, i.e. those which are not known to be false. Furthermore we state
that the truth value of the external atom is not known if the limit has not been
exceeded, but may be exceeded during future evaluation steps, in line 42.

To enable partial evaluation when starting dlvhex, the command line op-
tion --eaevalheuristics=always needs to be set, so that all external sources
allowing partial evaluations are queried whenever the solver assignment is ex-
tended. If the option --eaevalheuristics=periodic is used, dlvhex waits

52

25 . . .
26

27 def needRestaurant (t r ip , l im i t) :
28 t r ipLength = 0
29 maxTripLength = 0
30

31 for x in dlvhex . getInputAtoms () :
32 i f x . tuple () [0] == t r i p and x . i sTrue () :
33 t r ipLength += int (x . tuple () [4] . va lue ())
34

35 for x in dlvhex . getInputAtoms () :
36 i f x . tuple () [0] == t r i p and not x . i s F a l s e () :
37 maxTripLength += int (x . tuple () [4] . va lue ())
38

39 i f t r ipLength > int (l im i t . va lue ()) :
40 dlvhex . output (())
41 e l i f maxTripLength > int (l im i t . va lue ()) :
42 dlvhex . outputUnknown (())

. . .

56 def r e g i s t e r () :

. . .

65 prop = dlvhex . ExtSourcePropert i e s ()
66 prop . addMonotonicInputPredicate (0)
67 prop . se tProv idesPart ia lAnswer (True)
68 dlvhex . addAtom(”needRestaurant ” , (dlvhex .PREDICATE,
69 dlvhex .CONSTANT) , 0 , prop)

Fig. 10. route plugin.py - partial evaluation

ten iterations before a source is evaluated again, mitigating potential runtime
overheads when the computation inside the external source requires more run-
time. Nogood minimization is activated with the option --ngminimization=

always.

5.5 Interfacing a Description Logic Reasoner

While the two external sources discussed so far in this section are tailored to
our specific problem, existing plugins often accomplish more generic tasks. For
instance, Semantic Web technologies can be leveraged in HEX programs by
interfacing a Description Logic (DL) reasoner for taxonomical reasoning, as
introduced in Section 3. Moreover, it is often a useful strategy to implement
new plugins that are created for a specific purpose in a generic manner, so that
they can be easily reused in other HEX programs. In the last part of our case
study, we provide examples for both of these use cases.

Before, we simply declared one location as a restaurant location by adding
the corresponding fact to our encoding. Now suppose we have a DL ontology
available, containing information about restaurants in Vienna and their corre-
sponding locations, which we want to use for inferring suitable lunch locations.
To illustrate this, we use a small sample ontology formalized in RDF syntax
in the file ‘lunch.owl’. The definitions in our ontology file correspond to the
axioms and assertions shown in Figure 11.

53

BeerGarden v Restaurant Location(Karlsplatz)

BeerGarden v ¬IndoorRestaurant Location(Museumsquartier)

IndoorRestaurant v Restaurant Location(Praterstern)

IndoorRestaurant v ¬BeerGarden BeerGarden(bg1)

IndoorRestaurant v ¬WurstStand closeTo(bg1, P raterstern)

Restaurant v ∃closeTo.Location IndoorRestaurant(ir1)

WurstStand v Restaurant closeTo(ir1,Museumsquartier)

WurstStand v ¬IndoorRestaurant WurstStand(ws1)

closeTo(ws1,Karlsplatz)

Fig. 11. DL-Lite axioms and assertions defined in lunch.owl

In the ontology, for instance the concepts BeerGarden and IndoorRestau-

rant are disjoint, every Restaurant is close to some Location, and bg1 is a
BeerGarden close to the Location Praterstern. For reasoning with ontolo-
gies expressed in lightweight DLs [22], the DL-Lite plugin for dlvhex has
been developed which is publicly available at https://github.com/hexhex/

dlliteplugin. The plugin can be installed and used off the shelf by an end-user
of dlvhex, without the need for understanding the details of its implementa-
tion or for additional configurations. The plugin provides external sources for
several external atoms that can be used for role and concept queries, as well as
consistency checking, and uses a dedicated DL reasoner in the back-end.

For example, by adding the rule

restaurant(R,L) :- &rDL["lunch.owl",cp,cm,rp,rm,"closeTo"](R,L).

we can retrieve all restaurants with their close-by locations. The external atom
for retrieving the extensions of roles has the name &rDL, while &cDL is used for
concept queries. At this, the name of a file containing the ontology encoding
and a role name need to be provided as arguments to the external atom. The in-
put predicates cp, cm, rp, rm can be used to declare additions to the extensions
of concepts and roles as well as to their complements, which are performed be-
fore the according query is executed. Consequently, a bidirectional information
exchange between the HEX program and the DL reasoner is possible, but we
are not exploiting this feature here.19

5.6 Accessing Remote Data

As a final refinement of our HEX-encoding, we consider a situation where we
need to dynamically integrate some remote data into the evaluation of a HEX

program. This represents another common use case for dlvhex, since remote
data that is subject to changes cannot be incorporated into an encoding during
construction time, even though no external reasoning is required in this case.

19 For more details, refer to the documentation of the DL-Lite plugin at http://www.
kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html.

54

https://github.com/hexhex/dlliteplugin
https://github.com/hexhex/dlliteplugin
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html

Hence, this usage of external sources constitutes a typical case of information
outsourcing.

Nowadays, many web services provide access to their data resources via
APIs. These often return data in the now ubiquitous JSON format, which ex-
presses data objects by means of (nested) key-value pairs. For example, weather
data can be retrieved from http://openweathermap.org/, and the following
represents part of the data which is returned as JSON string when a request
for the current weather in a given location is sent:

{"weather":[{"id":803,"main":"Clouds","description":"clouds",
"icon":"04d"}], ...}.

Our aim is to exploit this data in our program and to decide based on the
current weather if we should have lunch outside or inside. At the same time,
the external source we create for querying the JSON data should be generic, so
that it can be used for querying arbitrary JSON providers that are reachable
via an URL. Here, the external atom should enable accessing a specified data
field of a JSON object. For instance, in order to retrieve the string representing
the current weather inside the JSON object from above, we need to access the
array stored under the key ‘weather’, and retrieve the value for the key ‘main’
of the object contained in this array. A corresponding plugin method can be
realized as shown in Figure 12.

2 . . .
3 import u r l l i b as u l
4 import j son

. . .

44 def getJSON(ur l , f i e l d s) :
45 j s o nu r l = ul . ur lopen (u r l . va lue () [1 : −1])
46 data = json . l oads (j s o nu r l . read ())
47

48 for f i e l d in f i e l d s :
49 i f f i e l d . va lue () [1 : − 1] . i s d i g i t () :
50 data = data [int (f i e l d . va lue () [1 : − 1])]
51 else :
52 data = data [f i e l d . va lue () [1 : − 1]]
53

54 dlvhex . output ((’ ” ’ + str (data) + ’ ” ’ ,))
55

56 def r e g i s t e r () :

. . .

71 prop = dlvhex . ExtSourcePropert i e s ()
72 prop . s e tFunct i ona l (True)
73 dlvhex . addAtom(”getJSON” , (dlvhex .CONSTANT, dlvhex .TUPLE) , 1 ,
74 prop)

Fig. 12. route plugin.py - third part

For retrieving data from a URL and parsing JSON strings, we import the
libraries urllib and json, respectively. The plugin method is provided with

55

http://openweathermap.org/

a URL and information about the keys that need to be used to obtain the
data chunk that should be returned. At this, the input parameter fields is
declared to be of the type dlvhex.TUPLE, allowing an arbitrary number of input
constants to be provided. Here, these constants represent the sequence of keys
that need to be used to access the data field containing the respective value of
interest. After loading the JSON data from the provided URL in lines 45 and
46, we iterate through the keys of the input tuple provided as second argument,
following the path to the target value, in lines 48 to 52. If an entry constitutes
an array, an integer needs to be used as key to access the respective entry, in
line 50. Otherwise, we can simply use the respective string as key. Once the
complete sequence has been processed, the target value is declared as output
value of the external source. Note that here we can declare functionality of the
external atom as only one value is returned for a given input.

Now, we can utilize the DL-Lite plugin and our new JSON plugin in com-
bination to choose a lunch location depending on the current weather. For this
purpose, we extend our HEX-encoding by the rules shown in Figure 13.

39 . . .
40

41 weather (X) :− &getJSON [” http :// api . openweathermap . org /data /2 .5/
42 weather ?q=Vienna&apikey=APIKEY” ,” weather ” ,”0” ,”main ”] (X) .
43

44 r e s tau rant (R,L) :− &rDL [” lunch . owl ” , cp , cm, rp , rm,” c loseTo ”] (R,L) ,
45 &cDL[” lunch . owl ” , cp , cm, rp , rm,” IndoorRestaurant ”] (R) ,
46 weather (”Rain ”) .
47

48 r e s tau rant (R,L) :− &rDL [” lunch . owl ” , cp , cm, rp , rm,” c loseTo ”] (R,L) ,
49 &cDL[” lunch . owl ” , cp , cm, rp , rm,”− IndoorRestaurant ”] (R) ,
50 not weather (”Rain ”) .

Fig. 13. route planning.hex - fourth part

In the first rule in line 41, we retrieve the current weather from the Open
Weather Map service. For this to work, the string APIKEY needs to be replaced
by a valid API key, which can be obtained from http://openweathermap.org/.
All of the constants we provide after the URL are contained in the tuple fields
when the external source is called. They denote that we first want to lookup
the array that is mapped to the key "weather". Then, we select the element
with index 0 in the retrieved array and obtain the value associated with the key
"main", which is a string describing the current weather. Finally, we retrieve
all indoor restaurants from the ontology if it is raining. Otherwise, we pose a
query for all restaurants that can be derived to be not an indoor restaurant, in
line 48. In our case, these are all restaurants that can be derived to be a beer
garden or a wurst stand, due to the disjointness axioms in Figure 11.

5.7 Summary of the Case Study

We started by generating all permutations of a set of locations in Vienna, rep-
resenting different visit sequences, and ended up with an elaborate encoding

56

http://openweathermap.org/

for planning trips through the city of Vienna, satisfying a number of hetero-
geneous constraints. The final encoding makes use of four different types of
external atoms, which are used for computation outsourcing (computing short-
est paths by means of a dedicated algorithm), information outsourcing (re-
trieving remote data from an URL), combined information and computation
outsourcing (concept and role queries to an external ontology), and external
checks. We discussed the implementation of three plugin methods in detail, and
we demonstrated how the corresponding external atoms can be used in com-
bination with already available plugin implementations for dlvhex, such as
the DL-Lite plugin. For this usage, it is important to adhere to the conditions
imposed by the formal semantics of oracle functions, by ensuring a stateless be-
havior of external sources, and by declaring all potential outputs under partial
evaluations. The result is a working HEX implementation, which is available
at https://github.com/hexhex/manual/tree/master/RW2017/ and can be
executed by using the dlvhex-system.

6 Further HEX Usage and Related Work

In Sections 3 and 5, we have already considered concrete application scenarios
where external atoms are used in a problem encoding. The specific external
atoms considered were mostly tailored to the given problem and similar plugins
can be developed by a user on demand. However, there are also other types of
usage scenarios for HEX, where either new language features are implemented
based on the HEX formalism, or other formalisms are translated into HEX

programs. In this section, we give an overview over further applications falling
into these classes, and consider related work.

6.1 Further HEX Use Scenarios and HEX Extensions

Some advanced HEX applications call for additional language features, which
cannot be realized easily in pure HEX programs. However, often such extensions
can be realized by compiling them to pure HEX programs. HEX programs can
also be used as a backend for realizing formalisms that do not resemble HEX,
by using an appropriate translation.

HEX∃ programs. As already mentioned earlier, an important feature of HEX

programs is that they are capable of value invention, i.e., that new constants are
introduced into a program. This can be used to realize existential quantification
in the head of rules in a formalism called HEX∃ [33]. The approach is related
to Datalog± [17], which also allows existential quantification in heads, but
HEX∃ offers domain-specific existential quantification such that the structure
of introduced values can be controlled via external atoms.

For example the following rule, intuitively ‘every employee has an office’,

r1 : ∃X : office(Y,X)← employee(Y).

57

https://github.com/hexhex/manual/tree/master/RW2017/

is not interpretable in standard ASP due to the existential quantification in
the head. The rule, which is also called an existential rule, can be rewritten
into the following HEX∃ rule:

r′1 : office(Y,X)← employee(Y),&exists1 ,1 [r1, Y](X).

The external atom introduces novel constant terms into the program, based
on the rule identifier (here r1) and universally quantified variables in the rule
body (here Y). Superscripts ‘1, 1’ on the external atom indicate that we need
to invent one value from values of one universally quantified variable.

HEX programs with function symbols. Uninterpreted function symbols,
for example do(a, s) to represent the follow up of a situation s after executing an
action a, can be realized in HEX using external atoms. To this end, composition
and decomposition of function terms with external atoms are simulated as
in [18].

As a simple example, the program

q(f(X))← p(X).

r(Y)← q(f(Y)).

would be rewritten into the HEX program

q(A)← p(X),&comp1 [f,X](A).

r(Y)← q(B),&decomp1 [B](f, Y).

where the external atom &comp1 [f, x](a) is true for a constant a that represents
the function term f(x). Moreover, &decomp1 [b](f, y) analyzes and decomposes
the term b: if b contains a representation of a function term of form f(y), then
the external atom is true for output term y. While being formally defined on
ground terms x, y, a, and b, the program contains variables X, Y , A, and B,
respectively.

This way function terms can be emulated via HEX programs, moreover we
obtain an increased control over issues like maximum nesting depth of terms
in the external atoms.

ACTHEX: HEX programs with action atoms. ACTHEX [6,52] is an exten-
sion of HEX: an ACTHEX-program is repeatedly executed in an environment,
can obtain (sense) information from the environment using external atoms,
and can declaratively schedule actions to be executed in the environment using
action atoms in the head of rules. The environment is an abstraction of the
world outside the logic program. External atoms are generalized such that the
environment may influence their truth values.

Example 34 (simplified from [52]). The following ACTHEX-program controls a
robot capable of executing a parameterized action #robot , where an external

58

&sensor predicate enables to access sensor data.

#robot [clean, kitchen]{c, 2} ← night

#robot [clean, bedroom]{c, 2} ← day

#robot [goto, charger]{b, 1} ← &sensor [bat](low)

night ∨ day ←

Informally, in the night the kitchen should be cleaned, and during daytime the
bedroom; if the battery is low, the robot needs to go to the charger. The option b
(brave) makes charging mandatory, while other actions with option c (cautious)
are only executed if they occur in every answer set. By the disjunctive fact, this
is not the case. Precedence 1 of the charging action makes the robot recharge
(if needed) before any cleaning. ut

Constraint HEX programs. Constraint Answer Set Programming (CASP)
(see e.g. [71,81]) combines ASP with constraint programming [3]. A well-known
implementation is the clingcon system [86], which integrates Gringo, Clasp
and the constraint solver Gecode. Constraints can be encoded in plain ASP
using builtin predicates, but this quickly produces groundings of unmanage-
able size; hence, a genuine support of constraints in ASP is reasonable, which
can hide instances of constraint variables in the constraint solver. Dedicated
CASP do not allow to integrate background theories other than constraints,
which motivated an integration of CASP with HEX programs to constraint
HEX programs [93]. Constraint HEX programs are strictly more general than
CASP programs, as in addition to constraint atoms also external atoms can be
used. Informally, a constraint HEX program may contain besides ordinary and
external atoms also constraint atoms. The latter are comparisons of arithmetic
expressions such as x + y < 10, where x and y are constraint variables which
range over a certain domain. Different from ASP variables, constraint variables
are global, i.e., each occurrence in a program is bound to the same value; thus,
the atoms x < 10 and x > 20 can never be jointly true, even if they occur in
different rules. For evaluating constraint HEX programs, constraint atoms are
rewritten to auxiliary atoms in rule heads and bodies, e.g., con(x,+, y,<, 10)
for the above expression. Additionally, a constraint

← not &check [con, sum]()

eliminates answer sets where the extension of predicate con contains an incon-
sistent set of conditions over the constraint variable theory.

HEX programs with nested program calls. Notably, dlvhex can be
used to ‘call’ HEX programs from other HEX programs (called host programs).
Specifically, one can process the collection of answer sets of a different program
and can for instance reason on top of it. To this end, dedicated external atoms
for evaluating subprograms and inspecting their answer sets are available [45,
91].

When a subprogram call (corresponding to the evaluation of a special ex-
ternal atom) is encountered in the host program, the external atom internally
creates another instance of dlvhex to evaluate the subprogram. The result is

59

then stored in an answer cache and gets a unique handle that can be later used
to reference the result and access its components (e.g., predicate names, literals,
arguments) via other external atoms. The subprogram can either be directly
embedded in the host program, or stored in a separate file. In the latter case,
code reuse is easy and libraries for solving re-occurring subproblems in ASP
applications, e.g., graph problems or combinatorial optimization problems, can
be built, where code updates are automatically reflected in the call program.

The MELD belief merging system deals with merging collections of be-
lief sets [88, 91], which are roughly sets of classical ground literals. A merging
strategy is defined by tree-shaped merging plans, whose leaves are the collec-
tions of belief sets to be merged, and whose inner nodes are merging operators
(provided by the user). The structure is akin to syntax trees of terms. The
automatic evaluation of tree-shaped merging plans is based on nested HEX

programs; it proceeds bottom-up, where every step requires inspection of the
subresults, i.e., accessing the answer sets of subprograms. In fact, the need for
such processing has led to develop nested HEX program.

Interactive ASP. Interactive applications based on ASP can be realized with
the Answer Set Application Programming (ASAP) framework [95] where in-
coming events (e.g., keyboard inputs) are processed by ASP and the application
state is managed using state variables (as in planning, where these are called
fluents). An ASAP program is rewritten to a HEX program where each eval-
uation obtains fluent values and event information via HEX external atoms.
This is a hybrid HEX use scenario: an ASAP program is rewritten into a HEX

program, transforming fluent atoms into regular atoms and adding rules con-
taining external atoms. At the same time an ASAP program can use arbitrary
external atoms, e.g., for string processing. This use scenario combines computa-
tion outsourcing (string processing) with information outsourcing (events and
fluents) and moreover applies HEX for interfacing with the real world.

Multi-context systems. Heterogeneous nonmonotonic multi-context sys-
tems (MCSs) [12] are a formalism for interlinking multiple knowledge based
systems called contexts. This formalism is on an evolution line of multi-context
systems that goes back to seminal work of John McCarthy [80] and which has
been further developed by the Trento school [15, 61, 62]. The MCS formalism
abstracts from the knowledge representation language and models context se-
mantics in terms of accepted belief sets. The latter are abstractly modeled as
naked sets whose elements (i.e., the beliefs) need not bear logical structure.
The contexts are interlinked by so called bridge rules which add formulas to
the knowledge base of a context depending on the presence and/or absence of
beliefs from the belief sets of other contexts. The MCS formalism is suitable for
modeling many Semantic Web scenarios where distributed knowledge reposi-
tories interact, e.g., [10,11,79], and MCSs have been adapted for the Ambient
Intelligence domain [8] and for modularly combining nonmonotonic rules bases
in the MWeb approach [2].

The semantics of an MCS is given in terms of equilibria, which are global
states that consist of acceptable belief sets for each context, such that all bridge
rules are satisfied. Equilibria computation has been realized in a tool based on
a HEX program [9], in which external atoms outsource contextual reasoning

60

and check whether a context accepts a certain belief set. This application hides
HEX within a tool that realizes MCS semantics and inconsistency analysis [36].

6.2 Related Work

Because there are many scenarios where it is more natural, and often more ef-
ficient, to outsource some information or computation in the context of declar-
ative problem solving, a number of approaches have been developed for this
purpose, realizing different degrees of integration.

Motivated by the need for integration of data in commercial relational
databases, extensions of dlv have been developed that allow to access external
data. The dlvDB system [98, 99] offers via an ODBC interface access to dis-
persed relational databases, where both direct (remote) execution of possibly
recursive queries on databases and main memory execution (after loading the
databases) are supported. The ontodlv system [92], allows the user to retrieve
information from OWL ontologies, which can be utilized in a genuine ontol-
ogy representation language that extends ASP with features such as classes,
inheritance, relations and axioms.

dlv-ex programs [18] represent an early generic integration approach, which
enables bidirectional communication with an external source, and allows the
introduction of new terms by value invention into an answer set program. How-
ever, the interaction is more restricted than in the case of HEX since only terms
can be used as inputs to external sources and thus, e.g., nonmonotonic aggre-
gates cannot be expressed in this formalism.

The Clingo system also provides a mechanism for importing the exten-
sion of user-defined predicates [55] similar to dlv-ex, but they are different
from external atoms in HEX in that their evaluation is not interleaved with the
solving process. For this, Gringo supports custom functions (implemented in
the scripting languages Lua or Python) which are evaluated during the pro-
gram grounding and thus compiled away prior to the solving step. They are
intended to be used as customizable built-in atoms, but no cyclic dependencies
are possible.

Recently, Clingo 5 has been released [54], which provides generic interfaces
for integrating theory solving into ASP. A main difference between ASP modulo
theories solving in Clingo 5 and the HEX-framework consists in the fact that
unfounded support over theory atoms is allowed by the semantics defined for
Clingo, which would violate the minimality criterion w.r.t. the FLP-reduct in
HEX. This can be illustrated by the following example.

Example 35. Consider the program Π = {p ← &id [p]()}, where &id [p]() is
true iff p is true. Then Π has the answer set A1 = ∅; but A2 = {p} is not
an answer set because the support for p is not founded and thus, it is not a
minimal model of the FLP-reduct.

Consequently, a more sophisticated minimality check has to be applied in
dlvhex, lifting the computational complexity of the formalism.20

20 Deciding the existence of an answer set of a ground HEX program in the presence of
nonmonotonic external atoms that are decidable in polynomial time is Σp

2 -complete
already for Horn programs [35].

61

Moreover, even though the Clingo system moves into a similar direction
as dlvhex by facilitating the integration of external reasoners, the perspec-
tives taken by the two systems are different, and their roles can be viewed as
somewhat orthogonal.

While theory atoms are interrelated via an external theory in Clingo,
where the consistency of their truth assignments is usually checked during
theory propagation, the truth value of external atoms in HEX depends on the
evaluation of ordinary atoms representing their input. Thus, the focus of the
HEX-approach is more on input-output relations over external atoms, which are
easy to understand from a user’s perspective and can be used to call external
sources in an API-like fashion.

As a result, external atoms have a number of distinguishing features, which
are tailored to their specific role in the HEX-framework. For instance, external
source properties as described in Section 4 constitute a user-friendly high-level
interface for steering the external evaluation process, which has to be imple-
mented manually for each theory in Clingo’s propagation methods.

The input-output structure of external atoms facilitates the introduction
of constants by value invention relying on the liberal safety condition for HEX

programs, which is of special interest for applications in the area of the Semantic
Web. There is no comparable mechanism for value invention in Clingo 5 as
new values cannot be imported based on the respective answer set, and theory
solving is performed w.r.t. the pre-grounded program.

On the other side, Clingo 5 is well-suited for system development and
powerful solver building, by providing a comprehensive and rich infrastructure
at the low technical levels for integrating theory reasoning into Clingo, which
is accessible through an interface. This novel interface will be exploited in future
versions of dlvhex, which benefits a lot from the Clingo advances.

Besides Clingo, the WASP solver was recently extended with support for
general external Python propagators [25]. Furthermore there are extensions of
ASP towards the integration of specific external sources. Examples are con-
straint ASP as an integration of ASP with constraint programming as realized
e.g. in clingcon [86] lc2casp [16], ezcsp [4], and EZSMT [97]. The latter is like
mingo [76] an SMT-based solver for constraint ASP; other formalisms that ex-
tend ASP with SMT are dingo [66], which uses difference logic, and ASPMT [69].
For an overview of systems that combine ASP with constraint solving and other
theories, we refer to [72].

Similar to SMT [85], where usually only specific theories are considered, the
mentioned approaches rely on a tailored integration of an external solver and
hence, can easily leverage the propagation capabilities of the respective solver.
The aim of the HEX formalism differs in that its goal is to enable a broad range
of users to implement custom external sources and to harness efficient solving
techniques for HEX programs. Moreover, clingcon and approaches in SMT usu-
ally only consider monotonic external theories, which facilitates the integration
of their evaluation into the respective solving algorithm. In contrast, HEX al-
lows for the integration of arbitrary external sources through a general interface
and their flexible combination; the other use cases correspond to special cases
thereof.

62

7 Conclusion

Arriving at the end, we give a summary and discuss ongoing work. Pointers to
further resources regarding dlvhex and ASP can be found in the appendix.

Summary. The HEX formalism extends ASP with access to external sources
through an API-style interface, which has been implemented in the dlvhex-
system and has been fruitfully deployed to various applications. In this paper,
we introduced the formalism and focused on its application to practical prob-
lems in KR and Semantic Web.

To this end, we first introduced HEX programs as a generalization of an-
swer set programs, which constitute logic programs interpreted under the stable
model semantics. In ASP, a problem can be solved by modeling it as an answer
set program using variables, grounding the program to obtain a variable-free
program, and using an answer set solver to compute (possibly multiple) answer
sets of the program. Then, each answer set corresponds to a solution of the
initial problem. By extending ASP with external atoms, HEX enables a bidi-
rectional interaction between an answer set program and external sources of
computation.

For modeling problems utilizing external atoms, we first presented the gen-
eral methodology as a strict generalization of the common methodology for
designing an ASP encoding. In particular, the prominent guess and check
paradigm can be seamlessly combined with external sources, both in the guess-
ing and in the checking part. Also other ASP techniques, such as saturation,
can be used with external sources. We then discussed two typical types of ex-
ternal sources for computation outsourcing and for information outsourcing,
respectively, and for combinations thereof. We further demonstrated the usage
of external sources in existing applications in the areas of the Semantic Web
and planning.

Subsequently, we presented the dlvhex system, which implements a
feature-rich solver for HEX programs. There, we described the architecture of
dlvhex and its practical usage. In dlvhex, external sources that are used
by the system for the evaluation of external atoms can be implemented via a
user-friendly interface in C++ and Python. We also discussed how properties
of external sources can be exploited for solving and demonstrated the configu-
ration of dlvhex for use cases with specific properties, e.g. with the need for
introducing new values.

Finally, we integrated insights from previous sections by showcasing the
development of a HEX encoding for a realistic application scenario, by following
the methodology for designing HEX programs and using different features of the
dlvhex system. In addition, we reviewed related formalisms and applications
where HEX is used for implementing language extensions and backends for
other formalisms, in the last section.

Outlook. Current developments regarding the HEX formalism and dlvhex
comprise the design and implementation of new solving techniques for improv-
ing the efficiency of the formalism in general, as well as for specific classes
of programs. At the same time, the goal is to relieve the user from the bur-
den to configure the system manually for each type of problem, while still

63

profiting from performance gains. For instance, different static heuristics for
partial evaluation of external atoms and minimization of nogoods have been
introduced [44], and future work in this direction concerns the development of
dynamic evaluation heuristics that adjust the frequency of external evaluations
based on the amount of information gained from previous external calls.

Moreover, recently a lazy grounding solver has been integrated into the
dlvhex system, which exhibits promising results for classes of programs where
the grounding bottleneck of ASP is an issue. This issue is even more chal-
lenging to tackle within the framework of HEX due to the need for grounding
external atoms, which are largely black boxes from the viewpoint of the solver.
Lazy grounding avoids an exponential blowup of the grounding by interleaving
grounding and solving, whereby rules are grounded on-the-fly depending on the
satisfaction of their bodies.

Furthermore, since HEX has already been applied to many different prob-
lems from the area of KR, another focus of ongoing work is on exploring new
application areas for HEX to combine approaches that are different in nature,
for solving concrete problems. For instance, external atoms could be utilized
to integrate probabilistic methods into ASP for tackling problems from the
area of Statistical Relational Learning [60], where complex relational as well as
uncertain information is required simultaneously.

Acknowledgments. We appreciate the review feedback and are thankful
for the detailed suggestions in it to improve the presentation of the material in
this article. We also thank Roland Kaminski and Torsten Schaub for comments
regarding Clingo.

A Further Resources

The following list contains some further links to web resources regarding prac-
tical aspects of ASP, HEX programs and the dlvhex system, and summarizes
those already given in the paper.

– All executable examples from this paper are available under:
⇒ https://github.com/hexhex/manual/tree/master/RW2017/

– Slides of a tutorial considering the topic “ASP for the Semantic Web” and
many executable ASP/HEX-examples related to Semantic Web applications
can be found at:
⇒ http://asptut.gibbi.com/

– A tutorial paper providing a gentle introduction to ASP and an overview
over programming techniques (also considering Semantic Web applications)
is available at:
⇒ http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.

pdf

– The main website of dlvhex contains all relevant information about the
system and existing plugins, and many further references to the relevant
literature and related work:
⇒ http://www.kr.tuwien.ac.at/research/systems/dlvhex/

64

https://github.com/hexhex/manual/tree/master/RW2017/
http://asptut.gibbi.com/
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

– An online demo of the dlvhex system can be found at:
⇒ http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

– The easiest way to use dlvhex is by downloading the pre-built binaries,
which are available for Linus, OS X and Windows under:
⇒ http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html

– The source code of dlvhex and corresponding plugins is available on
Github, which is also the best place for filing bug reports:
⇒ https://github.com/hexhex/

– The website of the Potsdam Answer Set Solving Collection (Potassco) is
the main portal for Clingo and related systems and tools, and contains a
lot of additional information on them:
⇒ https://potassco.org/

– Material of the Potsdam ASP course can be found under:
⇒ https://potassco.org/teaching/

– The source code of Clingo, clingcon, and related systems is publicly avail-
able at:
⇒ https://github.com/potassco/

– ASPIDE is an integrated development environment for ASP with a wide
range of features facilitating the implementation of answer set programs:
⇒ http://www.mat.unical.it/ricca/aspide

– Slides of a tutorial covering ASPIDE and the development of answer set
programs can be found at:
⇒ https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.

pdf

– A special issue of the AI Magazine has been dedicated to ASP, covering
many different perspectives on the topic:
⇒ http://aaai.org/ojs/index.php/aimagazine/issue/view/215/

References

1. Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco
Ricca. WASP: A native ASP solver based on constraint learning. In Pedro Ca-
balar and Tran Cao Son, editors, Logic Programming and Nonmonotonic Reason-
ing, 12th International Conference, LPNMR 2013, Corunna, Spain, September
15-19, 2013. Proceedings, volume 8148 of Lecture Notes in Computer Science,
pages 54–66. Springer, 2013.

2. Anastasia Analyti, Grigoris Antoniou, and Carlos Viegas Damásio. MWeb: A
principled framework for modular web rule bases and its semantics. ACM Trans.
Comput. Log., 12(2):17, 2011.

3. Krzysztof Apt. Principles of Constraint Programming. Cambridge University
Press, New York, NY, USA, 2003.

4. Marcello Balduccini. Representing constraint satisfaction problems in answer set
programming. In Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP) at ICLP, 2009.

5. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge Univ. Press, 2003.

6. Selen Basol, Ozan Erdem, Michael Fink, and Giovambattista Ianni. HEX pro-
grams with action atoms. In Technical Communications of the International
Conference on Logic Programming (ICLP), pages 24–33, 2010.

65

http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html
https://github.com/hexhex/
https://potassco.org/
https://potassco.org/teaching/
https://github.com/potassco/
http://www.mat.unical.it/ricca/aspide
https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.pdf
https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.pdf
http://aaai.org/ojs/index.php/aimagazine/issue/view/215/

7. R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic
Programs. Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

8. Antonis Bikakis and Grigoris Antoniou. Defeasible contextual reasoning with
arguments in ambient intelligence. IEEE Transactions on Knowledge and Data
Engineering, 22(11):1492–1506, 2010.

9. Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller. The MCS-IE
system for explaining inconsistency in multi-context systems. In European Con-
ference on Logics in Artificial Intelligence (JELIA), pages 356–359, 2010.

10. P Bouquet, F Giunchiglia, F van Harmelen, L Serafini, and H Stuckenschmidt.
Contextualizing Ontologies. Web Semantics: Science, Services and Agents on
the World Wide Web, 1(4):325–343, 2004.

11. Loris Bozzato and Luciano Serafini. Materialization Calculus for Contexts in the
Semantic Web. In Thomas Eiter, Birte Glimm, Yevgeny Kazakov, and Markus
Krötzsch, editors, DL2013, volume 1014 of CEUR-WP, pages 552 – 572. CEUR-
WS.org, 2013.

12. Gerd Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic
multi-context systems. In AAAI Conference on Artificial Intelligence, pages
385–390. AAAI Press, 2007.

13. Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński, editors. AI Maga-
zine: special issue on Answer Set Programming. AAAI Press, 2016. Volume 37,
number 3. Editorial pp. 5-6.

14. Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set pro-
gramming at a glance. Commun. ACM, 54(12):92–103, 2011.

15. Gerhard Brewka, Floris Roelofsen, and Luciano Serafini. Contextual default
reasoning. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, pages 268–273, 2007.

16. Pedro Cabalar, Roland Kaminski, Max Ostrowski, and Torsten Schaub. An ASP
semantics for default reasoning with constraints. In Subbarao Kambhampati,
editor, Proceedings of the Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages
1015–1021. IJCAI/AAAI Press, 2016.

17. Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Towards more expressive
ontology languages: The query answering problem. Artif. Intell., 193:87–128,
2012.

18. Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni. External sources
of knowledge and value invention in logic programming. Annals of Mathematics
and Artificial Intelligenc, 50(3–4):333–361, 2007.

19. Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni,
Thomas Krennwallner Roland Kaminski, Nicola Leone, Francesco Ricca, and
Torsten Schaub. ASP-Core-2 Input Language Format, 2013.

20. Francesco Calimeri, Michael Fink, Stefano Germano, Andreas Humenberger,
Giovambattista Ianni, Christoph Redl, Daria Stepanova, Andrea Tucci, and An-
ton Wimmer. Angry-HEX: an artificial player for angry birds based on declar-
ative knowledge bases. IEEE Transactions on Computational Intelligence and
AI in Games, 8(2):128–139, 2016.

21. Francesco Calimeri, Michael Fink, Stefano Germano, Giovambattista Ianni,
Christoph Redl, and Anton Wimmer. AngryHEX: an artificial player for an-
gry birds based on declarative knowledge bases. In National Workshop and
Prize on Popularize Artificial Intelligence, pages 29–35, 2013.

22. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

66

23. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and Expressive Power of Logic Programming. ACM Computing Surveys,
33(3):374–425, 2001.

24. Minh Dao-Tran, Thomas Eiter, and Thomas Krennwallner. Realizing default
logic over description logic knowledge bases. In European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty, pages 602–
613, 2009.

25. Carmine Dodaro, Francesco Ricca, and Peter Schüller. External propagators
in WASP: Preliminary report. In Stefano Bistarelli, Andrea Formisano, and
Marco Maratea, editors, International Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion (RCRA), volume
1745 of CEUR Workshop Proceedings, pages 1–9. CEUR-WS.org, November
2016.

26. W lodzimierz Drabent, Thomas Eiter, Giovambattista Ianni, Thomas Krennwall-
ner, Thomas Lukasiewicz, and Jan Ma luszyński. Hybrid reasoning with rules and
ontologies. In Francois Bry and Jan Ma luszyński, editors, Semantic Techniques
for the Web: The REWERSE perspective, number 5500 in LNCS, chapter 1,
pages 1–49. Springer, 2009.

27. Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–357, 1995.

28. T. Eiter and G. Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Annals of Mathematics and Artificial Intelligenc,
15(3/4):289–323, 1995.

29. Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner,
Christoph Redl, and Peter Schüller. A model building framework for answer
set programming with external computations. Theory and Practice of Logic
Programming, 2015. doi:10.1017/S1471068415000113, http://arxiv.org/abs/
1507.01451.

30. Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.
Conflict-driven ASP solving with external sources. Theory and Practice of Logic
Programming, 12(4-5):659–679, 2012.

31. Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Lib-
eral Safety Criteria for HEX-Programs. In Marie des Jardins and Michael
Littman, editors, AAAI Conference on Artificial Intelligence (AAAI). AAAI
Press, 2013.

32. Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Do-
main expansion for ASP-programs with external sources. Technical Report IN-
FSYS RR-1843-14-02, Institut für Informationssysteme, Technische Universität
Wien, A-1040 Vienna, Austria, September 2014.

33. Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. HEX-
programs with existential quantification. In International Conference on Appli-
cations of Declarative Programming and Knowledge Management (INAP), 2014.

34. Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Do-
main expansion for ASP-programs with external sources. Artif. Intell., 233:84–
121, 2016.

35. Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter
Schüller. Efficient HEX-program evaluation based on unfounded sets. Journal
of Artificial Intelligence Research, 49:269–321, 2014.

36. Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl. Finding
Explanations of Inconsistency in Multi-Context Systems. Artificial Intelligence,
216:233–274, November 2014.

67

http://arxiv.org/abs/1507.01451
http://arxiv.org/abs/1507.01451

37. Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive
logic programming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–
323, 1995.

38. Thomas Eiter, Georg Gottlob, and Helmuth Veith. Generalized quantifiers in
logic programs. In Generalized Quantifiers and Computation: 9th European Sum-
mer School in Logic, Language, and Information, ESSLLI 1997 Workshop, Aix-
en-Provence, France, August 1997, volume 1754 of LNCS, pages 72–98. Springer,
1997.

39. Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set
programming: A primer. In Reasoning Web Summer School, pages 40–110, 2009.

40. Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, and Roman Schind-
lauer. Exploiting conjunctive queries in description logic programs. Annals of
Mathematics and Artificial Intelligenc, 53(1–4):115–152, 2008.

41. Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer,
and Hans Tompits. Combining answer set programming with description logics
for the semantic web. Artificial Intelligence, 172(12-13):1495–1539, 2008.

42. Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.
A Uniform Integration of Higher-Order Reasoning and External Evaluations
in Answer-Set Programming. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 90–96. Professional Book Center, 2005.

43. Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.
Effective integration of declarative rules with external evaluations for semantic-
web reasoning. In European Semantic Web Conference, pages 273–287, 2006.

44. Thomas Eiter, Tobias Kaminski, Christoph Redl, and Antonius Weinzierl. Ex-
ploiting partial assignments for efficient evaluation of answer set programs with
external source access. In IJCAI, pages 1058–1065. IJCAI/AAAI Press, 2016.

45. Thomas Eiter, Thomas Krennwallner, and Christoph Redl. HEX-Programs with
Nested Program Calls. In Applications of Declarative Programming and Knowl-
edge Management (INAP 2011), pages 1–10. Springer, 2013.

46. Thomas Eiter, Mustafa Mehuljic, Christoph Redl, and Peter Schüller. User
guide: dlvhex 2.x. Technical Report INFSYS RR-1843-15-05, Vienna University
of Technology, Institute for Information Systems, 2015.

47. Thomas Eiter, Christoph Redl, and Peter Schüller. Problem solving using the
HEX family. In Christoph Beierle, Gerhard Brewka, and Matthias Thimm, edi-
tors, Computational Models of Rationality - Essays dedicated to Gabriele Kern-
Isberner on the occasion of her 60th birthday, Tributes, pages 150–174. College
Publications, January 2016.

48. Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set
programming. AI Magazine, 37(3):53–68, 2016.

49. Esra Erdem, Volkan Patoglu, and Peter Schüller. A Systematic Analysis of
Levels of Integration between Low-Level Reasoning and Task Planning. AI
Communications, 29(2):319–349, 2016.

50. Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in
disjunctive logic programs: Semantics and complexity. In European Conference
on Logics in Artificial Intelligence (JELIA), pages 200–212. Springer, 2004.

51. Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Semantics and complex-
ity of recursive aggregates in answer set programming. Artificial Intelligence,
175(1):278–298, 2011.

52. Michael Fink, Stefano Germano, Giovambattista Ianni, Christoph Redl, and Pe-
ter Schüller. ActHEX: implementing HEX programs with action atoms. In Pedro
Cabalar and TranCao Son, editors, International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), pages 317–322. Springer, 2013.

68

53. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

54. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Philipp Wanko. Theory solving made easy with clingo 5. In ICLP
(Technical Communications), volume 52 of OASICS, pages 2:1–2:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

55. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Clingo = ASP + control: Preliminary report. CoRR, abs/1405.3694, 2014.

56. Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Thomas Schneider. Potassco: The Potsdam Answer Set
Solving Collection. AI Commun., 24(2):107–124, 2011.

57. Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven an-
swer set solving: From theory to practice. Artificial Intelligence, 187–188:52–89,
2012.

58. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Program-
ming. In R. Kowalski and K. Bowen, editors, Logic Programming: Proceedings of
the 5th International Conference and Symposium, pages 1070–1080. MIT Press,
1988.

59. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. Next Generation Computing, 9(3–4):365–386, 1991.

60. Lise Getoor. Introduction to statistical relational learning. MIT press, 2007.
61. Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or contextual

reasoning=locality+compatibility. Artif. Intell., 127(2):221–259, 2001.
62. Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics or:

How we can do without modal logics. Artif. Intell., 65(1):29–70, 1994.
63. Giray Havur, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu. Geometric

Rearrangement of Multiple Movable Objects on Cluttered Surfaces: A Hybrid
Reasoning Approach. In International Conference on Robotics and Automation
(ICRA), pages 445–452, 2014.

64. J. Heflin and H. Munoz-Avila. Lcw-based agent planning for the semantic web.
In A. Pease, editor, Ontologies and the Semantic Web, number WS-02-11 in
AAAI Technical Report, pages 63–70, Menlo Park, CA, 2002. AAAI Press.

65. Robert Hoehndorf, Frank Loebe, Janet Kelso, and Heinrich Herre. Representing
default knowledge in biomedical ontologies: Application to the integration of
anatomy and phenotype ontologies. BMC Bioinformatics, 8(1):377, 2007.

66. Tomi Janhunen, Guohua Liu, and Ilkka Niemelä. Tight integration of non-
ground answer set programming and satisfiability modulo theories. In Pedro
Cabalar, David Mitchell, David Pearce, and Eugenia Ternovska, editors, Infor-
mal Proceedings of the 1st Workshop on Grounding and Transformations for
Theories with Variables (GTTV’11), LPNMR, Vancouver, BC, Canada May
16th, 2011, pages 1–14, 2013. Online available at http://www.dc.fi.udc.es/

GTTV11/GTTV-Proc.pdf.
67. Roland Kaminski, Torsten Schaub, and Philipp Wanko. A tutorial on hybrid

answer set solving with clingo. In Reasoning Web Summer School, 2017. To
appear.

68. O. Lassila and R.R. Swick. Resource description framework (RDF) model and
syntax specification, 1999. www.w3.org/TR/1999/REC-rdf-syntax-19990222.

69. Joohyung Lee and Yunsong Meng. Answer set programming modulo theories
and reasoning about continuous changes. In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 990–996. IJCAI/AAAI, 2013.

69

http://www.dc.fi.udc.es/GTTV11/GTTV-Proc.pdf
http://www.dc.fi.udc.es/GTTV11/GTTV-Proc.pdf
www.w3.org/TR/1999/REC-rdf-syntax-19990222

70. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic (TOCL), 7(3):499–562, July 2006.

71. Yuliya Lierler. Relating constraint answer set programming languages and al-
gorithms. Artificial Intelligence, 207:1–22, February 2014.

72. Yuliya Lierler, Marco Maratea, and Francesco Ricca. Systems, engineering en-
vironments, and competitions. AI Magazine, 37(3):45–52, 2016.

73. Vladimir Lifschitz. Answer Set Programming and Plan Generation. Artificial
Intelligence, 138:39–54, 2002.

74. Vladimir Lifschitz. Thirteen definitions of a stable model. In Andreas Blass,
Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and Computa-
tion, Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday,
volume 6300 of Lecture Notes in Computer Science, pages 488–503. Springer,
2010.

75. Fangzhen Lin and Yuting Zhao. ASSAT: computing answer sets of a logic pro-
gram by SAT solvers. Artificial Intelligence, 157(1–2):115–137, 2004.

76. Guohua Liu, Tomi Janhunen, and Ilkka Niemelä. Answer set programming via
mixed integer programming. In Gerhard Brewka, Thomas Eiter, and Sheila A.
McIlraith, editors, Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June
10-14, 2012. AAAI Press, 2012.

77. Victor W. Marek and Miros law Truszczyński. Stable Models and an Alternative
Logic Programming Paradigm. In The Logic Programming Paradigm – A 25-
Year Perspective, pages 375–398. Springer, 1999.

78. W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,
38(3):588–619, 1991.

79. Wolfgang May, José Júlio Alferes, and Ricardo Amador. Active rules in the
semantic web: Dealing with language heterogeneity. In International Workshop
on Rules and Rule Markup Languages for the Semantic Web, pages 30–44, 2005.

80. John McCarthy. Notes on formalizing context. In Ruzena Bajcsy, editor, Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence.
Chambéry, France, August 28 - September 3, 1993, pages 555–562. Morgan Kauf-
mann, 1993.

81. Veena S Mellarkod, Michael Gelfond, and Yuanlin Zhang. Integrating Answer
Set Programming and Constraint Logic Programming. Annals of Mathematics
and Artificial Intelligenc, 53(1-4):251–287, 2008.

82. Alessandro Mosca and Diego Bernini. Ontology-driven geographic information
system and dlvhex reasoning for material culture analysis. In Italian Workshop
RiCeRcA at ICLP, 2008.

83. Boris Motik and Riccardo Rosati. Reconciling description logics and rules. J.
ACM, 57(5):30:1–30:62, 2010.

84. Ilkka Niemelä. Logic programming with stable model semantics as constraint
programming paradigm. Annals of Mathematics and Artificial Intelligenc, 25(3–
4):241–273, 1999.

85. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). J. ACM, 53(6):937–977, 2006.

86. Max Ostrowski and Torsten Schaub. ASP modulo CSP: the clingcon system.
Theory and Practice of Logic Programming (TPLP), 12(4-5):485–503, 2012.

87. Axel Polleres. From SPARQL to rules (and back). In International Conference
on World Wide Web (WWW), pages 787–796. ACM, 2007.

70

88. Christoph Redl. Development of a belief merging framewerk for dlvhex. Master’s
thesis, Vienna University of Technology, A-1040 Vienna, Karlsplatz 13, 2010.

89. Christoph Redl. Answer Set Programming with External Sources: Algorithms
and Efficient Evaluation. PhD thesis, Vienna University of Technology, 2014.

90. Christoph Redl. The dlvhex system for knowledge representation: recent ad-
vances (system description). TPLP, 16(5-6):866–883, 2016.

91. Christoph Redl, Thomas Eiter, and Thomas Krennwallner. Declarative belief set
merging using merging plans. In International Symposium on Practical Aspects
of Declarative Languages (PADL), pages 99–114. Springer, 2011.

92. Francesco Ricca, Lorenzo Gallucci, Roman Schindlauer, Tina Dell’Armi, Gio-
vanni Grasso, and Nicola Leone. OntoDLV: An ASP-based system for enterprise
ontologies. J. Log. Comput., 19(4):643–670, 2009.

93. Alessandro De Rosis, Thomas Eiter, Christoph Redl, and Francesco Ricca. Con-
straint answer set programming based on HEX-programs. In Eighth Workshop
on Answer Set Programming and Other Computing Paradigms (ASPOCP 2015),
August 31, 2015, Cork, Ireland, August 2015. Accepted for publication.

94. Roman Schindlauer. Answer Set Programming for the Semantic Web. PhD
thesis, Vienna University of Technology, Vienna, Austria, 2006.

95. Peter Schüller and Antonius Weinzierl. Answer Set Application Programming:
a Case Study on Tetris. In Marina De Vos, Thomas Eiter, Yuliya Lierler,
and Francesca Toni, editors, International Conference on Logic Programming
(ICLP), Technical Communications, volume 1433. CEUR-WS.org, 2015.

96. Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing
the stable model semantics. Artif. Intell., 138(1-2):181–234, 2002.

97. Benjamin Susman and Yuliya Lierler. SMT-based constraint answer set solver
EZSMT (system description). In Manuel Carro, Andy King, Neda Saeedloei,
and Marina De Vos, editors, Technical Communications of the 32nd Interna-
tional Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016,
New York City, USA, volume 52 of OASICS, pages 1:1–1:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

98. Giorgio Terracina, Erika De Francesco, Claudio Panetta, and Nicola Leone. En-
hancing a DLP system for advanced database applications. In Diego Calvanese
and Georg Lausen, editors, Web Reasoning and Rule Systems, Second Inter-
national Conference, RR 2008, Karlsruhe, Germany, October 31-November 1,
2008. Proceedings, volume 5341 of Lecture Notes in Computer Science, pages
119–134. Springer, 2008.

99. Giorgio Terracina, Nicola Leone, Vincenzino Lio, and Claudio Panetta. Exper-
imenting with recursive queries in database and logic programming systems.
TPLP, 8(2):129–165, 2008.

100. Jesia Zakraoui and Wolfgang L. Zagler. A method for generating CSS to im-
prove web accessibility for old users. In International Conference on Computers
Helping People with Special Needs (ICCHP), pages 329–336, 2012.

101. Hande Zirtiloǧlu and Pinar Yolum. Ranking semantic information for e-
government: complaints management. In International Workshop on Ontology-
supported business intelligence (OBI). ACM, 2008.

71

	Answer Set Programming with External Source Access

