
Nested HEX-Programs?

Thomas Eiter, Thomas Krennwallner, and Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,tkren,redl}@kr.tuwien.ac.at

Abstract. Answer-Set Programming (ASP) is an established declarative programming paradigm. How-
ever, classical ASP lacks subprogram calls as in procedural programming, and access to external
computations (like remote procedure calls) in general. The feature is desired for increasing modularity
and—assuming proper access in place—(meta-)reasoning over subprogram results. While HEX-programs
extend classical ASP with external source access, they do not support calls of (sub-)programs upfront.
We present nested HEX-programs, which extend HEX-programs to serve the desired feature, in a user-
friendly manner. Notably, the answer sets of called sub-programs can be individually accessed. This
is particularly useful for applications that need to reason over answer sets like belief set merging,
user-defined aggregate functions, or preferences of answer sets.

1 Introduction

Answer-Set Programming, based on [8], has been established as an important declarative programming
formalism [3]. However, a shortcoming of classical ASP is the lack of means for modular programming, i.e.,
dividing programs into several interacting components. Even though reasoners such as DLV, CLASP, and
DLVHEX allow to partition programs into several files, they are still viewed as a single monolithic sets of
rules. On top of that, passing input to selected (sub-)programs is not possible upfront.

In procedural programming, the idea of calling subprograms and processing their output is in permanent
use. Also in functional programming such modularity is popular. This helps reducing development time
(e.g., by using third-party libraries), the length of source code, and, last but not least, makes code human-
readable. Reading, understanding, and debugging a typical size application written in a monolithic program
is cumbersome. Modular extensions of ASP have been considered [9,5] with the aim of building an overall
answer set from program modules; however, multiple results of subprograms (as typical for ASP) are
respected, and no reasoning about such results is supported. XASP [11] is an SMODELS interface for
XSB-Prolog. This system is related to our work, but in this scenario the meta-reasoner is Prolog and thus
different from the semantics of its subprograms, which are under stable model semantics. The subprograms
are monolithic programs and cannot make further calls. This is insufficient for some applications, e.g., for
the MELD belief set merging system, which require hierarchical nesting of arbitrary depth. Adding such
nesting to available approaches is not easily possible and requires to adapt systems similar to our approach.

HEX-programs [6] extend ASP with higher-order atoms, which allow the use of predicate variables, and
external atoms, through which external sources of computation can be accessed. But HEX-programs do not
support modularity and meta-reasoning directly. In this context, modularity means the encapsulation of
subprograms which interact through well-defined interfaces only, and meta-reasoning requires reasoning
over sets of answer sets. Moreover, in HEX-programs external sources are realized as procedural C++
functions. Therefore, as soon as external sources are queried, we leave the declarative formalism. However,
the generic notion of external atom, which facilitates a bidirectional data flow between the logic program
and an external source (viewed as abstract Boolean function), can be utilized to provide these features.

To this end, we present nested HEX-programs, which support (possibly parameterized) subprogram
calls. It is the nature of nested hex-programs to have multiple HEX-programs which reason over the answer
sets of each individual subprogram. This can be done in a user-friendly way and enables the user to write
purely declarative applications consisting of multiple interacting modules. Notably, call results and answer

? This research has been supported by the Austrian Science Fund (FWF) project P20840 and P20841, and by the
Vienna Science and Technology Fund (WWTF) project ICT 08-020.

ar
X

iv
:1

10
8.

56
26

v1
 [

cs
.A

I]
 2

9
A

ug
 2

01
1

sets are objects that can be accessed by identifiers and processed in the calling program. Thus, different
from [9,5] and related formalisms, this enables (meta)-reasoning about the set of answer sets of a program.
In contrast to [11], both the calling and the called program are in the same formalism. In particular, the
calling program has also a multi-model semantics. As an important difference to [1], nested HEX-programs
do not require extending the syntax and semantics of the underlying formalism, which is the HEX-semantics.
The integration is, instead, by defining some external atoms (which is already possible in ordinary HEX-
programs), making the approach simple and user-friendly for many applications. Furthermore, as nested
HEX-programs are based on HEX-programs, they additionally provide access to external sources other than
logic programs. This makes nested HEX-programs a powerful formalism, which has been implemented using
the DLVHEX reasoner for HEX-programs; applications like belief set merging [10] show its potential and
usefulness.

2 HEX-Programs

We briefly recall HEX-programs, which have been introduced in [6] as a generalization of (disjunctive)
extended logic programs under the answer set semantics [8]; for more details and background, we refer
to [6]. A HEX-program consists of rules of the form

a1 ∨ · · · ∨ an ← b1, . . . , bm,not bm+1, . . . ,not bn ,

where each ai is a classical literal, i.e., an atom p(t1, . . . , tl) or a negated atom ¬p(t1, . . . , tl), and each bj
is either a classical literal or an external atom, and not is negation by failure (under stable semantics). An
external atom is of the form

&g [q1, . . . , qk](t1, . . . , tl) ,

where g is an external predicate name, the qi are predicate names or constants, and the tj are terms. Informally,
the semantics of an external g is given by a k + l + 1-ary Boolean oracle function f&g. The external atom
is true relative to an interpretation I and a grounding substitution θ iff f&g(I, q1, . . . , qk, t1θ, . . . , tlθ) = 1.
Via such atoms, arbitrary (computable) functions can be included. E.g., built-in functions can be realized via
external atoms, or library functions such as string manipulations, sorting routines, etc. As external sources
need not be on the same machine, knowledge access across the Web is possible, e.g., belief set import.
Strictly, [6] omits classical negation ¬ but the extension is routine; furthermore, [6] also allows terms for
the qi and variables for predicate names, which we do not consider.

Example 1. Suppose an external knowledge base consists of an RDF file located on the web at http://.../
data.rdf. Using an external atom &rdf [<url >](X,Y, Z), we may access all RDF triples (s, p, o) at the
URL specified with <url>. To form belief sets of pairs that drop the third argument from RDF triples, we
may use the rule

bel(X,Y)← &rdf [http://.../data.rdf](X,Y, Z) .

The semantics of HEX-program is given via answer sets, which are sets of ground literals closed under
the rules that satisfy a stability condition as in [8]; we refer to [6] for technical details. The above program
has a single answer set which consists of all literal bel(c1, c2) such some RDF triple (c1, c2, c3) occurs at
the respective URL.

We use the DLVHEX system from http://www.kr.tuwien.ac.at/research/systems/dlvhex/ as a backend. DLVHEX
implements (a fragment of) HEX-programs. It provides a plugin mechanism for external atoms. Besides
library atoms, the user can defined her own atoms, where for evaluation a C++ routine must be provided.

3 Nested HEX-Programs

Limitations of ASP. As a simple example demonstrating the limits of ordinary ASP, assume a program
computing the shortest paths between two (fixed) nodes in a connected graph. The answer sets of this
program then correspond to the shortest paths. Suppose we are just interested in the number of such paths.
In a procedural setting, this is easily computed: if a function returns all these paths in an array, linked list, or
similar data structure, then counting its elements is trivial.

http://.../data.rdf
http://.../data.rdf
http://.../data.rdf
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Main HEX-
program DLVHEX

Answer
Sets

Subprograms External
Atoms

Answer Set Cache

Fig. 1: System Architecture of Nestex HEX (data flow 99K, control flow→)

In ASP, the solution is non-trivial if the given program must not be modified (e.g., if it is provided by a
third party); above, we must count the answer sets. Thus, we need to reason on sets of answer sets, which is
infeasible inside the program. Means to call the program at hand and reason about the results of this “callee”
(subprogram) in the “calling program” (host program) would be useful. Aiming at a logical counterpart to
procedural function calls, we define a framework which allows to input facts to the subprogram prior to its
execution. Host and subprograms are decoupled and interact merely by relational input and output values.
To realize this mechanism, we exploit external atoms, leading to nested HEX-programs.
Architecture. Nested HEX-programs are realized as a plugin for the reasoner DLVHEX,1 which consists of
a set of external atoms and an answer cache for the results of subprograms (see Fig. 1). Technically, the
implementation is part of the belief set merging system MELD, which is an application on top of a nested
HEX-programs core. This core can be used independently from the rest of the system.

When a subprogram call (corresponding to the evaluation of a special external atom) is encountered in
the host program, the plugin creates another instance of the reasoner to evaluate the subprogram. Its result is
then stored in the answer cache and identified with a unique handle, which can later be used to reference the
result and access its components (e.g., predicate names, literals, arguments) via other special external atoms.

There are two possible sources for the called subprogram: (1) either it is directly embedded in the host
program, or (2) it is stored in a separate file. In (1), the rules of the subprogram must be represented within
the host program. To this end, they are encoded as string constants. An embedded program must not be
confused with a subset of the rules of the host program. Even though it is syntactically part of it, it is
logically separated to allow independent evaluation. In (2) merely the path to the location of the external
program in the file system is given. Compared to embedded subprograms, code can be reused without
the need to copy, which is clearly advantageous when the subprogram changes. We now present concrete
external atoms &callhexn , &callhexfilen , &answersets , &predicates , and &arguments .
External Atoms for Subprogram Handling. We start with two families of external atoms

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

that allow to execute a subprogram given by a string P respectively in a file FN; here n is an integer specifying
the number of predicate names pi, 1 ≤ i ≤ n, used to define the input facts. When evaluating such an
external atom relative to an interpretation I , the system adds all facts pi(a1, . . . , ami

)← over pi (with arity
mi) that are true in I to the specified program, creates another instance of the reasoner to evaluate it, and
returns a symbolic handle H as result. For convenience, we do not write n in &callhexn and &callhexfilen

as it is understood from the usage.

Example 2. In the following program, we use two predicates p1 and p2 to define the input to the subpro-
gram sub.hex (n = 2), i.e., all atoms over these predicates are added to the subprogram prior to evaluation.
The call derives a handle H as result.

p1(x, y)← p2(a)← p2(b)←
handle(H)← &callhexfile[sub.hex, p1, p2](H)

A handle is a unique integer representing a certain cache entry. In the implementation, handles are con-
secutive numbers starting with 0. Hence in the example the unique answer set of the program is {handle(0)}
(neglecting facts).

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

Formally, given an interpretation I , f&callhexfilen
(I,file, p1, . . . , pn, h) = 1 iff h is the handle to the

result of the program in file file, extended by the facts over predicates p1, . . . , pn that are true in I . The
formal notion and use of &callhexn to call embedded subprograms is analogous to &callhexfilen .

Example 3. Consider the following program:

h1(H)← &callhexfile[sub.hex](H)
h2(H)← &callhexfile[sub.hex](H)
h3(H)← &callhex [a← . b← .](H)

The rules execute the program sub.hex and the embedded program Pe = {a←, b←}. No facts will be
added in this example. The single answer set is {h1(0), h2(0), h3(1)} resp. {h1(1), h2(1), h3(0)} depending
on the order in which the subprograms are executed (which is irrelevant). While h1(X) and h2(X) will have
the same value for X , h3(Y) will be such that Y 6=X . Our implementation realizes that the result of the
program in sub.hex is referred to twice but executes it only once; Pe is (possibly) different from sub.hex
and thus evaluated separately.

Now we want to determine how many (and subsequently which) answer sets it has. For this purpose, we
define external atom &answersets[PH](AH) which maps handles PH to call results to sets of respective
answer set handles. Formally, for an interpretation I , f&answersets(I, hP , hA) = 1 iff hA is a handle to an
answer set of the program with program handle hP .

Example 4. The program

ash(PH ,AH)← &callhex [a ∨ b← .](PH),&answersets[PH](AH)

calls the embedded subprogram Pe = {a ∨ b← .} and retrieves pairs (PH ,PA) of handles to its answer
sets. &callhex returns a handle PH = 0 to the result of Pe, which is passed to &answersets . This atom
returns a set of answer set handles (0 and 1, as Pe has two answer sets, viz. {a} and {b}). The overall
program has thus the single answer set {ash(0, 0), ash(0, 1)}. As for each program the answer set handles
start with 0, only a pair of program and answer set handles uniquely identifies an answer set.

We now are ready to solve our example of counting shortest paths from above.

Example 5. Suppose paths.hex is the search program and encodes each shortest path in a separate answer
set. Consider the following program:

as(AH)← &callhexfile[paths.hex](PH),&answersets[PH](AH)
number(D)← as(C), D = C + 1,not as(D)

The second rule computes the first free handle D; the latter coincides with the number of answer sets
of paths.hex (assuming that some path between the nodes exists).

At this point we still treat answer sets of subprograms as black boxes. We now define an external atom
to investigate them. Given an interpretation I , f&predicates(I, hP , hA, p, a) = 1 iff p occurs as an a-ary
predicate in the answer set identified by hP and hA. Intuitively, the external atom maps pairs of program
and answer set handles to the predicates names with their associated arities occurring in the accourding
answer set.

Example 6. We illustrate the usage of &predicates with the following program:

preds(P,A)← &callhex [node(a). node(b). edge(a, b).](PH),
&answersets[PH](AH),&predicates[PH ,AH](P,A)

It extracts all predicates (and their arities) occurring in the answer of the embedded program Pe, which
specifies a graph. The single answer set is {preds(node, 1), preds(edge, 2)} as the single answer set of Pe

has atoms with predicate node (unary) and edge (binary).

The final step to gather all information from the answer of a subprogram is to extract the literals and
their parameters occurring in a certain answer set. This can be done with external atom &arguments , which
is best demonstrated with an example.

Example 7. Consider the following program:

h(PH ,AH)← &callhex [node(a). node(b). node(c). edge(a, b).edge(c, a).](PH),
&answersets[PH](AH)

edge(W ,V)← h(PH ,AH),&arguments[PH ,AH , edge](I , 0,V),
&arguments[PH ,AH , edge](I , 1,W)

node(V)← h(PH ,AH),&arguments[PH ,AH , node](I , 0,V)

It extracts the directed graph given by the embedded subprogram Pe and reverses all edges; the single
answer set is {h(0, 0),node(a),node(b),node(c), edge(b, a), edge(a, c)}. Indeed, Pe has a single answer
set, identified by PH = 0, AH = 0; via &arguments we can access in the second resp. third rule the
facts over edge resp. node in it, which are identified by a unique literal id I; the second output term
of &arguments is the argument position, and the third the actual value at this position. If the predicates of a
subprogram were unknown, we can determine them using &predicates .

To check the sign of a literal, the external atom &arguments[PH,AH,Pred](I, s,Sign) supports
argument s. When s = 0, &arguments will match the sign of the I-th positive literal over predicate Pred
into Sign , and when s = 1 it will match the corresponding classically negated atom.

4 Applications

MELD. The MELD system [10] deals with merging multiple collections of belief sets. Roughly, a belief
set is a set of classical ground literals. Practical examples of belief sets include explanations in abduction
problems, encodings of decision diagrams, and relational data. The merging strategy is defined by tree-
shaped merging plans, whose leaves are the collections of belief sets to be merged, and whose inner nodes
are merging operators (provided by the user). The structure is akin to syntax trees of terms.

The automatic evaluation of tree-shaped merging plans is based on nested HEX-programs; it proceeds
bottom-up, where every step requires inspection of the subresults, i.e., accessing the answer sets of subpro-
grams. Note that for nesting of ASP-programs with arbitrary (finite) depth, XASP [11] is not appropriate.

Aggregate Functions. Nested programs can also emulate aggregate functions [7] (e.g., sum, count, max)
where the (user-defined) host program computes the function given the result of a subprogram. This can
be generalized to aggregates over multiple answer sets of the subprogram; e.g., to answer set counting, or
to find the minimum/maximum of some predicate over all answer sets (which may be exploited for global
optimization).

Generalized Quantifiers. Nested HEX-programs make the implementation of brave and cautious reasoning
for query answering tasks very easy, even if the backend reasoner only supports answer set enumeration.
Furthermore, extended and user-defined types of query answers (cf. [5]) are definable in a very user-friendly
way, e.g., majority decisions (at least half of the answer sets support a query), or minimum and/or maximum
number based decisions (qualified number restrictions).

Preferences. Answer sets as accessible objects can be easily compared wrt. user-defined preference rules,
and used for filtering as well as ranking results (cf. [4]): a host program selects appropriate candidates
produced by a subprogram, using preference rules. The latter can be elegantly implemented as ordinary
integrity constraints (for filtering), or as rules (possibly involving further external calls) to derive a rank.
A popular application are online shops, where the past consumer behavior is frequently used to filter or
sort search results. Doing the search via an ASP program which delivers the matches in answer sets, a host
program can reason about them and act as a filter or ranking algorithm.

5 Conclusion

To overcome limitations of classical ASP regarding subprograms and reasoning about their possible out-
comes, we briefly presented nested HEX-programs, which realize subprogram calls via special external
atoms of HEX-programs; besides modularity, a plus for readability and program reusability, they allow for
reasoning over multiple answer sets (of subprograms). An prototype implementation on top of DLVHEX is
available. Related to this is the work on macros in [2], which allow to call macros in logic programs.

The possibility to access answer sets in a host program, in combination with access to other external
computations, makes nested HEX-programs a powerful tool for a number of applications. In particular,
libraries and user-defined functions can be incorporated into programs easily. As an interesting aspect is
that dynamic program assembly (using a suitable string library) and execution are possible, which other
approaches to modular ASP programming do not offer. Exploring this remains for future work.

References

1. Analyti, A., Antoniou, G., Damásio, C.V.: Mweb: a principled framework for modular web rule bases and its
semantics. ACM Trans. Comput. Logic 12(2), 17:1–17:46 (2011)

2. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular answer set programming.
In: ICLP’06, pp. 376–390. (2006)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM (2011), to appear
4. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in

nonmonotonic reasoning. Comp. Intell. 20(2), 308–334 (2004)
5. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers. In: LPNMR’97, pp.

290–309. (1997)
6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external

evaluations in ASP. In: IJCAI’05, pp. 90-96. (2005)
7. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer set programming.

Artif. Intell. 175(1), 278–298 (2011)
8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases. New Generat. Comput. 9,

365–385 (1991)
9. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. J. Artif. Intell.

Res. 35, 813–857 (2009)
10. Redl, C., Eiter, T., Krennwallner, T.: Declarative belief set merging using merging plans. In: PADL’11, pp. 99–114.

(2011)
11. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming. CoRR abs/1012.5123 (2010), to

appear in Theory Pract. Logic Program.

	Nested HEX-Programs

