
Declarative Merging of and
Reasoning about Decision Diagrams?

Thomas Eiter, Thomas Krennwallner, and Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,tkren,redl}@kr.tuwien.ac.at

Abstract. Decision diagrams (DDs) are a popular means for decision making,
e.g., in clinical guidelines. Some applications require to integrate multiple related
yet different diagrams into a single one, for which algorithms have been developed.
However, existing merging tools are monolithic, application-tailored programs
with no clear interface to the actual merging procedures, which makes their reuse
hard if not impossible. We present a general, declarative framework for merging
and manipulating decision diagram tasks based on a belief set merging framework.
Its modular architecture hides details of the merging algorithm and supports pre-
and user-defined merging operators, which can be flexibly arranged in merging
plans to express complex merging tasks. Changing and restructuring merging tasks
becomes easy, and relieves the user from (repetitive) manual integration to focus
on experimenting with different merging strategies, which is vital for applications,
as discussed for an example from DNA classification. Our framework supports
also reasoning over DDs using answer set programming (ASP), which allows to
drive the merging process and select results based on the application needs.

1 Introduction

Many medical decisions are based on Decision Diagrams (DDs), which support med-
ical doctors and health care personnel in decision making like to determine the best
medication or intervention for a patient depending on her medical history and examina-
tions. Such diagrams are also used for diagnosis as part of computer supported decision
systems, cf. [6]. A very common use case frequently found in clinical protocols is to
quantify the degree of severity depending on the patient’s condition, see eg. [14]; the
suggested treatment depends then on the stage. Clearly, DDs are relevant beyond clinical
practice and have become popular in economy (e.g. in liquidity rating), psychology (e.g.
in tests for personality disorders), and basic life sciences; for example, [12]—which we
will consider in more detail below—uses decision trees to classify given DNA sequences
into protein coding and non-coding ones. More applications are listed in [2].

Multiple DDs often exist for the same issue, due to various reasons: different in-
stitutes working on similar projects, different views of correct decisions, statistical
impreciseness, or simply human errors. Making a choice between several DDs, espe-
cially from authoritative sources, is notoriously difficult and ignoring expertise captured
? This research has been supported by the Austrian Science Fund (FWF) project P20840 and

P20841, and by the Vienna Science and Technology Fund (WWTF) project ICT 08-020.

in such diagrams is a waste of resources. This requires to integrate multiple diagrams
into a single one that should be concise and coherent. Several integration algorithms have
been developed [7, 10], and implemented tools exist [13]. However, they are monolithic
programs tailored for a particular application, without clear interface between the inte-
gration components and other programs parts; reusing the merging procedures is hard if
not impossible. Moreover, existing approaches usually produce one output diagram, but
merging can often be done in various ways, hence it is interesting to develop merging
strategies that produce multiple diagrams. A diagram can then be selected according to
the application needs. This naturally calls for reasoning about DDs.

In this paper we present a general, declarative approach which supports semi-
automatic integration of multiple DDs into a single one, as well as reasoning about
DDs. Both features can also be combined to include user-defined constraints or—more
generally—rules that influence the further integration process. To this end, we encode
decision diagrams to belief sets and transform the integration of DDs into a belief set
merging problem in the generic framework of [11], which provides merging plans of
abstract merging operators to accomplish complex belief merging tasks. With the MELD
system, which implements the framework via answer set programming (ASP) [3], we can
exploit a rich infrastructure to realize a powerful declarative tool. It facilitates a range
of different DD integration algorithms, allows to formulate complex, operator-based
integration tasks in a modular, flexible manner, and offers on top the possibility to use
ASP for reasoning about DDs. Specifically, this can be exploited to compute properties
of diagrams (like height or number of variables) that are used for filtering results.

We proceed as follows. After fixing a formal model of decision diagrams, we map
DDs to belief sets and integration of DDs into a belief set merging in Sec. 3. Reasoning
over DDs and support for it in our tool, the DDM system, is discussed in Sec. 4. Finally,
we consider application for DNA classification similar as in [12], with the aim to stress
flexibility and user friendliness, and capabilities beyond those of other systems (Sec. 6).

2 Decision Diagrams

We define a classification function c : D → C as a mapping of some domain D to a set of
class labels C. To represent such a function one can use, e.g., lookup tables, production
rules, or decision diagrams. We focus on the latter as they have turned out to be very
useful in practice not only because they are comprehensible and easy to explain.

Abstractly, we can define a decision diagram as follows.

Definition 1. A decision diagram (DD) overD and C is a labelled rooted directed acyclic
graph D = 〈V,E, `C , `E〉, where V is the set of nodes with unique root node rD ∈ V
and E ⊆ V × V is a nonempty set of directed edges. The labelling function `C maps
leaf nodes in D to elements from C, and `E : E → 2D assigns each edge a subset of
domain D. We call D a decision tree if every node has at most one incoming edge.

Classifying an element d ∈ D is intuitively done by starting at node rD and following
an outgoing edge e iff d ∈ `E(e). This step is repeated until a leaf node v is reached.
Then `C(v) is the class label assigned to d. To guarantee that the classification by some
DD D is deterministic and the result is unique, `E is required to satisfy the following
two conditions. In this case we say that D is valid:

rD

v1 v2

c1v3 c2 v4

{0, 1, 2} {3, 4, 5}

{0, 1}
{2}

{3}
{4, 5}

(a) Graphical representation

root(rD); inner(rD); inner(v1); inner(v2);
leaf (v3, c1); leaf (v4, c2);
cond(rD, v1, z, <, 3); else(rD, v2);
cond(v1, v3, z, <, 2); else(v1, v4);
cond(v2, v3, z, <, 4); else(v2, v4)

(b) Formal encoding

Fig. 1: A valid decision diagram D

(a) for non-leaf nodes v of D,
⋃

(v,w)∈E `E(v, w)= In(v), where In(rD)=D and
In(u) =

⋃
(p,u)∈E `E(p, u) for u 6= rD, and

(b) for a node v of D and any successors u,w of v, `E(v, u)∩ `E(v, w) 6= ∅ ⇒ u = w.
Condition (a) states that, if a node is reached for element d, there must be an outgoing

edge for d, i.e., computation can always continue, while (b) forces branching at internal
nodes to be deterministic. In the following we consider valid decision diagrams only.

Example 1. Fig. 1a shows a valid decision diagram D over D = {0, 1, 2, 3, 4, 5}
and C = {c1, c2}. The edges are marked with `E , and its leaves with `C . It represents the
classification function c s.t. c(d) = c1 if d ∈ {0, 1, 3} and c(d) = c2 if d ∈ {2, 4, 5}.

For practical purposes it is convenient to realize edge labels by queries over some
query language. A query Q(z) with free variable z is then a shortcut for all domain ele-
ments which satisfy it. E.g., if V is the set of positive integers and we want to distinguish
between prime and non-prime numbers, we may label the according edge with Q(z) =
z > 1∧∀m,n (m > 1 ∧ n > 1 ⊃ z 6= m · n) instead of {2, 3, 5, 7, 11, . . . }. In practice,
simple queries of form X ◦ Y often suffice, where X and Y are constants or attribute
values of the domain, and ◦ is a comparison operator. For example, if the domain consists
of patient records with attributes such as blood values, the query Q(z) = z .TSH >
4.5mU/l is true for all patients z that have a Thyroid-Stimulating Hormone level larger
than 4.5 milli-units per liter. More complex queries involving logical connectives can
easily be rewritten to this form by introducing intermediate nodes.

For the further development of our framework we assume that the query language of
a DD is fixed. When developing our encoding, we will assume that queries are of the
form X ◦ Y , but it can easily be extended to more complex query languages.

3 Merging of Decision Diagrams

Some applications require to work with multiple DDs. The reasons for this are manyfold:
statistical fluctuations, different expert opinions on correct decisions, or simply human
errors. For an example merging, see Fig. 4, which is discussed in Section 6. We will
see in Sec. 4 that merging operators (as introduced here) may produce multiple output
diagrams. Picking one of them over another is not easy to justify, and sometimes it is
shearly impossible to have any preference among a variety of diagrams.

Belief Merging. Redl et al. [11] developed the ASP-based MELD system for belief set
merging tasks.1 MELD can integrate multiple collections of belief sets using merging
operators that are hierarchically arranged in trees, called merging plans. They are
evaluated bottom-up, and the result is the one at the root.

More in detail, a belief (¬)p(c1, . . . , cn) is a literal (atom or negated atom) where
p is a predicate symbol of arity n from a set of predicate symbols ΣP , and the ci
are constants from a set ΣC of constant symbols. A belief set is any set B of beliefs
(wrt. Σ). A collection of belief sets B is any set of belief sets (wrt. Σ); BΣ denotes
the set of all collections of belief sets. A belief set merging operator is a function
Op : (BΣ)k × A1 × · · · × Am → BΣ that assigns each tuple B̂ = (B1, . . . ,Bk) of
collections of belief sets Bi and arguments A1, . . . , Am from domains A1, . . . ,Am
a result collection of belief sets Op(B̂, A1, . . . , Am); we allow k = 1 (in abuse of
terminology) to enable also transformations of collections of belief sets. A merging plan
is any expression built using the operators over belief bases, which comprise facts and
(optionally) logical rules; each belief base has an associated collection of belief set (its
semantics), used for evaluation.

Example 2. We define operator ◦2,0∪ for consistently integrating two collections B1
and B2 of belief sets

◦2,0∪ (B1,B2) = {B1 ∪B2 | B1 ∈ B1, B2 ∈ B2,@A s.t. {A,¬A} ⊆ (B1 ∪B2)} .

The operator computes the pairwise union of two belief sets B1 and B2 from B1
and B2, respectively, where classically inconsistent pairs are skipped. Assume B1 =
{{a, b, c}, {¬a, c}} andB2 = {{¬a, d}, {c, d}}, we get that ◦2,0∪ (B1,B2) = {{a, b, c, d},
{¬a, c, d}}. Let B3 = {{¬d, e}, {d, e}}, then ◦2,0∪ (◦2,0∪ (B1,B2), B3) is a merging plan
which evaluates to {{a, b, c, d, e}, {¬a, c, d, e}}.

We instantiate the framework for decision diagram merging. We obtain an imple-
mentation, based on MELD, called the DDM system.1 The basic idea is to

– encode DDs as belief sets, described by belief bases;
– define merging operators for MELD (implemented in C++), tailored to the integra-

tion and manipulation of encoded diagrams; and based on them
– declare merging plans to integrate and manipulate (convert, optimize, etc.) the

encoded DDs.

Encoding. Let D = 〈V,E, `C , `E〉 be a decision diagram over domain D and class
labels C. We assume that D is a set of tuples (a1, . . . , an) ∈ D1 × · · · × Dn, where Di,
1 ≤ i ≤ n, is the domain of attribute ai. Informally, D consists of composed objects,
which are described by n attribute values. Then we use the following atoms to encode D:

– root(rD) for the root node rD of D;
– inner(v) for inner nodes v ∈ V ;
– leaf (v, c) for leaf nodes v ∈ V with assigned class label c = `C(v);
– cond(v, w, a,Op, b) for an edge (v, w) ∈ E with some condition Q(z) = a Op b

such that Q(z) holds iff z ∈ `E((v, w)), where a and b are constants or named
attributes of z and Op is a comparison operator;

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

– else(v, w) for an else-edge (v, w) ∈ E. It is optional but unique for v and encodes
the set of domain elements D \

⋃
(v,u)∈E,u 6=w

`E((v, u)).

Formally, the query language has expressions a Op b and else for optional else-edges,
where else(v, w) is viewed as the conjunction of the negated expressions on all other
out-edges of v. Thus, a tuple t ∈ D belongs to `E((v, w)) iff no condition of some other
out-edge of v is true for t. An example encoding that corresponds to the diagram in
Fig. 1a is shown in Fig. 1b. This basic encoding can be easily extended to provide more
features and support enriched decision diagrams. For instance, we could allow leaf nodes
to store additional information besides the class label (we will use this below).

Decision Diagram Merging using Merging Plans. Let kD,C denote the set of all
decision diagrams over domain D and classes C. We then define (recall that 2X is the
powerset of a set X):

Definition 2. An n-ary DD merging operator is a function

◦n : (2kD,C)n ×A1 × · · · × Am → 2kD,C

which maps each tuple ∆ = (∆1, . . . ,∆n) of sets of DDs ∆i (over D and C) to a set of
DDs ◦n(∆,A1, . . . , Am), where Ai ∈ Ai are additional arguments from domains Ai
for all 1 ≤ i ≤ m.

In our examples, the domains of additional arguments will usually be either the
natural numbers or the set of all ASP programs. Def. 2 allows for arranging operators
hierarchically in so-called merging plans (for an example see Fig. 2a). The merging plan
can be evaluated bottom-up, and the final result is the output of the topmost operator.
Concrete operators ◦n(∆,A1, . . . , Am) are given e.g. in [7, 10] and in Sec. 6. Allowing
operators of arity n = 1 enables decision diagram transformations. It is often convenient
to transform diagrams into a special form (e.g. trees) prior to integration; this may
simplify the implementation of the actual merging operators (n ≥ 2) enormously.

Each such operator produces an output decision diagram which behaves as if the input
classifiers were consulted independently and the results were combined as described
below for some predefined operators:

– majority voting: the majority of the input diagrams D1, . . . , Dn decides;
– user preference: wrong decisions may be of different severity. In medical screening

tests, e.g., one usually prefers false positives to false negatives: additional tests may
refute the former, while the latter let the disease proceed. Thus a natural decision
rule could be: “If the input classifiers vote differently, classify as X rather than Y ”;

– average: interpreting decision diagrams as decision boundaries in an n-dimensional
feature space, it is natural to compute the (possibly weighted) “average boundary.”

Technically, merging plans are declaratively specified in a user-friendly language and
may be automatically evaluated by our prototype implementation. The set of predefined
operators can be extended by custom ones by implementing an operator-API in C++.
For more technical details we refer to the online documentation.

◦1asp(·, Pmin)

◦2Q(·)
◦2R(·)

D1 D2

◦1asp(·, P)

◦R(·)
D3 D4

(a) Decision Diagram Merging Plan

cnt(I, C)←LC = #count{L : leaf in(I, L, C)},
IC = #count{N : inner in(I,N)},
root in(I, R), C = LC + IC

c(I)←root in(I, R), not¬c(I)
¬c(I) ∨ ¬c(J)←root in(I, R), root in(J, S), I 6= J

leaf (L,C)←c(I), leaf in(I, L, C)

...
else(N1, N2)←c(I), elsein(I,N1, N2)

⊥←M = #min{NC : cnt(I,NC)},
c(I), cnt(I, C), C > M

(b) Pmin

Fig. 2: Node count minimization

4 Reasoning about Decision Diagrams

The second major benefit of our formal representation is the possibility of reasoning about
DDs. Properties of a diagram (e.g., height, variable occurrences, redundancy, etc.) can be
computed automatically from an encoding as in Sec. 3. This is particularly interesting
when merging and reasoning operators are combined in merging plans. According
to Def. 2, merging operators output sets of DDs. Hence, when a merging operator
encounters a choice point, it may simply produce alternative diagrams. Such choice
points can e.g. be leaves with (almost) uniform distributions, i.e., the best classification
is not obvious. One can then select the most appropriate diagram by reasoning over
the alternatives, resorting e.g. to properties as above. For example, take the redundancy
measure defined as the number of indistinguishable nodes. Computationally optimal
representations require an appropriate choice for the diagram with minimum redundancy.
Another possibility is to prefer DDs with minimum height or minumum number of nodes.
This is reasonable if the decision diagram is intended for being used by humans such as
medical doctors applying classifiers published in medical guidelines.

To reason about DDs, answer set programs are well-suited for several reasons:
(1) transitive closures allow to reason over paths in diagrams, (2) the multi-model seman-
tics allows for producing multiple diagrams (one per answer set), and (3) constraints are
useful to rule out inappropriate diagrams, or to account for a cost. Technically, we realize
reasoning over diagrams (i.e. “applying” programs to diagrams) by instantiating Def. 2
as a special operator ◦asp(∆,P) which can be used as any other operator in the merging
plan. The input is a set ∆ ∈ 2kD,C of DDs and an answer set program P . The operator
◦asp encodes all input diagrams in ∆, adds them as facts to the user-defined program P ,
and returns as result its answer sets. They are expected to contain the encoded output
diagrams (one per answer set). ASP is well-suited for this purpose because of its multi
model semantics which allows for producing multiple alternative results.

We slightly modify our encoding from Sec. 3: to handle multiple diagrams within
one set of input facts, we add a diagram index I as first argument to all predicates p ∈
{root , leaf , inner , cond , else} and call them pin ; to distinguish between program input
diagrams and result diagrams, pin are used for the input, and p denote output predicates.

Merging
Task

Description
MELD

Decision
Diagram
Merging

Operators

Belief Bases Belief Set Control Script

Input:
Decision
Diagrams

Converter
Output:

Decision
Diagram

Fig. 3: DDM Architecture (data flow→, control flow 99K)

Use Case: Node Count Minimization. The merging plan in Fig. 2a shows four input
DDs D1, . . . , D4. First, we merge D1 and D2, as well as D3 and D4 using operator ◦2R
whose result is subsequently fed into a user-defined program P (potentially, any program
can be used that is using the encoding as described above). The result of this and the
merge of D1, D2 is passed to the next binary merging operator ◦2Q, which is eventually
filtered by Pmin as shown in Fig. 2b. Program Pmin is intended to select among arbitrarily
many input DDs the one with the minimal number of nodes. Let V (D) denote the set of
nodes in diagram D. We have the following result.

Proposition 1. For a set∆ of input decision diagrams, we get that ◦asp(∆,Pmin) yields
a set of decision diagrams ∆min ⊆ ∆ such that for every D ∈ ∆min there is no D′ ∈ ∆
with |V (D)| > |V (D′)|.

Intuitively, Pmin filters diagrams with minimal node number. It computes in cnt for
each diagram (identified by its root) the total number of nodes (rule 1). Then it selects
non-deterministically exactly one input diagram at a time (rule 2–3) and copies it to the
answer set (rules 4–); to minimize the node count, answer sets representing non-minimal
diagrams are eliminated in the last integrity constraint. In practice, the selection criteria
might be more involved. In Sec. 6 we will (abstractly) propose a program Psel which
tests the input diagrams over some test set and selects the diagram with the best behavior.

5 Prototype Implementation of the DDM System

The architecture of our prototype (see Fig. 3) consists of the following parts.2

MELD. This is the underlying belief set merging system. It is implemented on top of
the logic programming reasoner DLVHEX, which evaluates HEX programs; for details we
refer to Redl et al. ([11]). Our DDM system extends MELD by two major components:
a converter between different forms of decision diagram representation, and a suite of

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/ddm.html

decision diagram merging operators, which are plugins for the MELD system. Further
components are the Merging Task Description and the Control Script.

Converter. MELD expects decision diagrams in the belief set encoding from above; the
Converter transforms human-readable input and output formats of machine learning tools
(which realize hierarchical structures) into corresponding belief bases (sets of facts in
HEX format). Our implementation, graphconverter, currently supports (1) a graph-based
input format, (2) the output format of the machine learning tool RapidMiner (http://
rapid-i.com), (3) a representation as logic program or as answer set. graphconverter
takes two arguments that specify the input resp. output format; it reads from standard
input and writes to standard output.

Merging Operators. At the core of our DDM system is a suite of merging operators
which interpret their input as encoded decision diagrams. We provide some predefined
operators, which are mostly considered to serve as examples for demonstrating the
possibilities. Users may use them directly, refine them to make them suitable for a certain
application, or develop completely new operators as plugins (in C++).

Merging Task Description. The merging plan, the decision diagrams and the merging
operators used, is stored as a merging task description in an .mt file, say task.mt,
formulated in MELD’s merging task language (MTL). The merging operators are tailored
to decision diagrams only, i.e., they assume that belief sets associated with belief bases
encode decision diagrams (otherwise an error is raised). The merging task can be initiated
by invoking the command

$ dlvhex --merging task.mt > res.as

storing the output in file res.as. (Note that dlvhex --merging invokes MELD.)
The result is another diagram represented by the facts in the belief set.

Control Script. A simple control script, as used in the examples of the system, manages
the workflow of executing a merging task. It converts the input diagrams, stored in files
diagN.X (the filename extension X tells the input diagram type) to belief bases in files
diagN.hex. It then calls MELD as above, and finally converts the obtained diagram
(represented by a set of facts given by res.as) into the input format X; e.g., for dot
files it calls

$ graphconverter as dot < res.as > res.dot

Further details on system usage input and MTL format description is given at the
accompanying homepage.2

6 Example: DNA Classification

A central task in (semi-)automatic generation of protein databases is to recognize genes in
DNA sequences. Recall that DNA molecules are composed of the four bases (A)denine,
(G)uanine, (C)ytosine and (T)hymine which are lined up in vast strings. In reproduction,
only a minor part of the total DNA will be transcribed as most of it is junk DNA not
encoding proteins. To construct protein databases like SWISSPROT (http://expasy.

org/sprot/) requires to automatically classify sequenced DNA into (protein) coding
and non-coding (junk DNA) samples.

To this end, one usually computes numeric features for a set of annotated train-
ing sequences. They incorporate knowledge from molecular biology which allows to
discriminate—with some level of uncertainty—between the two classes. For instance,
it is known that the predominant bases at the first codon position in coding sequences
are purines (A and G), while in non-coding sequences the distribution is rather random.
Hence, a useful feature is the relative frequency of A and G on the first codon position
with respect to the number of codons in a sequence. For details we refer to [8]. Feature
vectors can then be used to train a classifier using machine learning techniques.

We instantiate Def. 1 with C = {c, n} (coding and non-coding) and use the query
language in Sec. 3 for the edge labelling. We extend our basic DD model by an additional
frequency distribution `F (v) = (cv, nv) at each node v, which tells the number of
coding (cv) and non-coding (nv) samples (in fact, below we will use it only at leaf
nodes). E.g., if in leaf l we have that 70 out of 100 training samples were coding, the
classification is `C(l) = c with frequency distribution `F (l) = (70, 30).

MORGAN Merging Operator. The MORGAN system [13] trains multiple decision
trees D1, . . . , Dn and merges them afterwards (see Fig. 4). The class of a yet unseen
sample s is then determined as follows. First s is classified by each tree Di, ending in
leaf li. Then all frequency distributions `F (li) are summed up by component-wise vector
addition, and the class with the largest count is the final classification. For instance, if we
have two classifiers which yield the distributions `F (l1) = (90, 10) and `F (l2) =
(20, 80), they are added to (110, 90), and consequently the final classification is c
(since 110 > 90). The implementation of the binary case is straightforward as follows:
Each leaf node of diagram D1 is replaced by a copy of the diagram D2. Then the
frequency distribution of each new leaf node is recomputed, and the class label is set
according to the highest component. More than two diagrams are integrated by iteration.

We implemented MORGAN’s merging strategy as operator ◦M for our DDM system.
It takes as input two singleton collections of belief sets (general diagrams must be
converted to trees, for which our system provides operators). The output will be another
classifier behaving as the suggested procedure, but represented by a new decision tree.
Fig. 4c shows the diagram after application of another operator ◦simp from our system,
which simplifies the input diagram by eliminating unnecesary branches and reusing
equivalent subdiagrams.

Experiments with Decision Diagram Merging. Concerning the accuracy increase,
our most impressive results were achieved with three different decision trees, trained
by the open-source machine learning tool RapidMiner. The variations concerned both
the selected algorithm and the training samples. The training sets of only ten sequences
per tree was drawn randomly from a set of 4, 000 sequences (2, 000 coding and 2, 000
non-coding) from [5]. The intuition was to obtain trees that involve at most two attributes
(with the greatest variance between coding and non-coding sequences). These attributes
depend on the training set and the selected learning technique. The performance of these
trees was tested with 2, 000 test instances (1, 000 coding and 1, 000 non-coding) outside
the training set. As expected, the results were very poor due to the very small training
set. Table 1 shows the overall performance which is about 50%, or in other words, as

D1

c (90:10) n (40:60)

f20 ≤ 1.42 f20 > 1.42

D2

c(70:30)

n(20:80) c(90:10)

f8 > 0.056 f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

(a) Two decision diagrams D1 and D2

c

(160:40)

c(110:90) c (180:20)

c

(110:90)

n(60:140) c (130:70)

f20 ≤ 1.42 f20 > 1.42

f8 > 0.056
f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

f8 > 0.056
f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

(b) Merged decision diagram D1 ◦M D2

c

(450:150)
c

(110:90)

n(60:140) c (130:70)

f20 ≤ 1.42
f20 > 1.42

f8 > 0.056
f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

(c) Simplified decision diagram ◦simp(D1 ◦M D2)

Fig. 4: Classifiers for coding (c) and non-coding (n) DNA sequences, based on features fi

good as random classification. An interesting observation is that the first classifier tends
towards non-coding and the second towards coding; the third is slightly better balanced,
i.e., ratio of false positives and false negatives is smaller.

The merged tree, produced by the described merging procedure, performs surpris-
ingly good. The overall accuracy was 65.25%, which is much better than any of the
source classifiers. Recall that we used only very few (ten) training examples to train
the individual decision trees; in total we had 30 samples. In experiments we found that
about 1, 000–2, 000 training examples are needed to reach this accuracy with a single-set
decision tree. Furthermore, such trees had depth ≈7, which is much larger than height
3 of the merged tree. This accuracy cannot be enhanced much by using more training
samples or source classifiers. Empirical results for different algorithms show that ≈75%
is the best one can expect, which seems to be a limit of the statistical features [15].

Our findings in experiments with DNA data from the Human Genome Project largely
confirm those of [13]. Compared to training single diagrams, the merging approach

Table 1: DNA Classification Results (Data from Human Genome Project)

Input 1 Input 2 Input 3 Merged
TC TN TC TN TC TN TC TN

PC 175 214 854 877 262 346 565 260
PN 825 786 146 123 738 654 435 740

A 48.05% 48.85% 45.80% 65.25%

PC/PN: predicted coding/non-coding, TC/TN: true coding/non-coding, A: accuracy

– often yields a simpler diagram structure (in particular height);
– often gains the same accuracy with a smaller (overall) training set; and
– can use parallel training (also with different methods).

We stress that qualitative improvements (as targeted in machine learning) was not the
primary goal of our research, and thus we omit detailed statistical results here. Instead,
our contribution is the methodology and tool support for flexible DD merging: many
experiments and trials are needed to obtain the above results, and this is only reasonably
possible with a tool allowing to quickly restructure the modular merging plans. This
makes our system more powerful than, e.g., MORGAN, which uses a hard-coded merging
procedure. We can switch from MORGAN’s merging strategy to majority voting by
changing one line in the merging plan; more than two input diagrams can be merged
hierarchically, possible using different operators. Furthermore, different from MORGAN
operatores can be reused for other applications.

Extending the Scenario. In addition, a major advantage when using our declarative
approach is the possibility to reason about DDs between the merging steps. While ◦M
returns exactly one output diagram for two input diagrams [13], the following variant ◦M ′

seems reasonable (for space reasons, we omit formal details): when merging two leaf
nodes l1 and l2 with frequency distributions (c1, n1) and (c2, n2), the merged node l
gets `F (l) = (c1 + c2, n1 + n2). While ◦M classifies l as coding (c) if c1 + c2 >
n1 + n2, and non-coding (n) otherwise, it makes sense to produce both alternatives
if
∣∣∣ c1+c2−(n1+n2)
c1+c2+n1+n2

∣∣∣ < ε for some threshold ε > 0, i.e., the numbers of coding and
non-coding samples are almost equal.

This strategy intends to avoid overfitting by estimating and minimizing the gen-
eralization error of the classifier, which is known as the model selection problem in
machine learning (for more information, see [1]). Moreover, it may even lead to different
diagram structures after simplification. Applying ◦simp to the diagram in Fig. 4b gives
the diagram in Fig. 4c. In contrast, when the label of the shaded leaf node is switched
from c to n, the left and the right subtree of the root become equivalent. Therefore ◦simp

will eliminate the unnecessary branching at the root, and D2 is reproduced.
A declarative choice program Psel can then select, one of the alternatives. This

program may prefer the diagram which performs best over some test set, or it prefers
diagrams with a simpler structure or lower number of nodes. Our contribution in this
regard is tool support for convenient generation and selection of best merges by declara-

tive merging plans, e.g., ◦asp(◦simp(◦′M ({D1}, {D2})), Psel), where ◦′M (or any other
operator) constructs candidates, and ◦asp makes the final selection. In the DNA appli-
cation, this strategy led to sensible differences in the resulting diagrams (yet not to a
significant increase in best precision).

7 Related Work and Conclusion

The integration of several classifiers is known in machine learning as ensemble learning,
for which well-working methods are available; see e.g. [4, 9] for an overview. However,
these approaches train new classifiers using an existing one and training samples. In
decision diagram merging, we directly integrate them without using training samples at
all. This strategy was also discussed in [13] where an algorithm and a tool for integrating
decision diagrams for DNA classification was developed. We have discussed this scenario
(and extensions). Their system, however, is monolithic, hard-coded, and tailored to this
application. Our DDM system, instead, is more general and can be used for different tasks
as well. Its modular architecture simplifies the exchange, reusability and modification of
merging strategies enormously. This is especially useful for experimenting with different
strategies and evaluating their outcomes empirically.

The real strength of our system becomes visible when combining merging capabilities
with declarative reasoning about decision diagrams between the merging steps. User-
defined ASP programs may be used on a meta-level to constrain the further integration
process. This allows merging operators to produce multiple alternative results. The ASP
program can in turn select one which is appropriate for the application in mind. In
particular, the high expressivity of HEX programs and the possibility to access other
software from them offers support to declare involved criteria.

Concerning complexity issues, both the time complexity of merging and the size of
the integrated diagram depends on the merging operators in use. The analysis of concrete
operators remains for future work.

References

1. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Statist.
Surv. 4, 40–79 (2010)

2. Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebraic
decision diagrams and their applications. In: ICCAD’93. pp. 188–191. IEEE (1993)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM (2011), to appear

4. Dietterich, T.G.: Ensemble methods in machine learning. In: Intl. Workshop Multiple Classifier
Systems. pp. 1–15. Springer (2000)

5. Fickett, J.W., Tung, C.S.: Assessment of protein coding measures. Nucleic Acids Res. 20(24),
6441–6450 (1992), http://fruitfly.org/sequence/human-datasets.html

6. Mair, J., Smidt, J., Lechleitner, P., Dienstl, F., Puschendorf, B.: A decision tree for the early
diagnosis of acute myocardial infarction in nontraumatic chest pain patients at hospital
admission. Chest 108(6), 1502–1509 (1995)

7. Naylor, B., Amanatides, J., Thibault, W.: Merging BSP trees yields polyhedral set operations.
In: SIGGRAPH’90. pp. 115–124. ACM (1990)

8. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.
Intell. 27(8), 1226–1238 (2005)

9. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3),
21–45 (2006)

10. Quinlan, J.R.: Simplifying decision trees. Int. J. Hum.-Comput. St. 51(2), 497 – 510 (1999)
11. Redl, C., Eiter, T., Krennwallner, T.: Declarative belief set merging using merging plans. In:

PADL’11. pp. 99–114. Springer (2011)
12. Salzberg, S.: Locating protein coding regions in human DNA using a decision tree algorithm.

J. Comput. Biol. 2(3), 473–485 (1995)
13. Salzberg, S., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding

genes in DNA. J. Comput. Biol. 5(4), 667–680 (1998)
14. Sobin, L., Gospodarowicz, M., Wittekind, C. (eds.): TNM classification of malign tumors.

Wiley-Blackwell, 7 edn. (2009), http://www.uicc.org
15. Sree, P.K., Babu, I.R.: Identification of protein coding regions in genomic DNA using unsu-

pervised FMACA based pattern classifier. Int. J. Comput. Sci. Network Secur. 8(1), 305–309
(2008)

