
Domain Expansion for ASP-Programs with External Sources∗

Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl

Institut für Informationssysteme, Technische Universität Wien, Favoritenstrasse 9-11, A-1040 Vienna, Austria

Abstract

Answer set programming (ASP) is a popular approach to declarative problem solving which for broader
usability has been equipped with external source access. The latter may introduce new constants to the
program (known as value invention), which can lead to infinite answer sets and non-termination; to pre-
vent this, syntactic safety conditions on programs are common which considerably limit expressiveness
(in particular, recursion). We present liberal domain-expansion (lde) safe programs, a novel generic
class of ASP programs with external source access and value invention that enjoy finite restrictability,
i.e., equivalence to a finite ground version. They use term bounding functions as a parametric notion
of safety, which can be instantiated with syntactic, semantic or combined safety criteria; this empowers
us to generalize and integrate many other notions of safety from the literature, and modular composi-
tion of criteria makes future extensions easy. Furthermore, we devise a grounding algorithm for lde-safe
programs which in contrast to traditional algorithms can ground any such program directly without the
need for program decomposition. While we present our approach on top of a proposed formalism in
order to make the formalization precise, the general concepts carry over to related formalisms and impor-
tant special cases as well. An experimental evaluation of lde-safety on various applications confirms the
practicability of our approach.

Keywords: Answer Set Programming, Knowledge Representation Formalisms, Nonmonotonic
Reasoning, External Source Access, Grounding, Computational Logic.

1. Introduction

Answer Set Programming (ASP) is a declarative programming approach which due to expressive and
efficient systems like CLASP (Gebser et al., 2011)2, DLV (Leone et al., 2006)3, and SMODELS (Simons
et al., 2002)4, has been gaining popularity in several application areas, and in particular in artificial
intelligence (Brewka et al., 2011). A problem at hand is represented by a set of rules (an ASP program)
such that its models, called answer sets, encode the solutions to the problem. Compared to the similar
approach of SAT solving, the rules might contain variables as a shortcut for all ground instances, transitive
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closure can be readily expressed as well as negation as failure; further extensions including optimization
constructs, aggregates, preferences and many other features have turned ASP into an expressive and
powerful problem solving tool.

Recent developments in computing require access from ASP programs to external sources, as infor-
mation is increasingly stored in different sources and formats, or because complex, specific tasks can
not be expressed directly or efficiently in the program itself. A prominent example are DL-programs
(Eiter et al., 2008), which integrate rules with description logic ontologies in such a way that queries
to an ontology can be made in the rules; the formalism supports reasoning tasks which cannot be real-
ized in ontologies alone, e.g., default classification. Another application with need for external access is
planning in agent systems, which might require to import information from sensors and send commands
back to agents, e.g. robots (Schüller et al., 2013); action or plan feasibility under physical or geometric
constraints might be tested using special external libraries, etc. In other scenarios, the actions might
be simple, but the planning domain is implicit in an external data structure; for example, in advanced
route planning tasks for smart city applications (Eiter et al., 2014d) where Open Street Map data or some
connection database may be used. Abstracting and accessing such data through an external interface is
natural, as the data might not be fully accessible or too big to be simply added to the ASP program.
Related to this is light-weight data access on the Web (e.g., XML, RDF (Lassila and Swick, 1999) or
other data repositories), which is getting more frequent and desired in complex applications, for instance
in information integration; but like for a street map, a complete a priori data import is usually infeasible
(in particular, in case of recursive data access). A concrete application scenario is, for instance, from the
biomedical domain (Erdem et al., 2011) where different online knowledge resources about genes, drugs
and diseases are assessed in order to answer complex queries regarding their mutual relationships, e.g.,
for drugs that treat a certain disease while not targeting a particular gene.

Finally, ASP is a popular host for experimental implementations of logic-based AI formalisms; how-
ever, the expressive capability of ordinary ASP may not be sufficient to cater a particular formalism, or a
direct encoding in ASP may be cumbersome; in this case, it is convenient if some condition checks can be
outsourced to external computation. For example, implementations of Dung-style semantics for abstract
argumentation (Dung, 1995) (this will be more discussed below) or of multi-context systems (Brewka
and Eiter, 2007), fall in this class.

To cater for the need of external source access, HEX-programs (Eiter et al., 2005) extend ASP with so-
called external atoms, through which the user can couple any external data source with a logic program.
Roughly, an external atom can be seen as an API that passes information from the program, given by
predicate extensions, to an external source and receives output values of an (abstract) function which
that source computes, implemented in whatever language. This powerful abstraction is, for specific data
sources that amount to logical theories, related in spirit to SAT modulo theories (Biere et al., 2009) but
more versatile due to the possibility to use variables. It also generalizes a number of ASP extensions,
among them VI-programs (Calimeri et al., 2007), ASP with monotone constraint atoms (Marek et al.,
2004), constraint ASP (Gebser et al., 2009), programs with aggregates (Faber et al., 2011), programs
with function symbols (Syrjänen, 2001)), as well as other formalisms which aim at the integration of
external sources (e.g., DL-programs). The abstract nature of HEX-programs makes them a representative
of a class of formalisms that is useful to discuss the new techniques on a concrete yet general level; the
results carry over to the less general formalisms (which we shall exemplify) and are thus relevant beyond
HEX-programs alone.

HEX-programs and instantiations such as DL-programs have already been considered for a range of
applications; besides those mentioned above they include e.g. complaint management in e-government
Zirtiloǧlu and Yolum (2008), material culture analysis Mosca and Bernini (2008), user interface adap-
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tation Zakraoui and Zagler (2012), or ontology integration in the biomedical domain Hoehndorf et al.
(2007) (see also Redl (2014)). However, a wider takeup in practice requires efficient evaluation methods.
Due to the abstract nature of HEX-programs, providing such methods is non-trivial; scalable algorithms
have been introduced only recently (cf. Eiter et al. (2012, 2014b)). In a sense, the situation is akin to
ordinary ASP: although the formal semantics was around since the early 1990’s, only with the advent of
efficient solvers (such as SMODELS (Simons et al., 2002) and DLV (Leone et al., 2006)) ASP could be
widely established; broader deployment to real-world applications still took further time. 5

The predominant evaluation approach of current ASP solvers is grounding & search, which roughly
speaking means that a ground (variable-free) version of the program is generated by substituting constants
for variables, and thereafter an answer set of the resulting ground (propositional) program is searched;
both steps use quite sophisticated algorithms. In this paper, we focus on the grounding step. This step is
non-trivial and significantly more involved than for ordinary ASP because external atoms may introduce
new constants that are not present in the program; this is commonly referred to as value invention.

In particular, a naive support of value invention may easily lead to infinite program groundings and
answer sets, as the following example demonstrates. Consider the program

Π=

{
r1 : start(a). r3 : s(Y ) ← r(X),&appendA[X](Y ).

r2 : r(X)← start(X) r4 : r(X)← s(X).

}

where the external atom &appendA[X](Y ) returns in Y the string in X with character ‘A’ appended.
Due to the cycle over r3 and r4, the start string awill be expanded infinitely many times, i.e., the program
has an infinite grounding and answer set (assuming that the external source processes all finite strings over
an alphabet).

Moreover, even in cases where a finite subset of the grounding suffices to compute the answer sets
of the original program, the set of relevant constants is often not known a priori. For instance, let Π′

be program Π where rule r3 is replaced by r′3 : s(Y ) ← r(X),&reach[X](Y ), where the external atom
&reach[X](Y ) computes for a (fixed and finite) graph that is stored externally the set of all nodes Y
which are directly reachable from the node X . The overall program then computes the set of nodes
reachable from the start node a. It appears that then, due to finiteness of the graph, only finitely many
rules are relevant for evaluation. However due to an API style interface, external sources are largely black
boxes to an ASP solver. Thus the set of constants that is relevant for evaluation is formally not clear.

To ensure that a finite fragment of the program’s grounding is faithful, i.e., has the same answer sets
as the original program (referred to as finite restrictability), and is efficiently computable, traditional ap-
proaches impose syntactic safety conditions on a program, such as strong domain-expansion safety (Eiter
et al., 2006), which we will recapitulate below, or VI-restrictedness (Calimeri et al., 2007). However,
they often limit expressiveness too much, i.e., programs may not fulfill the safety conditions while they
are clearly finitely restrictable; the program Π′ above is an example.

In order to evaluate programs which are finitely restrictable but violate the formal safety criteria,
a common workaround is to use a domain predicate d, where each constant c from the domain of the
external source is added as a fact d(c) to the program and type literals d(X) are added for “unsafe”
variables X in rule bodies. That is, all constants which might be relevant for evaluation are imported a
priori into the program. This often requires the user to define an additional external atom which allows

5To further support this process, current ongoing work also includes means on the software engineering side for making a
prototype system easily accessible, e.g. by providing pre-compiled and ready-to-use binary packages, an online demo, and tutorials.
Moreover, additional language features make our implementation compliant with the ASP-Core-2 standard (Calimeri et al., 2013).
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for importing the external domain. For instance, in case of program Π′ one can define an external atom
&nodes[](Y ), which returns all nodes Y in the graph, and add a rule d(Y ) ← &nodes[](Y ) to the
program to compute the domain. The domain atom d(Y ) can then be added to the bodies of all rules
which use the external domain (in Π′ this is rule r′3) in order to make the program strongly safe and
allow for evaluating it using the traditional methods. Another application which makes use of domain
predicates is the realization of DL-programs (Eiter et al., 2008) via HEX-programs, where the external
atoms query a description logic ontology. The individuals (i.e., constants) occurring in the ontology are
added to the program in this way. However, this workaround is not only inconvenient, but also infeasible
for large external domains. In particular, it often imports many constants that are actually irrelevant for
the instance at hand. For example, in the program Π′ from above a domain atom imports all nodes of
the graph, even if only few nodes might be reachable from the given start node. If Π′ is extended to
some advanced application on the graph such as route planning, naively grounding the program over a
larger graph will be simply infeasible (see Section 5 for a concrete example); the same holds for a similar
ordinary ASP program with the graph given straight as facts.

Therefore, the current approach has two limitations: it imposes unnecessary syntactic restrictions
on the program, and, as a consequence, while domain predicates can be used to circumvent these restric-
tions, this is not only inconvenient but also leads to a combinatorial explosion of the grounding which
is unmanageable in many practical applications.

This motivates our two main contributions. First, we introduce a new notion of safety that still
ensures finite restrictability of the program without requiring the user to use domain predicates. However,
rather than merely to generalize an existing notion of safety, we develop a generic notion which can
incorporate besides syntactic also semantic information about sources, and which is flexible with regard
to further generalizations and extensions. Second, on top of this notion of safety we then develop a novel
grounding algorithm which does not rely on a naive import of the full domain.

In more detail, the contributions in this article are briefly summarized as follows:
• We introduce liberal domain-expansion (lde) safety, which is parameterized with term bounding

functions (TBFs). Such functions embody criteria that ensure that only finitely many ground instances
of a term expression in a program matter. The notion provides a generic framework in which TBFs can
be modularly replaced and combined, which offers attractive flexibility and future extensibility. We give
sample TBFs which exploit like traditional approaches syntactic structure, but also TBFs that build on
semantic properties of the program, hinging on cyclicity and meta-information; this allows us to cover
the program Π above. Thanks to modularity, these TBFs can be fruitfully combined into a single, more
powerful TBF. Notably, by resorting to lde-safety domain predicates may be dispensed.

• We present a new grounding algorithm for lde-safe programs. The algorithm is based on a
grounder for ordinary ASP programs, which is iteratively called to enlarge the ground program until
all relevant constants are respected; between the calls of the ordinary ASP grounder, external sources
may be evaluated.

• We consider some applications that take advantage of lde-safety and present an experimental
evaluation. The applications include, among others, recursive processing of data structures, abstract
argumentation frameworks, and route planning scenarios. The evaluation of our grounding algorithms
will show that lde-safety not only relieves the user from writing domain predicates (and external atoms
which import the domain), but also leads to significantly better performance in many cases. In fact, the
realization of our applications is in some cases impossible with the traditional notion of safety.

• We discuss a number of related notions of safety and find that lde-safety is already more general
than many approaches using the TBFs presented here, and it allows to accommodate others.
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To summarize, lde-safety is a significant advance for ASP with external source access, which on the
one hand improves existing applications, while on the other it empowers new applications that would not
be possible without it; to wit, some route planning tasks that we consider are infeasible using ordinary
ASP. This demonstrates the potential of our results and of the DLVHEX-system implementing them.

Organization. The remainder of this article is organized as follows. In the next section, we recall
HEX-programs and strong domain-expansion safety. In Section 3, we introduce liberal domain safety and
consider different ways to instantiate it. In Section 4, we present the new grounding algorithm and discuss
its integration into the HEX-model building framework. Section 5 is devoted to implementation and an
experimental evaluation. After the discussion of related work in Section 6, we conclude in Section 7 with
a summary and open issues. In order not to distract from reading, proofs have been moved to Appendix B.

2. Preliminaries

We start with basic definitions and recall HEX-programs from (Eiter et al., 2005). The signature con-
sists of mutually disjoint sets P of predicates, X of external predicates, C of constants, and V of variables.
Note that C may contain constants that do not occur explicitly in a HEX program and can even be infinite.
Terms are elements from the set C ∪ V . For the sake of simplicity, we disallow function symbols in this
paper, but under appropriate safety criteria, an extension of our approach is straightforward. For any list
t = t1, . . . , t` of elements, we let ti refer to its i-th element; t is implicitly cast to the set {t1, . . . , t`} in
the context of set operations (thus e.g. x ∈ t expresses membership of x in t).

2.1. Syntax

HEX-programs generalize (disjunctive) extended logic programs under the answer set semantics (Gel-
fond and Lifschitz, 1991) with external atoms. (Ordinary) atoms are of the form p(t), where p ∈ P is a
predicate of arity ` = ar(p)≥ 0 and t = t1, . . . , t` is a list of terms (from C ∪ V). External atoms are of
form &g [X](Y), where &g ∈ X , X = X1, . . . , X` and each Xi ∈ P ∪ C ∪V is an input parameter, and
Y = Y1, . . . , Yk and each Yi ∈ C ∪ V is an output term.

Each &g ∈X has input arity ar I(&g)≥ 0 and output arity ar O(&g)≥ 0. Each input argument i of
&g (1≤ i≤ ar I(&g)) has type const or pred, denoted τ(&g , i), where τ(&g , i) = pred ifXi ∈ P and
τ(&g , i) = const otherwise.

A HEX-program (or program) consists of rules r of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where each ai is an (ordinary) atom and each bj is either an ordinary atom or an external atom, and
k + n > 0.

The head of r is H(r) = {a1, . . . , an}, the body is B(r) = B+(r) ∪ notB−, where B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body, and notS = {not b |
b ∈ S}. For any rule, set of rules O, etc., let A(O) and EA(O) be the set of all ordinary and external
atoms occurring in O, respectively; O is ground, if no variable occurs in it. For a program Π, let CΠ ⊆ C
be the set of constants that occur in Π.

For the sake of a simpler notation, we assume in the following w.l.o.g. that external predicates with
input lists are standardized apart, i.e., each occurrence of an external atom &g [X] in the program is
unique (this can be achieved by renaming variables or by adding dummy input constants if needed).
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2.2. Semantics

An assignment A is a set of atoms, where an atom a is said to be true in A if a ∈ A and false other-
wise. The semantics of a HEX-program Π is defined via its grounding grnd(Π) (over C) as usual, where
the value of a ground external atom &g [p](c) wrt. an assignment A is given by the value f&g(A,p, c)
of a decidable 1+k+l-ary Boolean oracle function f&g , where k and l are the lengths of p and l, respec-
tively. The input parameter pi ∈ p is monotonic if f&g(A,p, c) ≤ f&g(A′,p, c) whenever A′ ⊇ A
augments A only by atoms a with predicate pi; it is antimonotonic if f&g(A,p, c) ≤ f&g(A′,p, c)
whenever A′ ⊆ A reduces A only by atoms a with predicate pi; otherwise pi is nonmonotonic. Let pm,
pa and pn denote the sets of monotonic, antimonotonic, and nonmonotonic predicate input parameters
in p, respectively.

Satisfaction of (sets of) ground literals, rules, programs etc. O wrt. A (denoted A |= O, i.e., A is a
model of O) extends naturally from ordinary logic programs to HEX-programs, by taking external atoms
into account. That is, an ordinary atom a is true wrt. A, denoted A |= a, if a ∈ A, and it is false,
denoted A 6|= a, if a 6∈ A. An external atom a = &g [p](c) is true, denoted A |= a, if f&g(A,p, c) = 1
and false, denoted A 6|= a, otherwise. Importantly, we make the restriction that for any assignment A
and list of terms p, the set {c | f&g(A,p, c) = 1} is finite and computable.

For a rule r of form (1), A |= r if either A |= ai for some 1 ≤ i ≤ k, A |= bj for some m < j ≤ n,
or A 6|= bj for some 1 ≤ j ≤ m. Finally, A |= Π, if A |= r for every r ∈ Π. An answer set of a
HEX-program Π is any model A of the FLP-reduct ΠA of Π wrt. A, given by ΠA = {r ∈ grnd(Π) |
A |= B(r)} (Faber et al., 2011), which is subset-minimal, i.e., there exists no model A′ ( A of ΠA.6

The set of all answer sets of Π is denoted by AS(Π).

Example 1 Consider the program

Π=

{
r1 : t(a). r3 : s(Y )← t(X),&concat [X, a](Y ).

r2 : dom(aa). r4 : t(X)← s(X), dom(X).

}

where &concat [X, a](Y ) is true iff Y is the concatenation of X and a (which is true for exactly one
value Y ), and consider the assignment A = {dom(aa), t(a), s(aa), t(aa), s(aaa)}. It can be seen that
A is an answer set of Π. Indeed, ΠA (which in abuse of notation denotes the FLP-reduct of the grounding
of Π wrt. A) is

ΠA=


t(a). s(aa)← t(a),&concat [a, a](aa).

dom(aa). s(aaa)← t(aa),&concat [aa, a](aaa).

t(aa)← s(aa), dom(aa).

 .

Clearly, A |= ΠA, and no atoms can be switched to false such that the resulting assignment A′ fulfills
A′ |= ΠA; hence, A is an answer set of Π. In fact, A is the only answer set of Π, i.e., AS(Π) = {A}.2

Note that in the previous example, a finite portion of the grounding of the program is sufficient to
compute its answer sets. This property, which we call finite restrictability, is essential for computing the
answer in finite time. More formally, for programs Π′ and Π we write Π′ ≡ Π if AS(Π′) = AS(Π).
Then,

6The FLP-reduct is equivalent to the traditional reduct for ordinary logic programs (Gelfond and Lifschitz, 1991), but more
attractive for extensions such as aggregates or external atoms.
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Definition 1 A program Π is finitely restrictable, if there exists some finite subset Π′ ⊆ grnd(Π) such
that Π′ ≡ Π.

As finite restrictability of a program is clearly undecidable in general, we are interested in decidable
cases where Π′ can be effectively computed from Π. To this end, suitable notions of safety are useful.

2.3. Safety

The notion of safety has been introduced in the context of logic programming on data bases (viewed
as facts of a logic program) to guarantee finite results of datalog queries. A program is safe, if each
variable in a rule r occurs also in a positive body atom in B+(r). However, due to external atoms, we
need additional safety criteria.

Example 2 Let &concat [X, a](Y ) be true iff Y is the string concatenation of X and a. Then program
Π = {s(a). s(Y ) ← s(X),&concat [X, a](Y )} is safe but not finitely restrictable. Note that Π has the
single (infinite) answer set {s(ai) | i ≥ 1}. 2

Thus the notion of strong safety was introduced by Eiter et al. (2006), which limits the output of cyclic
external atoms (to be formalized by the following definitions). In hinges on the concept of external atom
dependencies. In the following, let a→e

m b (resp. a→e
n b) denote that a depends external monotonically

(resp. nonmonotonically) on b.

Definition 2 (External Atom Dependencies) Let Π be a HEX-program and let a = &g [X](Y) be an
external atom in Π.

• For every b= p(Z) ∈
⋃

r∈ΠH(r), we have a→e
m b if p ∈ Xm and a→e

n b otherwise.

• If {a, p(Z)}⊆B+(r) for r ∈ Π, some Xi ∈X is in Z and τ(&g , i) = const, then a→e
m p(Z).

• If {a, &h[V](U)}⊆B+(r) for some r ∈ Π, some Xi∈X is in U and τ(&g , i) = const, then
a→e

m &h[V](U).

Definition 3 (Atom Dependencies) For a HEX-program Π and (ordinary or external) atoms a, b, we say

(i) a depends monotonically on b, denoted a→m b, if:

• some rule r ∈ Π has a ∈ H(r) and b ∈ B+(r); or

• there are rules r1, r2 ∈ Π such that a ∈ B(r1) and b ∈ H(r2) and a unifies with b; or

• some rule r ∈ Π has a ∈ H(r) and b ∈ H(r).

(ii) a depends nonmonotonically on b, denoted a→n b, if a ∈ H(r) and b ∈ B−(r) for some r ∈ Π.

The following definition represents these dependencies.

Definition 4 (Atom Dependency Graph) For a HEX-program Π, its atom dependency graph ADG(Π )
has as nodes VA the (nonground) atoms occurring in non-facts r (i.e., k 6= 1 or n > 0) of Π and as edges
EA the dependency relations→m,→n,→e

m,→e
n between these atoms in Π.

Example 3 For the program Π from Example 1, we have &concat [X, a](Y ) →e
m t(X), s(Y ) →m

&concat [X, a](Y ), t(X)→m s(X) and t(X)→m dom(X).
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This allows us to introduce strong safety as follows.

Definition 5 (Strong Safety) An atom b= &g [X](Y) in a rule r of a program Π is strongly safe wrt. Π,
if either b is not involved in any cycles in ADG(Π ), or every variable in Y occurs also in some positive
ordinary atom a ∈ B+(r) that does not depend on b in ADG(Π). A program Π is strongly safe, if every
external atom in a rule r ∈ Π is strongly safe in Π.

The notion of strong domain-expansion safety is then as follows (Eiter et al., 2006).

Definition 6 (Strong Domain-expansion Safety) A program Π is strongly domain-expansion (sde) safe,
if it is safe and each external atom occurring in any rule r of Π is strongly safe wrt. r and Π.

Example 4 (cont’d) Consider the program Π of Example 2. The external atom a = &concat [X, a](Y )
is not strongly safe because it is in a cycle and no ordinary body atom contains Y . However, a would
be strongly safe, and hence also Π, if the rule body would contain an atom p(Y ) and p would occur in
Π apart from this only in facts. Likewise, the program Π′ in the introduction is not strongly safe as the
external atom &reach[X](Y ) is not safe. 2

For this notion of safety, the following result was established.

Proposition 1 (Eiter et al., 2006) Every strongly domain-expansion safe HEX-program Π is finitely re-
strictable.

More in detail, Eiter et al. (2006) presented an algorithm which constructs a finite portion Π′ of the
grounding of a given sde-safe Π such that Π′ ≡ Π.

While many HEX-programs are sde-safe, there are also simple and intuitive programs which lack this
property, as shown by the program Π′ in the introduction. However, this does not necessarily mean that
such programs are not finitely restrictable, i.e., the other direction of the proposition does not hold.

Example 5 (cont’d) While the program in Example 2 has indeed no equivalent finite grounding, the
program Π′ in the introduction is not strongly safe either but in fact it is finitely restrictable. 2

3. Liberal Safety

To overcome the overly restrictive limitations of strong safety, we introduce the new notion of liberal
domain-expansion (lde) safety which incorporates both syntactic and semantic properties of the program
at hand. Compared to the latter, this gives us a larger class of programs which are guaranteed to have a
finite grounding that preserves all answer sets. Unlike strong domain-expansion safety, liberal domain-
expansion safety is not a property of entire atoms but of attribute positions, i.e., pairs of predicates and
argument positions. Intuitively, an attribute position is lde-safe, if the number of different terms in a
grounding which preserves all answer sets (i.e. has the same answer sets as the original program) is
finite. A program is lde-safe, if all its attribute positions are lde-safe. The ultimate goal is therefore
to identify lde-safe attributes. For this, we will exploit both syntactic and semantic criteria which are
sound (i.e., there is actually an equivalent grounding with only finitely many differnet terms at lde-safe
attributes), but not necessarily complete. The identification of concrete such criteria is often driven by
knowledge about the intuitive meaning of language features; once a candidate for a criterion is available,
a formal proof its soundness is usually straightforward.

Our notion of lde-safety is designed in an extensible fashion, such that several safety criteria can
be easily integrated. For this we parameterize our definition of lde-safety by a term bounding function
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(TBF), which identifies variables in a rule that are ensured to have only finitely many instantiations in the
answer set preserving grounding. Finiteness of the overall grounding follows then from the properties of
TBFs. Concrete syntactic and semantic properties are realized in some sample TBFs (cf. Section 3.4).

For an ordinary predicate p∈P , we call a pair (p, i) the i-th attribute position of p for all 1 ≤ i ≤
ar(p) and denote it more prominently as att (p, i). As a shortcut for all attribute positions of a given pred-
icate p, let att(p) = {att (p, 1), . . . , att (p, ar(p))}. Similarily, we call a triplet (&g [X], T, i) with T ∈
{I, O} the i-th input attribute position if T = I and the i-th output attribute position of an external predi-
cate with input list if T = O for all 1 ≤ i ≤ arT (&g) and denote it more prominently as attT (&g [X], i).
Akin to ordinary predicates, let attT (&g [X]) = {attT (&g [X], 1), . . . , att (&g [X], arT (&g))} for T ∈
{I, O} be the sets of all input and output attribute positions, respectively. For a ground program P ,
the range of an attribute position att (p, i) is intuitively the set of ground terms which occur at posi-
tion i of p. Formally, range(att (p, i),Π) = {ti | p(t1, . . . , tar(p)) ∈ A(Π)}; for an attribute position
attT (&g [X], i) with T ∈ {I, O} we have range(attT (&g [x], i),Π) = {xTi | &g [xI](xO) ∈ EA(Π)},
where xs = xs1, . . . , x

s
ars(&g).

Example 6 Reconsider program Π from Example 1. Examples for attribute positions are att (t, 1) (the
first argument of predicate t), att I(&concat [X,x], 2) (the second input argument of external predicate
with input list &concat [X,x]) and att O(&concat [X,x], 1) (the first output argument of external predicate
with input list &concat [X,x]). Furthermore, range(att (t, 1),Π) = {a} (the set of terms occurring as
first argument of predicate t). 2

Formally, our approach builds on a monotone grounding operator, boundedness of terms and liberal
domain-expansion (lde) safety of attribute positions. Intuitively, the operator is used to define an upper
bound for the set of programs which can be considered to be lde-safe, namely all programs which can be
finitely grounded by this operator. While this operator provides an operational definition of safety and
cannot be used to decide it (the class of lde-safe programs is in general undecidable7), the concepts of
boundedness and lde-safety then define criteria which can be used to identify (a subset of all) lde-safe
programs.

3.1. Monotone Grounding Operator

We first introduce a monotone grounding operator which is intended to serve as a witness for the finite
groundability. That is, liberal domain expansion safety will be defined such that for an lde-safe program,
the least fixpoint of GΠ is a finite grounding that is equivalent to the original program Π (however, not
all such programs will be necessarily identified as lde-safe). The operator is defined as follows:

GΠ(Π′) =
⋃
r∈Π

{rθ | ∃A ⊆ A(Π′),A |= B+(rθ)},

where rθ is the ground instance of r under a variable substitution θ : V → C. That is, GΠ takes a
ground program Π′ as input and returns all rules from grnd(Π) whose positive body is satisfied under
some assignment over the atoms of Π′. Intuitively, the operator iteratively extends the grounding by
new rules if they are possibly relevant for the evaluation, where relevance is in terms of satisfaction of

7The Halting problem can be reduced to the lde-safety check as follows. Consider an external atom which implements the
transition function of a deterministic Turing machine and outputs for given machine state the next state (including step count, tape
content, etc). A recursive rule can then be used to simulate the machine and the program will be lde-safe iff it halts.
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the positive rule body under some assignment constructible over the atoms which are possibly derivable
so far. Obviously, the least fixpoint G∞Π (∅) of this operator is a subset of grnd(Π); after the formal
introduction of our new notion of safety, we will show that for an lde-safe program Π, the least fixpoint
of the operator is indeed finite and equivalent to the original program Π because all rule instances which
are not added have unsatisfied bodies anyway.

Example 7 Consider the following program Π:

r1 : s(a). r2 : dom(ax ). r3 : dom(axx ).
r4 : s(Y )← s(X),&concat [X,x](Y ), dom(Y ).

The least fixpoint of GΠ is the following ground program:

r′1 : s(a). r′2 : dom(ax ). r′3 : dom(axx ).
r′4 : s(ax )← s(a),&concat [a, x](ax), dom(ax).
r′5 : s(axx )← s(ax),&concat [ax, x](axx), dom(axx).

Rule r′4 is added in the first iteration and rule r′5 in the second. 2

Based on this operator, the general idea of our approach uses two concepts which mutually refer to
each other. First, call a term t in a rule bounded, if the number of substitutions in G∞Π (∅) for term t is
finite. Second, we call an attribute position α de-safe, if in the program G∞Π (∅) only finitely many terms
which occur at argument position α.

Even in decidable cases, computing the overall sets of bounded terms and safe attribute positions
directly is not straightforward because both the global structure of a program and the semantics of external
atoms influence these sets. Thus our approach works incrementally: beginning from the empty sets, terms
which are newly identified as bounded may trigger the identification of further lde-safe attribute positions
and vice versa.

3.2. Boundedness of Terms
We first focus on boundedness of terms. In order to make the approach extensible as mentioned,

the criteria for a term to be bounded are no hard-coded. Instead, to stay flexible, we use abstract term
bounding functions (concrete instances will be shown below).

Definition 7 (Term Bounding Function (TBF)) A term bounding function, denoted b(Π, r, S,B), maps
a program Π, a rule r ∈ Π, a set S of (already safe) attribute positions, and a setB of (already bounded)
terms in r to an enlarged set of (bounded) terms b(Π, r, S,B) ⊇ B, such that every t ∈ b(Π, r, S,B) has
finitely many substitutions in G∞Π (∅).

Intuitively, a TBF receives a set of already bounded terms and a set of attribute positions that are
already known to be lde-safe. Taking the program into account, the TBF then identifies and returns
further terms which are also bounded.

Example 8 Consider program Π from Example 7 and the function b(Π, r, S,B) with b(Π, r2, S,B) =
{ax} and b(Π, r3, S,B) = {aax} (for any S and B) and b(Π, r, S,B) = ∅ for r /∈ {r2, r3} (and any S
and B). It identifies (only) the terms ax in rule r2 and aax in rule r3 as bounded. Then b is a valid TBF
because there are indeed only finitely many substitutions for ax in r2 and aax in r3 in the least fixpoint
of GΠ as shown in the ground program in Example 7 (in fact, there is only one substitution for each of
these terms, namely the term itself).
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In contrast, for the program Π′ = {r1 : str(a); r2 : str(X) ← str(Y ),&appendA[Y ](X)} a func-
tion b′(Π, r, S,B) with X ∈ b(Π′, r2, ∅, ∅) would not be a valid TBF because there are infinitely many
substitutions for X in GΠ′ . 2

TBFs are intended to formalize concrete safety criteria based on syntactic or semantic properties
(for which we will give examples below). By encapsulating these properties in TBFs, the definition of
lde-safety below is independent of such properties and thus extensible.

As b(Π, r, S,B) in Example 8 shows, a TBF is not required to identify a maximal set of bounded
terms (also a in r1 is bounded). Instead, Definition 7 requires TBFs only to be monotonic and to not
return false positives. Because the operator GΠ is fixed, there is also a fixed set of bounded terms for
each program and it is in principle possible to define a TBF which simply identifies for each rule a fixed
set of bounded terms independent of S and B (as in b from Example 8). However, it turns out that the
direct identification of bounded terms is often not trivial in realistic examples. Therefore, our approach
is intended to work incrementally such that the identification of bounded terms and lde-safe attribute
positions (to be formally introduced below) cyclically trigger each other. For this reason, Definition 7
passes the sets S and B of already safe attribute positions and already bounded terms, respectively, to the
TBF in order to inform it about the current status; these sets can (but do not have to) be used by the TBF
in order to guide the identification of further bounded terms.

3.3. Liberal Domain-expansion Safety of attribute positions
We now turn to the formalization of lde-safety as our second main concept. We provide a mutually

inductive definition that takes the empty set of lde-safe attribute positions S0(Π) as its basis. Then, by
using a TBF each iteration step n ≥ 1 computes first the set of known bounded terms Bn(r,Π) for all
rules r, and then an enlarged set of known lde-safe attribute positions Sn(Π). The set of known lde-safe
attribute positions in step n + 1 thus depends on the TBF, which in turn depends on the known lde-safe
attribute positions from step n.

In order to simplify the formal definition, we introduce the following notions. First, we associate
with a TBF b(Π, r, S,B) and fixed Π, r and S an operator bΠ,r,S(B) = b(Π, r, S,B). This allows us
to compactly represent the least fixpoint of a set B under b(Π, r, S,B) by b∞Π,r,S(∅); note that the set
of terms in program Π is finite as thus the least fixpoint is finite as well. That is, b∞Π,r,S(∅) applies the
TBF b to Π, r and S and an incrementally extended set B (beginning from the empty set), until no more
bounded terms can be identified.

Second, we say that an input attribute position att I(&g [X], i) is finite with respect to bounded terms
B and lde-safe attribute positions S, if either τ(&g , i) = const and Xi ∈ B or τ(&g , i) = pred and
att(Xi) ⊆ S. That is, the input attribute position is either a term which is known to be bounded, or it is
a predicate such that all its attribute positions are known to be safe.

Definition 8 (Liberal Domain-Expansion Safety) Let b be a term bounding function.

(a) The bounded terms in r ∈ Π in step n ≥ 1 are Bn(r,Π) = b∞Π,r,Sn−1
(∅).

(b) The lde-safe attribute positions are S∞(Π) =
⋃

i≥0 Si(Π) where S0(Π) = ∅ and for n ≥ 0, a ∈
Sn+1(Π) if:

(i) a = att (p, i) and for all r∈Π, p(t) ∈ H(r) we have ti ∈ Bn+1(r,Π);

(ii) a = att I(&g [X], i) which is finite wrt. bounded terms Bn+1(r,Π) and lde-safe attribute posi-
tions Sn(Π);
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Figure 1: Visualization of Definition 8 (inductive definition from left to right and top to bottom)

Iteration i (a) Bounded Terms (b) LDE-Safe Attribute Positions
(iteration i) (iteration i)

— S0(Π) = ∅
1 B1(r,Π) S1(Π)
2 B2(r,Π) S2(Π)

. . . . . . . . .
S∞(Π) =

⋃
i≥0 Si(Π)

(iii) a = att O(&g [X], i), &g [X](Y) ∈ B+(r) and either Yi ∈ Bn+1(r,Π) or att I(&g [X]) ⊆
Sn(Π).

A program Π is liberally domain-expansion (lde) safe, if it is safe and all its attribute positions are
lde-safe.

Note that lde-safety is always relative to a given TBF. That is, a program might be lde-safe wrt. one
TBF but not wrt. another one; in the following, we will explicitly specify the currently used TBF unless
this is clear from context.

Intuitively, the iterative definition of the lde-safe attribute positions S∞(Π) starts with the empty set
S0(Π) = ∅ of attribute positions. Then, each iteration n + 1 consists of two steps in order to define the
expanded set of known lde-safe attribute positions Sn+1(Π).

(a) For each rule r ∈ Π, the set Bn+1(r,Π) of terms in this rule which are known to be bounded is
identified, i.e., which are known to have only finitely many substitutions in G∞Π (∅). For this purpose,
the TBF b is employed which identifies such terms by making use of the fact that the attribute positions
Sn(Π) from the previous iteration are already known to be lde-safe. The identification of bounded terms
is again iterative by applying the TBF until a fixpoint is reached.

(b) Based on the sets of known bounded termsBn+1(r,Π) for all r ∈ Π in the (n+1)-st iteration, the
set of known lde-safe attribute positions Sn+1(Π) is defined. The intuition here is to identify an attribute
position as lde-safe whenever the set of known bounded terms and the set of known lde-safe attribute
positions from the previous iteration imply that only finitely many values will occur at this attribute
position in G∞Π (∅). (b.i) For ordinary attribute positions, this is the case if all terms which occur at this
argument position in rule heads (i.e., which may generate values at this argument position) are bounded.
(b.ii) For an input attribute position of an external atom, this is the case if it is finite, i.e., if it is a constant
input parameter which is bounded, or if it is a predicate input parameter with a predicate whose attribute
positions are all already known to be lde-safe. (b.iii) For an output attribute position of an external atom,
this is the case if either the term at the respective output position is known to be bounded (e.g. because it
occurs in another body atom at a position which is known to be lde-safe), or because all of its inputs are
already known to be lde-safe attribute positions. In the latter case, since there also finitely many different
inputs to the external atom, there can also be only finitely many different outputs (cf. the restriction on
the oracle functions introduced in Section 2).

Note that, all sets involved in this definition are defined (and can be computed) in a strictly acyclic
fashion. This is visualized in Figure 1, where the sets as by Definition 8 are defined from left to right and
top to bottom.
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We now give a short example based on the simple TBF from Example 8, while an exhaustive example
is delayed until we have introduced realistic TBFs in Section 3.4.

Example 9 (cont’d) Reconsider the program Π and the TBF b from Example 8. Because terms ax in r2

and aax in r3 are identified as bounded, we have B1(r2,Π) = {ax} and B1(r3,Π) = {aax}. For the
set of safe attribute positions identified in the first iteration, we therefore have att (dom, 1) ∈ S1(Π) by
Condition (b.i) of Definition 8. Intuitively this states that attribute position att (dom, 1) is safe, because
it is only defined by the terms ax in r2 and aax in r3, which are have been identified as bounded by
the TBF b. Since the TBF b as introduced in Example 8 does not identify further terms as bounded in
the next iteration, there are also no more attribute positions which can be identified as safe and we end
up with S∞(Π) = {att (dom, 1)}. Note that TBF b from Example 8 is a very simply example TBF;
we will reconsider this program in Example 10 but use a stronger (and practical) TBF, which allows for
identification of more lde-safe attribute positions (and lde-safety of the overall program). 2

We next show that S∞(Π) is finite, thus the inductive definition can be used for computing S∞(Π):
the iteration can be aborted after finitely many steps. We first formalize that a program has only finitely
many lde-safe attributes.

Proposition 2 For every TBF b, the set S∞(Π) is finite.

Next, recall that the intuition of an lde-safe attribute is that there are only finitely many terms at
this position in a grounding which preserves all answer stes. The grounding G∞Π (∅) serves as witness.
This can be formalized by stating that lde-safe attribute positions have a finite range in G∞Π (∅). We first
formalize the idea for attributes which are identified as lde-safe after a certain number of iterations.

Proposition 3 For every TBF b and n ≥ 0, if α ∈ Sn(Π), then the range of α in G∞Π (∅) is finite.

This results carries over to all lde-safe attributes identified after an arbitrary number of steps.

Corollary 4 For every TBF b, if α ∈ S∞(Π), then range(α,G∞Π (∅)) is finite.

This means that such attribute positions occur with only finitely many arguments in the grounding
computed by GΠ. This result implies that also the whole grounding G∞Π (∅) is finite.

Corollary 5 If Π is an lde-safe program, then G∞Π (∅) is finite.

As follows from these propositions, S∞(Π) is also finitely constructible. Note that the propositions
hold independently of a concrete TBF (because the properties of TBFs are sufficiently strong). This
allows for a modular exchange or combination of the TBFs without changing the definition of lde-safety.

We now make use of the results from above to show that lde-safe programs are finitely restrictable.
However, we remark that the following proposition does not directly lead to an efficient implementation;
the algorithm presented in Section 4 makes use of several optimizations.

Proposition 6 Every lde-safe program Π is finitely restrictable, and it holds that G∞Π (∅) ≡ Π.

Also this proposition holds independently of a concrete term bounding function. However, functions
that are too liberal are excluded by the preconditions in the definition of TBFs.

3.4. Sample Term Bounding Functions
We now introduce sample term bounding functions that exploit syntactic and semantic properties of

external atoms to guarantee boundedness of variables. By our previous result, this ensures also finiteness
of the ground program computed by G∞Π (∅).
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3.4.1. Syntactic Criteria
We first identify some syntactic properties that can be exploited for our purposes.

Definition 9 (Syntactic Term Bounding Function) Let bsyn(Π, r, S,B) be defined such that we have
t ∈ bsyn(Π, r, S,B) iff

(i) t is a constant in r; or

(ii) there is an atom q(s) ∈ B+(r) such that t = sj and att (q, j) ∈ S for some 1 ≤ j ≤ ar(q); or

(iii) for some &g [X](Y) ∈ B+(r), we have t ∈ Y and every a ∈ att I(&g [X]) is finite wrt. B and S.

Note that the criteria encoded in this TBF are motivated by the intuitive meaning of rules and other
language components. Intuitively, (i) a constant is trivially bounded because it is never substituted by
other terms in the grounding. Case (ii) states that terms occurring at lde-safe attribute position positions
are bounded. This is because the attribute position is already known to be filled by only finitely many
terms in a grounding which preserves all answer sets. This property carries over to the term at this
position, which has then only finitely many instances. More specifically, it encodes that an attribute
position att (q, j) (where 1 ≤ j ≤ ar(q)) is lde-safe (thus has a finite range in G∞Π (∅)), implies that the
term at this attribute position position is bounded. Case (iii) expresses that if all input attribute positions
to an external atom are finite, then also its output is finite. This is motivated by the restriction that a given
input makes an external atom true for only finitely many differnet outputs (cf. Section 2). Therefore,
finiteness of the number of different input values carries over to the number of different output values.

Proposition 7 The function bsyn(Π, r, S,B) is a TBF.

Example 10 (cont’d) Reconsider the program

Π=

{
r1 : s(a). r2 : dom(ax ). r3 : dom(axx ).
r4 : s(Y )← s(X),&concat [X,x](Y ), dom(Y ).

}
from Example 7 to compute the sets of safe attribute positions using TBF bsyn . In the first iteration
we have B1(r2,Π) = {ax}, B1(r3, Π) = {axx} and B1(r4, Π) = {x} by item (i) in Definition 9 as
constants are trivially bounded. But then, due to the bounded term ax in r2 and axx in r3, the derived
terms in all rules that have att (dom, 1) in their head are known to be bounded and thus item (b.i) in
Definition 8 applies, which yields

S1(Π) = {att (dom, 1), att I(&concat [X,x], 2)},

where the membership of att (dom, 1) in this set intuitively means that dom has only finitely many
different arguments in some grounding which preserves all answer sets, because each rule defining dom
derives only finitely many different values. On the other hand, the membership of att I(&concat [X,x], 2)
means that x in the input needs to be instantiated only by finitely many different constants (in fact, as a
constant, it will be instantiated only by itself).

In the next iteration, we get B2(r4,Π) = {Y } by item (ii) in Definition 9 because Y appears in
dom(Y ) in the body of r4 and att (dom, 1) is already known to be lde-safe from the previous iteration.
Intuitively, since dom is known to be instantiated only for finitely many different arguments, this will
also be the case for Y . We further have B2(r1,Π) = {a} by item (i) in Definition 9 (actually we already
had B1(r1,Π) = {a} in the previous iteration). Therefore, all terms in rule heads which define att (s, 1)
(namely those of r1 and r4) are bounded, hence, item (b.i) in Definition 8 applies again and

att (s, 1) ∈ S2(Π).
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Hence, intuitively s needs to be instantiated only for finitely many arguments. Moreover, we also have

att O(&concat [X,x], 1) ∈ S2(Π)

because the output term at position 1 of this external atom is Y , which is bounded as it also appears
in dom(Y ) and thus item (ii) in Definition 9 applies. Thus, the second iteration identifies two attribute
positions as lde-safe.

In the third iteration we have X ∈ B3(r4,Π) due to item (i) in Definition 9. This is because we know
from the previous iteration that att (s, 1) is lde-safe, i.e., predicate s will be instantiated only for finitely
many arguments; as X occurs at this argument position, there will be only finitely many substitutions for
X . But then, the input to the external atom in r4 is bounded and item (b.ii) in Definition 8 applies, thus

att I(&concat [X,x], 1) ∈ S3(Π).

At this point, all attribute positions are lde-safe and so is the program. 2

Example 10 also demonstrates why we have chosen an incremental approach which cyclically iden-
tifies bounded terms and safe attribute positions. Observe that the least fixpoint of GΠ for the program
Π is finite and thus all terms in Π are bounded. While it is in principle possible to define a TBF which
directly identifies all terms as bounded, this is not trivial as the reasons for a term to be bounded can
be complex. For instance, variable X in rule r4 is bounded because of the following intuitive reason.
attribute position att (dom, 1) is safe as it is defined only by the facts. Therefore, variable Y in r4 is
bounded, which implies that only finitely many variables for s(Y ) are derived, hence also att (s, 1) is
safe. This implies that also X in r4 is bounded. A direct identification of the bounded terms would
result in a complex condition whose correctness would be difficult to assert. In contrast, incrementally
enlarging the sets of known bounded terms and safe attribute positions, as formalized by Definitions 7
and 8, allows for formally representing this reasoning chain by a set of much simpler conditions, which
are directly motivated by the intuitive meaning of bounded terms and safe attribute positions.

3.4.2. Semantic Properties
We now define a TBF exploiting meta-information about external sources. The first two properties

involve meta-information that directly ensures an output attribute position of an external source is finite.

Definition 10 (Finite Domain) An external predicate &g ∈ X has a finite domain in (output argument)
i, 1 ≤ i ≤ ar O(&g), if {xi | f&g(A,y,x) = 1 for some y and x} is finite for all A.

Intuitively, the property states that only finitely many different values occur at a certain output position
(independent of the input). This is perhaps the most direct way to ensure boundedness of the respective
term.

Example 11 An external atom &md5 [S](Y ) computing the MD5 hash value Y of a string S is finite
domain wrt. the (single) output element, as its domain is finite (yet very large). 2

Example 12 The program Π′ from the introduction can be identified as lde-safe, once it is known that
the output domain of &reach[X](Y ) is finite due to finiteness of the graph. 2

A relaxed notion of finiteness allows for open domains, but forbids constants in the output of an
external source which do not already appear in the extension of the respective input predicate parameter,
i.e., all output values at a certain position already occur in the input with no new values being invented.
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Definition 11 (Relative Finite Domain) An external predicate &g ∈ X has a finite domain in (output
argument) i, 1 ≤ i ≤ ar O(&g), relative to (predicate input) argument j, 1 ≤ j ≤ ar I(&g), if

{
xi |

f&g(A,y,x) = 1 for some x
}
⊆
{
c ∈ c | c ∈ ext(A, yj)

}
is finite for all A and y.

Example 13 An external atom &diff [dom, set ](Y ) has a finite domain in output argument 1 relative to
predicate input argument 1 because each constant c must already occur in the extension of dom wrt. A if
f&g(A, dom, set , c) = 1.

While the previous properties derive boundedness of an output term of an external atom from finite-
ness of its input, we now reverse the direction. An external atom may have the property that only a finite
number of different inputs can yield a certain output, which is formalized as follows.

Definition 12 (Finite Fiber) An external predicate &g ∈ X has a finite fiber, if set {y | f&g(A,y,x) =
1} is finite for all A and x.

Example 14 Let &sq [X](S) be an external atom that computes the square S of the integer X . Then for
a given S, there are at most two distinct values for X . 2

In the following, we say that a term t is captured by an attribute position α, if t occurs at the (input
or output) argument position specified by α. The four properties above lead to the following TBF.

Definition 13 (Semantic Term Bounding Function) Let bsem(Π, r, S,B) be defined such that we have
t ∈ bsem(Π, r, S,B) iff

(i) for a &g [Y](X) ∈ B+(r), &g has a finite domain in i and t = Xi; or

(ii) for a &g [Y](X) ∈ B+(r), &g has a relative finite domain in i wrt. j, att(Yj) ⊆ S and t = Xi; or

(iii) for a &g [Y](X) ∈ B+(r), &g has a finite fiber, X ⊆ B and t ∈ Y.

This TBF is directly motivated by the properties introduced above.

Proposition 8 Function bsem(Π, r, S,B) defined above is a TBF.

An extended semantic TBF which takes also cyclicity and well-orderings into account is shown in
Appendix A due to its lengthy definition.

3.5. Modular Combinations of Term-Bounding Functions

Note that a program might be lde-safe wrt. one TBF but not wrt. another TBF. Fortunately, multiple
TBFs can be combined in order to generate another, even more general TBF. Thus, rather than changing
the TBF for every program, our approach is intended to be extended over time by integrating more
criteria whenever new properties are discovered that allow for deriving finite groundability. The following
proposition allows us to construct TBFs modularly from multiple TBFs and thus ensures this kind of
future extensibility.

Theorem 9 Let bi(Π, r, S,B), 1 ≤ i ≤ ` be TBFs. Then

b(Π, r, S,B) = bi(Π, r, S,B) ∪ · · · ∪ b`(Π, r, S,B).
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That is, the function assessing term boundedness by logical disjunction of the given TBFs, is also a TBF.
In particular, a TBF which exploits syntactic and semantic properties simultaneously is given by

bsynsem(Π, r, S,B) which is defined as follows:

bsynsem(Π, r, S,B) = bsyn(Π, r, S,B) ∪ bsem(Π, r, S,B).

Example 15 Consider the program

Π =

{
node(a, 0).
node(Y )← node(X),&reach[X](Y ),&distance[a, Y ](D),&limit [D]().

}
,

where &reach[X](Y ) returns the nodes Y that are directly reachable from a node X in some externally
given graph (e.g., in a search space), &distance[a, Y ](D) returns the shortest distance D between a and
Y , and &limit [D]() is true for all integers D up to a certain number. Informally, this program imports
all nodes within a certain distance from the node a; for a possibly infinite graph, this however might
not be feasible in finite time. However, if each node is known to have only finitely many neighbors, by
combining syntactic and semantic information, we conclude that Π has a finite grounding as all external
atoms have finite fibers. In particular, &limit [D]() and &distance[a, Y ](D) have finite fibers since only
finitely many values for D are within the limit and for each of them finitely many nodes Y with that
distance from a exist as each node has only finitely many neighbors. Moreover, &reach[X](Y ) has
a finite fiber because each node Y is reachable only from finitely many X . Without proper semantic
knowledge about the external sources (e.g., if the nodes can have infinitely many neighbors), finiteness
of the grounding is not guaranteed. Moreover, also the syntactic structure of the program is relevant to
derive finiteness as after removing &limit [D]() finiteness is no longer guaranteed.

3.6. Domain Predicates

Recall that, as stated in the introduction, using domain predicates d is a common technique to ensure
strong safety of a HEX-program (which does, however, not work for the program Π in Section 1). For
instance this technique was applied in implementing DL-programs (Eiter et al., 2008) and terminological
default theories (Baader and Hollunder, 1995) in DLVHEX using the DL-plugin, which provides generic
external atoms for querying description logic ontologies. However, exploiting lde-safety, sometimes
domain predicates may be dropped. We illustrate this with an example.

Example 16 (Bird-Penguin) We consider here a simple DL-program (Π,O) which can be viewed as a
HEX-program Π (left side) with access to an external ontology O (right side) containing the conceptual
knowledge that penguins are birds and do not fly, and the assertion (data) that lia is a bird; the rules
express that birds fly unless the opposite is derivable:

Rules Π: Ontology O :

r1 : birds(X)← DL[Bird ](X). Flier v ¬NonFlier Bird(lia)

r2 : flies(X)← birds(X),not neg flies(X). Penguin v Bird

r3 : neg flies(X)← DL[Flier ] flies;¬Flier ](X). Penguin v NonFlier

Here the expressions DL[· · · ](X) are so-called DL-atoms, which in the HEX-view are just user-friendly
syntax for external atoms &dlC [· · · ](X) whose input parameters consist of a query (a concept name) and
optional additions of facts (assertions) to the ontology prior to query evaluation. To determine the birds
that fly, rule r1 retrieves all birds known by the ontology using a DL-atom DL[Bird ](X). Intuitively, the
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DL-atom DL[Flier ] flies;¬Flier ] returns all individuals in ¬Flier assuming that the concept Flier is
augmented with the extension of the predicate flies . The rules r2 and r3 encode then the conclusion that
a bird flies by default. In particular, this is concluded for lia , as the program has the single answer set
{bird(lia), flies(lia)}.

While the program Π is safe, it is not strongly safe; this is because the external atom DL[Flier ]
flies;¬Flier ](X) in rule r3 is involved in a cycle through negation. This can be remedied using a domain
predicate d as described, by adding the literal d(X) in the body of r3 and the fact d(lia). Alternatively,
assuming that all individuals in the ontology are birds, strong safety is gained by using bird as domain
predicate and simply adding bird(X) in the body of r3; we denote the resulting rule by r′3 and the
resulting program by Π′. In fact, little reflection reveals that projected on flies , the answer sets of Π′

remain the same even if this assumption is not made.
On the other hand, Π is lde-safe, as X in DL[Flier ] flies;¬Flier ](X) can take only finitely many

values. This relieves the user from using a domain predicate, which—even if possible—is often cumber-
some in practice. 2

4. Grounding Liberally Domain-expansion Safe HEX-Programs

In this section, we present a grounding algorithm for lde-safe programs. It is based on iteratively
grounding the program and then checking whether the grounding contains all relevant ground rules.
The check works by evaluating external sources under relevant assignments and testing whether they
introduce any new constants that were not respected in the grounding. If so, then the set of constants is
expanded and the program is grounded again; otherwise, the unrespected constants from C are irrelevant
for ensuring that the grounding has the same answer sets as the original program. For lde-safe programs,
this procedure will eventually reach a fixpoint, i.e., all relevant constants are respected in the grounding.
While the operator GΠ could be directly used for grounding in principle (the output is finite for lde-safe
programs), its complexity is not optimal. In particular, the instantiation of a single rule has exponential
runtime, although this is in many cases not necessary. In addition to the singleton usage of each external
predicate as introduced in Section 2, we further assume in the following that rules are standardized apart
(i.e., share no variables).

Towards a practical grounding algorithm we start with some basic concepts that are all demonstrated
in Example 18 below. Let R be a set of external atoms and let r be a rule. By r|R we denote the rule
obtained by removing external atoms that are not in R, i.e., such that H(r|R) = H(r) and Bs(r|R) =
((Bs(r) ∩ A(r)) ∪ (Bs(r) ∩ R)) for s ∈ {+,−}. Furthermore, Π|R =

⋃
r∈Π r|R, for a program Π.

Furthermore, let var(r) ⊆ V be the set of variables appearing in a rule r.

Definition 14 (Liberal Domain-expansion Safety Relevance) A set R of external atoms is relevant for
lde-safety of a program Π, if Π|R is lde-safe and var(r) = var(r|R), for all r ∈ Π.

Intuitively, if an external atom is not relevant, then it cannot introduce new constants. Note that for
a program, the set of lde-safety relevant external atoms is not necessarily unique. While the algorithm
works for any such set, a particular choice may influence the efficiency in principle, even if in realistic
applications few possibilities seem suggestive. We will use in our experiments a greedy approach which
aims at minimizing the set as fewer external atoms usually increase the efficiency. In the following, we
assume that for a program Π a fixed set R of lde-safety relevant external atoms has been selected and
denote by R = EA(Π) \R the set of external atoms that are not lde-safety relevant.
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We further need the concepts of input auxiliary and external atom guessing rules. We say that an
external atom &g [Y](X) joins an atom b, if some variable from Y occurs in b, where in case b is an
external atom the occurrence is in the output list of b.

Definition 15 (Input Auxiliary Rule) Let Π be a program and let &g [Y](X) be some external atom
occurring in a rule r ∈ Π. Then, for each such atom, a rule r&g[Y](X)

inp is composed as follows:

• the head is H(r
&g[Y](X)
inp ) = {ginp(Y)}, where ginp is a fresh predicate, and

• the body B(r
&g[Y](X)
inp ) contains each b ∈ B+(r) \ {&g [Y](X)} s.t. &g [Y](X) joins b and b 6∈ R.

Intuitively, input auxiliary rules are used to derive all ground tuples y under which the external atom
needs to be evaluated. Next, we introduce external atom guessing rules.

Definition 16 (External Atom Guessing Rule) Let Π be a program and let furthermore &g [Y](X) be
some external atom. Then a rule r&g[Y](X)

guess is composed as follows:

• the head is H(r
&g[Y](X)
guess ) = {e&g(X),ne&g[Y](X)}, and

• the body B(r
&g[Y](X)
guess ) contains

(i) each b ∈ B+(r) \ {&g [Y](X)} s.t. &g [Y](X) joins b and b 6∈ R; and

(ii) ginp(Y).

Intuitively, the rule guesses the truth value of the external atom using a choice between the external
replacement atom e&g[Y](X) and fresh atom ne&g[Y](X).

Our approach is based on a grounder for ordinary ASP programs. Compared to the naive ground-
ing grndC(Π), which substitutes all constants for all variables in all possible ways, we allow the ASP
grounder GroundASP to optimize rules.

Definition 17 We call rule r′ an o-strengthening of a rule r, if H(r′) = H(r), B(r′) ⊆ B(r) and
B(r) \B(r′) contains only ordinary literals and no external atoms replacements.

For a rule r (resp. a program Π), let os(r) (resp. Π) be the set of all o-strengthenigs of r (resp. rules
in Π).

Definition 18 An algorithm GroundASP is a faithful ASP grounder, if for a safe ordinary program Π it
returns a ground program Π′ ⊆ os(grndCΠ

(Π)) s.t. Π′ ≡ Π and for all r ∈ grndCΠ
(Π)

• if os(r)∩Π′ = ∅, then every answer set of grndCΠ
(Π) falsifies some ordinary literal in B(r); and

• if r′ ∈ Π′ for some r′ ∈ os(r), then every answer set of grndCΠ
(Π) satisfies B(r) \B(r′).

Intuitively, rules may be eliminated if their body is always false, and ordinary body literals may be
removed from the grounding if they are always true, as long as this does not change the answer sets.

Example 17 Let Π = {r1 : a(t). r2 : b ∨ c. r3 : e ← b, f. r4 : d ← a(X).}. A faithful ASP grounder
may optimize this program to Π′ = {r1 : a(t). r2 : b ∨ c. r′4 : d}; both programs have the answer sets
{a(t), b, d} and {a(t), c, d}. Moreover, r3 can be dropped as f is false in all answer sets, and the only
instance d← a(t) of r4 can be reduced to its o-strengthening r′4 as a(t) is true in all answer sets. 2
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Algorithm GroundHEX
Input: An lde-safe HEX-program Π
Output: A ground HEX-program Πg s.t. Πg ≡Π

(a) Let R be a set of lde-safety-relevant external atoms in Π

Πp := Π ∪ {r&g[Y](X)
inp | &g[Y](X) in r ∈ Π} ∪ {r&g[Y](X)

guess | &g[Y](X) 6∈ R}
Replace all external atoms &g[Y](X) in all rules r in Πp by e&g[Y](X)

(b) repeat
Πpg := GroundASP(Πp) // partial grounding

(c) for &g[Y](X) ∈ R in a rule r ∈ Π do // evaluate lde-safety-relevant external atoms
Ama := {p(c) ∈ A(Πpg ) | p ∈ Ym}

(d) for Anm ⊆ {p(c) ∈ A(Πpg ) | p ∈ Yn} do // do this under all relevant assignments
A := Ama ∪Anm

(e) for y ∈ {c | r&g[Y](X)
inp (c) ∈ A(Πpg )} do

(f) Let O = {x | f&g(A,y,x) = 1}
Πp := Πp ∪ {e&g[y](x) ∨ ne&g[y](x)←| x ∈ O} // add ground guessing rule

until Πpg did not change
(g) Remove input auxiliary rules and external atom guessing rules from Πpg

Replace all e&g[y](x) in Π by &g[y](x)

return Πpg

The algorithm is formally stated in Algorithm GroundHEX; our naming convention is as follows.
Program Π is the non-ground program, while program Πp is the non-ground ordinary ASP prototype
program, which is an iteratively updated extension of Π with additional rules. In each step, the prelim-
inary ground program Πpg is produced by grounding Πp using a standard ASP grounding algorithm.
Program Πpg converges against a fixpoint from which the final ground HEX-program Πg is extracted.

The algorithm first chooses a set of lde-safety relevant external atoms using a heuristics (e.g., a greedy
approach as in our implementation), and introduces input auxiliary rules r&g[Y](X)

inp for every external
atom &g [Y](X) in a rule r in Π in Part (a). For all non-relevant external atoms, we introduce guessing
rules for external atoms which ensure that the ground instances of these external atoms are introduced in
the grounding, even if we do not explicitly add them. Then, all external atoms &g [Y](X) in all rules r
in Πp are replaced by ordinary replacement atoms e&g[Y](X). This allows the algorithm to use a faithful
ASP grounder GroundASP in the main loop at (b). After the grounding step, the algorithm checks if
the grounding is large enough, i.e., if it contains all relevant constants. For this, it traverses all relevant
external atoms at (c) and all relevant input tuples at (d) and at (e). Then, constants returned by external
sources are added to Πp at (f); if the constants were already respected, then this will have no effect.
Thereafter the main loop starts over again. The algorithm will find a program which respects all relevant
constants. It then removes auxiliary input rules and translates replacement atoms to external atoms at (g).
Note that for ordinary ASP programs, the algorithm essentially reduces to a single call of GroundASP
and thus does not cause overhead.

We illustrate our grounding algorithm with the following example.

Example 18 Let Π be the following program:

Π =


f1 : d(a). f2 : d(b). f3 : d(c). r1 : s(Y ) ← &diff [d, n](Y ), d(Y ).

r2 : n(Y )← &diff [d, s](Y ), d(Y ).

r3 : c(Z) ← &count [s](Z).

 .
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Here, &diff [s1, s2](x) is true for all elements x, which are in the extension of s1 but not in that of s2,
and &count [s](i) is true for the integer i corresponding to the number of elements in s. The program
partitions the domain (extension of d) into two sets (extensions of s and n) and computes the size of s.
The external atoms &diff [d, n](Y ) and &diff [d, s](Y ) are not relevant for lde-safety, thus R in step (a)
of GroundHEX can be set to {&count [s](Z)}. Program Πp at the beginning of the first iteration, i.e.,
when reaching (b), is as follows (neglecting input auxiliary rules, which are facts). Let e1(Y ), e2(Y ) and
e3(Z) be shorthands for er1,&diff [d,n](Y ), er2,&diff [d,s](Y ). and er3,&count[s](Z), respectively.

Πp =

 f1 : d(a). f2 : d(b). f3 : d(c). r1 : s(Y ) ← e1(Y ), d(Y ).
g1 : e1(Y ) ∨ ne1(Y )← d(Y ). r2 : n(Y )← e2(Y ), d(Y ).
g2 : e2(Y ) ∨ ne2(Y )← d(Y ). r3 : c(Z) ← e3(Z).

 .

The program Πpg then contains no instances of r3 as the optimizer recognizes that er3,&count[s](Z) occurs
in no rule head and no ground instance can be true in any answer set. Then the algorithm comes to the
checking phase (step (c)). It does not evaluate the external atoms in r1 and r2, because they are not
relevant for lde-safety because of the domain predicate d(Y ). But it evaluates &count [s](Z) under all
A ⊆ {s(a), s(b), s(c)} (step (d)) because the external atom is nonmonotonic in s. In the course of this,
in step (f) the algorithm adds the rules {e3(Z) ∨ ne3(Z) ← | Z ∈ {0, 1, 2, 3}} to Πp. After the second
iteration, the algorithm terminates. 2

It appears that this algorithm is sound and complete. This is independent of a concrete TBF, i.e., the
following result (and the lemmas used in its proof) hold for all programs which are lde-safe wrt. any TBF.

Theorem 10 If Π is an lde-safe HEX-program, then GroundHEX(Π) ≡ Π.

The new grounding algorithm has all properties that are required in order to use it in the existing
model-building framework for HEX-program evaluation, presented in (Eiter et al., 2011). As shown in
Example 18, Algorithm GroundHEX needs to evaluate external atoms under exponentially many differ-
ent interpretations in the worst case. This worst case applies whenever a nonmonotonic external atom
is necessary for lde-safety, because then the external atom needs to be evaluated under all possible in-
puts. However, this worst case can be effectively avoided in most practically relevant cases by program
decomposition as supported by the existing framework; see (Eiter et al., 2013a) for details.

5. Implementation and Evaluation

For implementing our technique, we integrated GRINGO (Gebser et al., 2007)8 as grounder (imple-
mentation of Algorithm GroundASP) and CLASP into our prototype system DLVHEX. The evaluation
is driven by an evaluation framework that relies on decomposition of the program into multiple units,
which are independently grounded and solved, where GroundHEX is used for grounding; for more infor-
mation, see (Eiter et al., 2011; Redl, 2014). External sources can be easily added by using a convenient
API provided by the system. Internally, the system exploits CLASP’s SMT interface for realizing external
calls. To this end, CLASP makes callbacks to the DLVHEX core whenever its generic propagation methods
(exploiting unit clauses and minimality considerations) cannot derive further truth values. The callback
is then delegated to external sources to derive further truth values (if possible).

8http://potassco.sourceforge.net
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The system is available from http://www.kr.tuwien.ac.at/research/systems/dlvhex as open-source software
and provides convenient interfaces for adding external sources and intervening in the algorithms depend-
ing on the needs of the application at hand. The system has been successfully applied to a range of
applications (e.g. multi-context systems, dl-programs) and runs on multiple platforms, including Linux,
Mac OS X and Microsoft Windows.
Platform and Settings. We evaluated the implementation on a Linux server with two 12-core AMD
6176 SE CPUs with 128GB RAM running an HTCondor load distribution system9 which ensures robust
runtimes (i.e., multiple runs of the same instance have negligible deviations) and using DLVHEX version
2.3.0. The grounder and solver backends for all benchmarks are GRINGO 3.0.4 and CLASP 2.1.3. For each
instance, we limited the CPU usage to two cores and 8GB RAM. The timeout for all instances was 300
seconds. The encodings of all benchmarks discussed in this section have been included in Appendix C;
the instances are available from http://www.kr.tuwien.ac.at/staff/redl/aspext, and the required plugins from the
repository (https://github.com/hexhex).

While in principle different grounding and solving backends can be used, we chose GRINGO and
CLASP for our experiments. The reason is that our algorithms use these components as black boxes (as
explicitly shown for the grounding algorithm) and that a different backends do not influence the behavior
of our algorithms; that is, the selection of a certain grounding and solving backend, or a certain version
of such as backend, is an independent dimension (similar to e.g. the variable selection heuristics, etc.)
which does not provide new insights concerning the two techniques that we want to compare. Moreover,
as DLV is only available as binary and does not provide an API, its use within DLVHEX would require
interprocess communication and parsing of results; this overhead could bias the performance comparison.
Hence, we decided to focus on comparing strong and liberal safety.

5.1. Problem Suite

We now present the problems we are going to use as benchmarks and discuss the results for instances
in a separate subsection.

While the modeling advantages of a broader class of supported programs and a less restricted syntax
are contributions on their own, the main motivation for liberal safety was to improve efficiency. In
contrast to strong safety, lde-safety needs no blind generation and import of a maximal set of possibly
relevant constants. Instead, the algorithms compute the domain depending on the actual instance. The
hypothesis is that we can expect lde-safety to eliminate large parts of the irrelevant domain and of the
ground program in advance, which might lead to a decrease in grounding time and solving time.
Reachability. We consider reachability, where the edge relation is provided as an external atom
&out [X](Y ) delivering all nodes Y that are directly reached from a node X . The traditional imple-
mentation imports all nodes into the program and then uses domain predicates. An alternative is to query
outgoing edges of nodes on-the-fly, which needs no domain predicates. This benchmark is motivated by
route planning applications, where importing the full map might be infeasible due to the amount of data.
Set Partitioning. In this benchmark we consider a program similar to Example 18, which implements
for each domain element x a choice from sel(x) and nsel(x) by an external atom, i.e., a partitioning of

9http://research.cs.wisc.edu/htcondor
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the domain into two subsets, where sel may contain at most two elements. The program is as follows:

domain(1 ). . . . domain(n).

sel(X)← domain(X),&diff [domain,nsel ](X)

nsel(X)← domain(X),&diff [domain, sel ](X)

← sel(X), sel(Y ), sel(Z), X 6= Y,X 6= Z, Y 6= Z

where &diff [p, q ](X) computes the set of all elements X which are in the extension of p but not in the
extension of q. Note that under lde-safety, the domain predicate domain is not needed as &diff does not
introduce new constants.
Bird-Penguin Variant. For our experiments, we used a variant of the Bird-Penguin program Π′ in
Example 16. Structurally, Π′ is for grounding similar to the Set Partitioning problem, as the external atom
in rule r3 is monotonic, and grounding is expected to behave similarly. For a worst case which cannot
be avoided by the greedy heuristics, we replaced this atom with a slightly more general, nonmonotonic
external atom which also outputs a special constant cons if the extended ontology is satisfiable. With a
growing number of birds, we get a growing number of cycles with nonmonotonic external atoms which
combinatorially intermingle the worst case for the heuristics when bird(X) is dropped from rule r′3.
Recursive Processing of Data Structures. This problem is representative for a range of applications
which process data structures recursively. As an example, we implement the merge sort algorithm using
external atoms for splitting a list in half and merging two sorted lists, where lists are encoded as constants
consisting of elements and delimiters. Since the merging operation is implemented as an external source,
also the operator for comparing two elements is implicitly given by the external source.

However, this is only a representative of a class of applications and performance cannot be compared
to native merge sort implementations. Other applications of a similar structure are the application of
algorithms to graph structures (e.g. balance maintenance in AVL trees, insertion into B-trees), binary
search in dictionaries, and recursive Web queries.
Argumentation. In this benchmark, we use a HEX-program which computes specific extensions for
Dung-style abstract argumentation frameworks (AFs) (Dung, 1995), given that code for an extension
test is available. AFs are directed graphs with the nodes being interpreted as arguments and the arcs as
attacks between arguments. A typical reasoning task is the computation of extensions, which are sets
of nodes that fulfill certain properties, depending on the semantics being used, and cautious and brave
reasoning, i.e., checking whether an argument is contained in all or at least one extension, respectively.
Many reasoning tasks are intractable or even beyond NP, depending on the type of extension considered.
Here we consider ideal set extensions, i.e., extensions which have to be ideal sets of the AF at hand;
notably, testing whether a set of arguments is an ideal set of an AF is co-NP-complete (Dunne, 2009).
Thus a natural guess-and-check computation of an ideal set extension that uses an external atom to decide
the extension property reflects this complexity in the ideal set check, which is done in our ASP program
using a standard saturation technique; the encoding is generic and might be adapted for other semantics.

In addition, we perform a processing of the arguments in the computed extension, e.g., by using an
external atom for generating LATEX code for the visualization of the AF (the graph with ideal sets being
marked) using a graphics library. The challenge here is that argument processing depends nonmonotoni-
cally on the ideal sets (the LATEX code of one ideal set is, in general, incomparable to that of another ideal
set). As discussed in Section 4, this is the worst case for the new grounding algorithm if no program
decomposition is used, but can be avoided by our new evaluation heuristics in this case.
Route Planning. Inspired by semantically enriched route planning, which has been studied in the
MyITS project (Eiter et al., 2014d) for smart city applications, we consider here two route planning
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scenarios using the public transport system of Vienna. The data is available under creative commons
license (cc-by) from data.wien.gv.at and contains a map of 158 subway, tram, city bus and rapid transit
train lines with a total number of 1701 stations. Since the data does not contain information about
the distances between stations, we uniformly assumed costs of 1, 2 and 3 for each stop traveled by
subway/rapid transit train, tram or bus, respectively. We further assumed costs of 10 for each necessary
change representing walking and waiting time. However, with more detailed data, our encoding would
also allow for using different values for each line or station. Access to the data is provided via an external
atom &path[s, d](a, b, c, l), which returns for a start location s and a destination d the shortest direct
connection (computed using Dijkstra’s algorithm), represented as set edges (a, b) between stations a and
b with costs c using line l.

For instance, a journey from Wien Mitte to Taubstummengasse is possible using subway line U4
from Wien Mitte to Karlsplatz (with intermediate stop at Stadtpark), changing to line U1, and going
from Karlsplatz to Taubstummengasse (which is just one stop). This will be represented as follows:

{(Wien Mitte,Wien Mitte (U4 ), 10, change),

(Wien Mitte (U4 ),Stadtpark (U4 ), 1,U4 ),

(Stadtpark (U4 ),Karlsplatz (U4 ), 1,U4 ),

(Karlsplatz (U4 ),Karlsplatz (U1 ), 10, change),

(Karlsplatz (U1 ),Taubstummengasse (U1 ), 1,U1 ),

(Taubstummengasse (U1 ),Taubstummengasse, 10, change)}

In order to model changes between lines, our graph has for each station and each line which arrives at
this station a separate node, with a label consisting of the actual name of the station and the respective line.
To foster a change, the external atom returns a tuple (a, a′, 10, change), where a and a′ are two nodes
representing the same station but for different lines, and change is just a dedicated “line” representing
walks between platforms, cf. Figure 2 (dashed lines indicates changes with costs 10, solid lines indicate
trips with the costs given in parantheses). In order to relieve the user from writing line-specific names of
stations in the input to the program, we further have for each station a generic node which is connected
to all line-specific nodes for this station.

Note that there will never be cycles in the direct path between two stations because the costs are
minimized, thus the set representation is sufficient and there is no need to formally store the order of the
edges. Further note that tuples (1) and (6) do not really represent changes but are merely the connec-
tions between the generic stations and the line-specific nodes. This allows the user to use the constants
Wien Mitte and Taubstummengasse in the input without predetermining which line to take at these
stations. However, as these spurious changes at the start and at the destination node are necessary in any
route, this does not affect the minimization of the costs.

Route planning can be subject to side constraints, where the user not only wants a route connecting
two or more locations, but that it satisfies additional semantic conditions, like ending in a restaurant or
next to a park; this may be determined using suitable information sources and ontologies (Eiter et al.,
2014d). Here we concentrate on a plain setting and consider two concrete applications as show cases.

Single Route Planning. In the first scenario we consider route planning of a single person who wants
to visit a number of locations. Additionally, we have the side constraint that the person wants to go
for lunch in a restaurant if and only if the tour is longer than the given limit of cost 300. Because the
external source allows only for computing direct connections between two locations, it cannot solve the
task completely and there needs to be interaction between the HEX-program and the external source.
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Wien Mitte

Wien Mitte (U4 )

Wien Mitte (U3 )

Stadtpark (U4 )

Stadtpark

Karlsplatz (U4 ) Karlsplatz Karlsplatz (U1 )

Karlsplatz (U2 ) Taubstummengasse (U1 )

Taubstummengasse

U4 (1)

U4 (1)

U1 (1)

Figure 2: Graph representation of stations and lines (dashed: changes with costs 10, solid: given lines and costs)

Pair Route Planning. In our second scenario we consider two persons. Each of them wants to visit a
number. Additionally, the two persons want to meet, thus the two tours need to intersect at some point.
Possible meeting locations are drawn randomly. We further have the side constraint, that the meeting
location shall be a restaurant, if at least one of the tours is longer than the limit of costs 300.

5.2. Benchmark Results
We evaluated the implementation on a Linux server with two 12-core AMD 6176 SE CPUs with

128GB RAM. For this we use five benchmarks and present the total wall clock runtime (wt), the ground-
ing time (gt) and the solving time (st) when computing the first answer set. We possibly have
wt 6= gt + st because wt includes also computations other than grounding and solving (e.g., passing
models through the evaluation graph). The numbers in parentheses indicate the number of instances and
timeouts, respectively. For determining lde-safety relevant external atoms, our implementation follows a
greedy strategy and tries to identify as many external atoms as irrelevant as possible. Detailed benchmark
results are available at http://www.kr.tuwien.ac.at/staff/redl/grounding/allbenchmarks.ods.
Reachability. We use random graphs with a node count from 5 to 70 and an edge probability of 0.25.
For each count, we average over 10 instances. The results are shown in Table 1a. Here we can observe
that the encoding without domain predicates is more efficient in all cases because only a small part of the
map is active in the logic program, which does not only lead to a smaller grounding, but also to a smaller
search space during solving.
Set Partitioning. We considered domains with n∗10 elements, 1 ≤ n ≤ 6. The results for the
program with and without the domain predicate are presented in Table 1b. Since &diff is monotonic in
the first parameter and antimonotonic in the second, the measured overhead is small in the grounding
step. Although the ground programs of the strongly safe and the liberally safe variants of the program are
identical, the solving step is slower in the latter case; we explain this with caching effects. Grounding lde-
safe programs needs more memory than grounding strongly safe programs, which might have negative
effects on the later solving step. However, the total slowdown is moderate.
Bird-Penguin Variant. We considered ontologies with n distinct birds, for which respective assertions
(facts) were added to the ontology, and the non-monotonic variant of the external atom in rule r3. The
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Table 1: Benchmark results in secs; timeout (“—”) is 300 secs

(a) Reachability

# w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

15 (10) 0.59 (0) 0.28 (0) 0.08 (0) 0.49 (0) 0.23 (0) 0.06 (0)
25 (10) 5.78 (0) 4.67 (0) 0.33 (0) 2.94 (0) 1.90 (0) 0.35 (0)
35 (10) 36.99 (0) 33.99 (0) 1.00 (0) 14.02 (0) 11.30 (0) 0.95 (0)
45 (10) 161.91 (0) 155.40 (0) 2.18 (0) 53.09 (0) 47.19 (0) 2.22 (0)
55 (10) — (10) — (10) n/a 171.46 (0) 158.58 (0) 5.74 (0)
65 (10) — (10) — (10) n/a — (10) — (10) n/a

(b) Set Partitioning

# w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

10 (1) 0.49 (0) 0.01 (0) 0.39 (0) 0.52 (0) 0.02 (0) 0.41 (0)
20 (1) 3.90 (0) 0.05 (0) 3.62 (0) 4.67 (0) 0.10 (0) 4.23 (0)
30 (1) 16.12 (0) 0.18 (0) 15.32 (0) 19.59 (0) 0.36 (0) 18.32 (0)
40 (1) 48.47 (0) 0.48 (0) 46.71 (0) 51.55 (0) 0.90 (0) 48.74 (0)
50 (1) 115.56 (0) 1.00 (0) 112.14 (0) 119.40 (0) 1.79 (0) 114.11 (0)
60 (1) 254.66 (0) 1.84 (0) 248.88 (0) 257.78 (0) 3.35 (0) 248.51 (0)

(c) Bird-penguin

# w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

5 (1) 0.06 (0) <0.005 (0) 0.01 (0) 0.08 (0) 0.02 (0) 0.01 (0)
10 (1) 0.14 (0) <0.005 (0) 0.08 (0) 1.32 (0) 1.12 (0) 0.10 (0)
11 (1) 0.27 (0) <0.005 (0) 0.19 (0) 2.85 (0) 2.43 (0) 0.27 (0)
12 (1) 0.32 (0) <0.005 (0) 0.23 (0) 6.05 (0) 5.53 (0) 0.26 (0)
13 (1) 0.69 (0) 0.01 (0) 0.60 (0) 12.70 (0) 11.76 (0) 0.61 (0)
14 (1) 0.66 (0) <0.005 (0) 0.57 (0) 28.17 (0) 26.70 (0) 0.73 (0)
15 (1) 1.66 (0) 0.01 (0) 1.49 (0) 59.73 (0) 57.14 (0) 1.46 (0)
16 (1) 1.69 (0) 0.01 (0) 1.53 (0) 139.47 (0) 131.87 (0) 1.92 (0)
17 (1) 3.83 (0) 0.01 (0) 3.57 (0) — (1) — (1) n/a
18 (1) 4.34 (0) 0.01 (0) 4.08 (0) — (1) — (1) n/a
19 (1) 10.07 (0) 0.01 (0) 9.56 (0) — (1) — (1) n/a
20 (1) 11.36 (0) 0.01 (0) 10.87 (0) — (1) — (1) n/a
24 (1) 95.60 (0) 0.01 (0) 93.35 (0) — (1) — (1) n/a
25 (1) — (1) 0.01 (0) — (1) — (1) — (1) n/a

(d) Merge Sort

# w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

5 (10) 0.78 (0) 0.10 (0) 0.59 (0) 0.13 (0) 0.04 (0) 0.02 (0)
10 (10) — (10) — (0) n/a (0) 0.25 (0) 0.09 (0) 0.08 (0)
15 (10) — (10) — (0) n/a (0) 0.41 (0) 0.15 (0) 0.18 (0)
20 (10) — (10) — (0) n/a (0) 1.27 (0) 0.43 (0) 0.75 (0)
25 (10) — (10) — (0) n/a (0) 4.08 (0) 1.09 (0) 2.85 (0)
30 (10) — (10) — (0) n/a (0) 34.82 (0) 3.95 (0) 30.14 (0)
35 (10) — (10) — (0) n/a (0) 82.70 (0) 8.37 (0) 72.75 (0)
40 (10) — (10) — (0) n/a (0) 255.91 (7) 213.97 (7) 41.06 (0)
45 (10) — (10) — (0) n/a (0) — (10) — (10) n/a (0)

results in Table 1c show a slowdown for the encoding without domain predicates. It is mainly caused by
the grounding, but also solving becomes slightly slower without domain predicates due to caching effects.
While this example was tailored for the worst case, grounding of the regular Bird-Penguin program is
easy, with as well as without domain predicate (similar as Set Partitioning). Furthermore, we could in
applications of DL-programs sometimes even experience a sensible run time improvement by removing
domain predicates.
Recursive Processing of Data Structures. In order to implement the application with strong safety,
one must manually add a domain predicate with the set of all instances of the data structures at hand
as extension, e.g., the set of all permutations of the input list. This number is factorial in the input size
and thus already unmanageable for very small instances. The problems are both due to grounding and
solving. Similar problems arise with other recursive data structures when strong safety is required (e.g.,
trees, for the pushdown automaton from (Eiter et al., 2013b), where the domain is the set of all strings up
to a certain length). However, only a small part of the domain will ever be relevant during computation,
hence the new grounding algorithm for lde-safe programs performs quite well, as shown in Table 1d.

Note that the latest DLV version from 2012 supports list processing by dedicated built-in predicates.
However, while this feature might appear to allow for implementing a similar application at first glance,
it in fact comes with several limitations. First, DLV supports only low level list processing predicates
such as splitting off the first element. Implementing advanced operations such as splitting lists in half
and merging two sorted lists is cumbersome; external atoms are more convenient. Second, DLV’s built-
in comparison predicates < and > impose for non-numeric constants some fixed ordering; the desired
ordering must in general be computed within a sub-program. This adds to the complexity and can be
problematic in case of unknown values and become even infeasible, as (large) sets of facts encoding the

26



comparison may have to be provided or computed. Third and most severe, the recursive rules over lists
violate DLV’s safety criteria, and the safety check must be disabled; but then termination is no longer
guaranteed. Therefore, encoding this application in ordinary ASP is not appealing.
Route Planning. For each instance size n we generated 50 instances by randomly drawing n locations
to visit plus n possible locations for having lunch (the data does not provide information about such
locations, but usually there are restaurants or snack bars in the near area of stations). We show for each
instance size the averages of the total runtimes, the grounding times, the solving times, the percentage
of instances for which a solution was found within the time limit (column solution (%))10, the average
path length (costs) of the instances with solutions (column length), the average number of necessary
changes, not counting changes between generic and line-specific station nodes (column changes), and the
percentage of instances with solutions which require a restaurant visit due to length of the tour (column
lunch (%)). The results are shown in Tables 2a, 2c and 2e using the full map, the map restricted to tram
and subway, and the map restricted to subway only, respectively. In addition to the wall clock, grounding
and solving time, we further show for the instances which have a solution the average path length (column
length) average number of necessary changes.

The hardness of the benchmark stems from the side constraint. Without this constraint, the tour could
be computed deterministically by successive calls of the external source, once the sequence of locations
was guessed. However, due to side constraint, not only the overall tour does depend on the individual
locations, but also the individual locations depend on the overall tour (they need to contain a restaurant
iff the tour is too long). This leads to a cycle over the external atom &path . With the notion of strong
safety, this requires the output variables of this external atom to be bounded by domain predicates, thus
the whole map needs to be imported a priori.

Single Route Planning. We considered instances with 1 ≤ n ≤ 15 locations to visit. The sequence
in which the locations are visited is guessed non-deterministically in the logic program. While the direct
connections between two locations are of minimum length by definition of the external atom, the length
of the overall tour is only optimal wrt. to the chosen sequence of locations, but other sequences might
lead to a shorter overall tour. However, we have the constraint that for visiting n locations there should
be at most dn × 1.5e changes. Due to this constraint not all instances have a solution. It would be easy
to extend the scenario to predetermine the sequence of locations by additional constraints, e.g., by global
weak constraints in order to minimize the costs.

For each instance size n we generated 50 instances by randomly drawing n locations to visit plus
n possible locations for having lunch (the data does not provide information about such locations, but
usually there are restaurants or snack bars in the near area of stations). We show for each instance size
the averages of the total runtimes, the grounding times, the solving times, the percentage of instances
for which a solution was found within the time limit (column solution (%)), the average path length
(costs) of the instances with solutions (column length), the average number of necessary changes, not
counting changes between generic and line-specific station nodes (column changes), and the percentage
of instances with solutions which require a restaurant visit due to length of the tour (column lunch (%)).
The results are shown in Tables 2a, 2c and 2e using the full map, the map restricted to tram and subway,
and the map restricted to subway only, respectively. In addition to the wall clock, grounding and solving
time, we further show for the instances which have a solution the average path length (column length)
average number of necessary changes. The results show only the runtimes without domain predicates
and liberal safety, as for strong safety we observed only timeout instances.

10The number of instances for which no solution was found include both timeout instances and instances which have no solution.
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Table 2: Single Route Planning benchmark, results in secs; timeout (“—”) is 300 secs

(a) Full Map (single)

# w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%)

1 (50) 2.40 (0) 1.71 (0) 0.54 (0) 100.00 0.00 0.00 0.00
2 (50) 7.82 (0) 5.00 (0) 2.42 (0) 90.00 82.64 2.24 0.00
3 (50) 16.44 (0) 9.46 (0) 5.81 (0) 76.00 152.21 3.92 0.00
4 (50) 36.60 (0) 16.69 (0) 16.90 (0) 52.00 213.00 5.31 3.85
5 (50) 102.71 (0) 26.63 (0) 69.26 (0) 52.00 281.27 7.58 11.54
6 (50) 284.69 (38) 236.43 (38) 45.56 (0) 16.00 368.12 9.00 100.00
7 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(b) Full Map (pair)

# w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%)

1 (50) 11.60 (0) 9.32 (0) 1.31 (0) 82.00 150.98 4.54 0.00
2 (50) 34.20 (0) 26.00 (0) 6.54 (0) 90.00 300.69 8.53 0.00
3 (50) 89.21 (0) 53.31 (0) 29.95 (0) 44.00 449.77 11.14 9.09
4 (50) 204.73 (4) 107.60 (4) 83.28 (0) 76.00 592.87 15.47 84.21
5 (50) 297.29 (44) 278.85 (44) 15.03 (0) 12.00 710.00 17.50 100.00
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(c) Subway and Tram (single)

# w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%)

1 (50) 1.13 (0) 0.83 (0) 0.20 (0) 100.00 0.00 0.00 0.00
2 (50) 3.50 (0) 2.34 (0) 0.85 (0) 100.00 68.12 1.80 0.00
3 (50) 8.91 (0) 4.88 (0) 3.01 (0) 96.00 125.19 3.38 0.00
4 (50) 34.05 (2) 20.11 (2) 11.41 (0) 92.00 192.80 4.65 0.00
5 (50) 62.98 (0) 13.57 (0) 43.58 (0) 90.00 284.89 7.53 46.67
6 (50) 192.58 (11) 81.96 (11) 101.66 (0) 74.00 361.86 8.95 100.00
7 (50) 287.99 (38) 234.55 (38) 49.27 (0) 24.00 410.17 10.50 100.00
8 (50) 299.75 (48) 289.34 (48) 9.48 (0) 4.00 418.00 12.00 100.00
9 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(d) Subway and Tram (pair)

# w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%)

1 (50) 8.17 (0) 7.32 (0) 0.44 (0) 98.00 133.76 3.67 0.00
2 (50) 23.35 (0) 19.09 (0) 2.78 (0) 100.00 269.54 7.62 0.00
3 (50) 59.04 (0) 36.47 (0) 17.64 (0) 98.00 390.37 10.08 0.00
4 (50) 147.43 (3) 75.46 (3) 59.60 (0) 94.00 582.55 14.51 89.36
5 (50) 255.94 (17) 161.93 (17) 76.12 (0) 66.00 636.55 16.61 100.00
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(e) Subway Only (single)

# w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%)

1 (50) 0.89 (0) 0.65 (0) 0.15 (0) 100.00 0.00 0.00 0.00
2 (50) 2.89 (0) 1.92 (0) 0.66 (0) 100.00 64.04 1.22 0.00
3 (50) 8.08 (0) 4.10 (0) 2.91 (0) 100.00 127.16 2.62 0.00
4 (50) 23.87 (0) 7.31 (0) 13.72 (0) 100.00 206.78 4.16 12.00
5 (50) 57.30 (0) 11.69 (0) 39.37 (0) 100.00 317.08 7.20 90.00
6 (50) 107.05 (0) 17.32 (0) 78.33 (0) 100.00 364.32 8.46 100.00
7 (50) 225.16 (9) 73.97 (9) 135.58 (0) 82.00 405.27 9.61 100.00
8 (50) 299.90 (48) 289.15 (48) 9.83 (0) 4.00 353.00 9.00 100.00
9 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(f) Subway Only (pair)

# w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%)

1 (50) 7.72 (0) 6.97 (0) 0.30 (0) 98.00 124.51 2.45 0.00
2 (50) 21.35 (0) 17.69 (0) 2.19 (0) 100.00 251.66 4.94 0.00
3 (50) 60.00 (0) 33.79 (0) 21.05 (0) 100.00 375.08 7.46 4.00
4 (50) 167.44 (5) 80.97 (5) 74.14 (0) 90.00 565.33 10.98 82.22
5 (50) 267.17 (20) 169.57 (20) 81.00 (0) 60.00 627.70 12.30 100.00
6 (50) 299.05 (48) 292.38 (48) 4.88 (0) 4.00 640.00 13.00 100.00
7 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

Pair Route Planning. We created for each instance size of 1 ≤ n ≤ 15 locations (with at most
dn × 1.5e changes) a number of 50 instances, where the n locations for each person, n possible (non-
restaurant) meeting locations and n restaurants are drawn randomly. The results are shown in Ta-
bles 2b, 2d and 2f using the full map, the map restricted to tram and subway, and the map restricted
to subway only, respectively. Columns length and changes show the sums of the lengths of the tours and
of the necessary changes for both persons. For single route planning, the results show only the runtimes
without domain predicates and liberal safety; for strong safety we again observed only timeout instances.

Observations. In both scenarios we can observe that importing the whole map a priori is merely
impossible. Already the grounder fails with a timeout, but due to the large number of (unnecessary)
external atoms in the ground program, also solving would not be reasonably possible with the given data.
Only liberal safety allows for solving the task in the given time limit by importing only the relevant part
of the map during grounding. The external atom implements a cache both for the graph representation
of the map and the results of Dijkstra’s algorithm. The first external source call needs on our benchmark
system approximately 5 seconds to load the map (in case of the full map, but not for single route planning
with n = 1 which will not call the external source). Moreover, Dijkstra’s algorithm computes for a given
start node the shortest paths to all nodes, thus after the external source has been called for a certain start
node, successive calls for the same start node are significantly faster. In particular, the cache is already
filled with all relevant data during grounding, thus solving will spend only very little time in external
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sources and the solving time will mainly be caused by the HEX evaluation algorithms.
For pair route planning, note that even instances with n = 1 have a path longer than 0 because the

location for the meeting is not included in instance size n.
As expected, a restriction of the map to trams and subway or to subway only usually yields smaller

runtimes. Also the number of changes decreases because multiple tram and especially subway lines have
usually more shared stations than bus lines. With increasing number of locations to visit, the number of
restaurant visits usually increases as well. However, this is not a strict rule and the tables show some
exceptions as the locations were drawn at random and their distances is an important factor.
Summary. Our new grounding algorithm allows for grounding lde-safe programs. Instances that can be
grounded by the traditional algorithm as well, usually require domain predicates to be manually added
(often cumbersome and infeasible in practice, as for recursive data structures). Our algorithm does not
only relieve the user from writing domain predicates, but in many cases also has a significantly better
performance. Nonmonotonic external atoms might be problematic for our new algorithm. However, in
many cases, the worst case can be avoided by our new decomposition heuristics.

6. Related Notions of Safety

Our notion of lde-safety using bsyn(Π, r, S,B) ∪ bextsem (Π, r, S, B) compares to the traditionally
used sde-safety and to other formalizations

6.1. Strong Safety

One can now show that lde-safety is strictly less restrictive than sde-safety.

Proposition 11 Every sde-safe program Π is lde-safe.

The converse does not hold, as there are clearlyx lde-safe programs that are not strongly safe, cf. the
program Π′ from the introduction.

6.2. VI-Restricted Programs

Calimeri et al. (2007) introduced the notion of VI-restrictedness for VI programs, which amount to
the class of HEX-programs in which all input parameters to external atoms are of type const. Their
notion of attribute position dependency graph is related to ours, but our notion is more fine-grained for
attribute positions of external predicates. While we use a node attT (&g [X], i) for each external predicate
&g with input list X in a rule r and T ∈ {I, O}, 1≤ i≤ arT (&g), Calimeri et al. use just one attribute
position att (&g [X], i) for each i∈{1, . . . , ar I(&g)+ar O(&g)} independent of X. Thus, neither multi-
ple occurrences of &g with different input lists in a rule, Thus, neither multiple occurrences of &g with
different input lists in a rule, nor of the same attribute position in multiple rules are distinguished; this
collapses distinct nodes in our attribute position dependency graph into one.

Example 19 Consider program Π = {r1 : t(X)← s(X),&e[X](Y ), r2 : r(X)← t(Z),&e[Z](Y )}.
We have the attribute positions

att (s, 1), att (t, 1), att (r, 1), att I(&e[X], 1), att O(&e[X], 1), att I(&e[Z], 1), att O(&e[Z], 2)
with edges

(att (s, 1), att I(&e[X], 1)), (att I(&e[X], 1), att O(&e[X], 1)), and (att O(&e[X], 1), att (t, 1))
originating from the first rule of Π, and the edges

(att (t, 1), att I(&e[X], 1)), (att I(&e[Z], 1), att O(&e[Z], 1)), (att O(&e[Z], 1), att (t, r))
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originating from the second rule of Π. In contrast, Calimeri et al. (2007) have attribute positions
att (s, 1), att (t, 1), att (r, 1), att (&e, 1), att (&e, 2)

with edges
(att (s, 1), att (&e, 1)), (att (&e, 1), att (&e, 2)), (att (&e, 2), att (t, 1)), (att (t, 1), att (&e, 1)),
(att (&e, 2), att (r, 1)). 2

Using bs2 , we establish the following result.

Proposition 12 Every VI-restricted program Π is lde-safe.

The converse does not hold, as there are clearly lde-safe VI-programs (due to semantic criteria) that
are not VI-restricted.

6.3. Logic Programs with Function Symbols

Syrjänen (2001) defined ω-restricted logic programs, which allow function symbols in an ordinary
logic program under a level mapping to control the introduction of new terms with function symbols to
ensure decidability. Calimeri et al. (2007) observe that such programs Π can be rewritten to VI-programs
F (Π) using special external predicates that compose/decompose terms from/into function symbols and
a list of arguments, such that F (Π) is VI-restricted. As every VI-restricted program, viewed as a HEX-
program, is by Proposition 12 also lde-safe, we obtain:

Proposition 13 If an ordinary logic program Π is ω-restricted, then F (Π) is lde-safe.

As lde-safety is strictly more liberal than VI-restrictedness, it is also more liberal than ω-restricted-
ness. More expressive variants of ω-restricted programs are λ-restricted programs (Gebser et al., 2007),
argument-restricted programs (Lierler and Lifschitz, 2009) and Γ-acyclic programs Greco et al. (2012).
These notions can be captured within our framework as well, but argument-restricted programs Π exist
such that F (Π) is not lde-safe wrt. bs2 . The reason is that specific properties of the external atoms
resp. sources for term (de)composition are needed, while our TBF bs2 builds on general external sources.
However, tailored TBFs can be used (which shows the flexibility of our modular approach). A further
generalization of Γ-acyclic programs are bounded programs, which do not track the propagation of single
terms through the program but consider whole rule bodies (Greco et al., 2013). This allows for deriving
termination even if the term depth of single terms increases, as long as the set of terms in a rule does
not increase. Also the notions of model-faithful (MFA) and model-summarizing acyclicity (MSA) (Grau
et al., 2013), which have been developed in the context of positive existential rules, can be expressed
in our framework. They are both more refined than other notions of acyclicity to identify cases where
the chase procedure for query answering terminates, but MSA acyclicity is coarser and less complex to
check than MFA acyclicity. The key idea is a dependency analysis by examining the actual structure of
the so-called universal model of the program formed by the existential rules. This analysis, however, can
be done within a term bounding function, and thus these notions can be captured in our framework.

Similarly, i.e., by means of dedicated external atoms for (de)composing terms and a specialized TBF,
so-called FD programs (Calimeri et al., 2008) map into our framework. Finitary programs (Bonatti, 2004,
2002) and FG programs (Calimeri et al., 2008), however, differ more fundamentally from our approach
and cannot be captured as lde-safe programs using TBFs, as they are not effectively recognizable (and
FD-programs are even not finitely restrictable in general).
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6.4. Term Rewriting Systems

A term rewriting system is a set of rules for rewriting terms to other terms. Termination is usually
shown by proving that the right-hand side of every rule is strictly smaller than its left-hand side (Zantema,
1994, 2001). Our notion of benign cycles is similar, but different from term rewriting systems the values
do not need to strictly decrease. While terms that stay equal may prevent termination in term rewriting
systems, they do not harm in our case because they cannot expand the grounding infinitely.

6.5. Programs with Existential Quantification

There are extensions of ASP towards integration of logical existential quantification, see e.g., (Al-
viano et al., 2012). In order to guarantee finite restrictability, syntactic conditions are employed in order
to ensure that a finite subset of the grounding suffices for query answering. The approach by Alviano
et al. (2012) makes use of a chase procedure adopted from (Calı̀ et al., 2009). Existential quantifiers can
also easily be integrated into our algorithm. To this end, a generalized version of the algorithm presented
in this paper supports hooks which can be used to integrate application-specific termination criteria. As
an example, query answering over programs with existential quantifiers can sometimes be done using
a finite grounding even if the program has infinite models. To this end, depending on the number of
existentially quantified variables in the query, the grounding process is terminated after a finite number
of steps; we refer to (Eiter et al., 2014c) for details.

6.6. Other Notions of Safety

Related to our semantic properties are the approaches by Sagiv and Vardi (1989), Ramakrishnan et al.
(1987), and Krishnamurthy et al. (1996). They exploited finiteness of attribute positions (cf. item (i) in
Definition 13) in sets of Horn clauses and derive finiteness of further attribute positions using finiteness
dependencies. This is related to item (ii) in Definition 13 and item (iii) in Definition 9. However, they
did this for query answering over infinite databases but not for model building.

Less related to our work are (Cabalar et al., 2009), (Lee et al., 2008), and (Bartholomew and Lee,
2010), where safety resp. argument restrictedness was extended to arbitrary first-order formulas with(out)
function symbols under the stable model semantics rather than a generalization of the concepts given.

While a formal comparison with our approach is only possible for concrete other notions of safety, we
can at a meta-level say that in general arbitrary notions of safety with finite groundings that are based on
the program rules can be easily expressed in our approach. This is because TBFs as in Definition 7 have
full access to the program at hand. Thus, the simulation of some approach by a term bounding function
is easily possible by declaring all variables in all rules as bounded, if the approach considers the given
program to be safe. While this naive simulation works for all approaches which can decide safety based
on the program at hand, other notions (e.g. VI-restricted programs) are based on an iterative expansion
of sets of safe variables, external sources or rules. For such approaches, a simulation by exploiting the
incremental extension of bounded terms as in Definition 8 may be applied.

7. Conclusion

We have presented a framework for obtaining classes of HEX-programs, which are ASP programs
with external sources, that allow for finite groundings sufficient for evaluation over an infinite domain
(which arises by “value invention” in external atoms). It is based on term bounding functions (TBFs) and
enables modular exchange and combination of such functions under the novel notion of liberal domain
expansion (lde) safety. Hitherto separate syntactic and semantic safety criteria can be combined, which

31



pushes the class of HEX-program with evaluation via finite grounding considerably. We have provided
sample TBFs that capture syntactic criteria similar to but more fine-grained than ones by Calimeri et al.
(2007), and semantic criteria related to those by Sagiv and Vardi (1989) and Ramakrishnan et al. (1987),
but target model generation (not query answering). Deploying them, classes that strictly enlarger classes
available through well-known safety notions for ASP programs are obtained, and other notions can be
modularly integrated. An implementation of lde-safety in the DLVHEX-framework is available for use.

Together with lde-safety, we have also presented a new grounding algorithm for HEX-programs. In
contrast to previous grounding techniques for ASP and HEX-programs, it can handle all lde-safe pro-
grams directly and does not rely on program decomposition. This is an advantage, as program splitting
negatively affects learning techniques described by Eiter et al. (2012). The worst case of the new al-
gorithm can be effectively avoided as shown by Eiter et al. (2013a). An experimental evaluation of our
implementation on synthetic and real applications shows a clear benefit.

Open Issues and Future Work. While lde-safe HEX-programs are ready for use via the DLVHEX-
system, several issues remain naturally for future work. One such isses is to identify further TBFs and
suitable well-orderings of domains in practice. Of particular interest are external atoms that provide built-
in functions and simulate, in a straightforward manner, particular interpreted function symbols. On the
implementation side, further refinement and optimizations are an issue, as well as a library of TBFs and a
plugin architecture that supports creating customized TBFs easily, to make our framework more broadly
usable. Connected with this are refinements of our algorithm and heuristics. Here, meta-information
about external sources to identify programs that allow for a better grounding and to reduce worst case
costs of inputs are of interest. A particular challenge is also a sensitive integration of grounding and
solving under decomposition, which are currently not much aligned. Finally, exploring on the application
side the benefits of our results e.g. for domain-specific value invention (i.e., existential quantifiers under
restrictions, which occurs prominently in configuration problems) appears to be an interesting direction.
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Appendix A. Extended Semantic Term Bounding Function

In addition to the properties from Section 3.4.2, cyclicity and wellorderings can be exploited for
deriving boundedness of terms. Our concept is based on malign cycles in the positive attribute position
dependency graphs, which are the source of any infinite value invention. The positive attribute position
dependency graph GA(Π) has as nodes the attribute positions of Π and its edges model the information
flow between the attribute positions. For instance, if for rule r we have p(X)∈H(r) and q(Y)∈B+(r)
such that Xi =Yj for some Xi ∈X and Yj ∈Y, then we have a flow from att (q, j) to att (p, i).

Formally, the positive attribute position dependency graph is defined as follows.

Definition 19 (Positive Attribute Position Dependency Graph) For a given HEX-program Π, the pos-
itive attribute position dependency graph GA(Π) = 〈Attr , E〉 has as nodes Attr the set of all attribute
positions in Π and the least set of edges E such that for all r ∈ Π:

• If p(X) ∈ H(r), q(Y) ∈ B+(r) and for some i, j we have that Xi = Yj is a variable, then
(att (q, j), att (p, i)) ∈ E.

• If &g [X](Y) ∈ B+(r), p(Z) ∈ B+(r) and for some i, j we have that Zi = Xj and τ(&g , i) =
const, then (att (p, i), att I(&g [X], j)) ∈ E.

• If &g [X](Y) ∈ B+(r), &h[V](U) ∈ B+(r) and for some i, j we have that Vi = Yj and
τ(&h, i) = const, then (att O(&g [X], j), att [(&h, )X]Ii) ∈ E.

• If &g [X](Y) ∈ B+(r) then (att I(&g [X], i), att O(&g [X], j)) ∈ E for all 1 ≤ i ≤ iar(&g) and
1 ≤ j ≤ oar(&g)..

• If p(X) ∈ H(r), &g [Y](Z) ∈ B+(r) and and for some i, j we have that Xi = Zj is a variable,
then (att O(&g [X], j), att (p, i)) ∈ E.

• If &g [X](Y) ∈ B+(r) s.t. p = Xi and τ(&g , i) = pred, then (att (p, k), att I(&g [X], i)) ∈ E for
all 1 ≤ k ≤ ar(p).

The transitive closure of the edge relation in GA is denoted by→+
GA

. Intuitively, GA(Π) models the
information flow in Π.

Example 20 (cont’d) The (positive) attribute position dependency graph of the program from Example 7
has the attribute positions
{att (s, 1), att (dom, 1), att I(&concat [X , x ], 1), att I(&concat [X,x], 2), att O(&concat [X,x], 1)}

and the edges
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att (dom, 1) att (s, 1)att I(&concat [X,x], 1)

att O(&concat [X,x], 1)

att I(&concat [X,x], 2)

Figure A.3: Attribute position dependency graph for Π in Example 20

{(att (dom, 1), att (s, 1)), (att (s, 1), att I(&concat [X,x], 1)),
(att I(&concat [X,x], 1), att O(&concat [X,x], 1)),
(att I(&concat [X,x], 2), att O(&concat [X,x], 1)), (att O(&concat [X,x], 1), att (s, 1))}

(see Figure A.3). 2

Definition 20 (Benign and Malign Cycles) A cycle K in GA(Π) is benign wrt. a set of safe attribute
positions S, if there exists a well-ordering≤C of C, such that for every attribute position att O(&g [X], j) 6∈
S in the cycle, we have that f&g(A, x1, . . . , xm, t1, . . . tn) = 0 whenever
• some xi for 1≤ i≤m is a predicate parameter, att I(&g [X], i) 6∈S is in K, and (s1, . . . , sar(xi))
∈ ext(A, xi), and tj 6≤C sk for some 1 ≤ k ≤ ar(xi); or

• some xi for 1≤ i≤m is a constant input parameter, att I(&g [X], i) 6∈ S is in K, and tj 6≤C xi.
A cycle in GA(Π) is called malign wrt. S if it is not benign.

Intuitively, a cycle is benign if external atoms never deliver larger values wrt. to their yet unsafe cyclic
input. As there is a least element, this ensures a finite grounding.

Example 21 (cont’d) The cycle in GA(Π) (dashed lines in Figure A.3) is malign wrt. S = ∅ because
there is no well-ordering as required by Definition 20. Intuitively, this is because the external atom
infinitely extends the string.

If we replace &concat [X,x](Y ) in Π by &tail [X](Y ), i.e., we compute the string Y from X with
the first character removed, then the cycle in the adapted attribute position dependency graph becomes
benign using < over the string lengths as well-ordering. 2

We can now define an extended semantic term bounding function which takes into account the prop-
erties from Section 3.4.2 and malign cycles.

Definition 21 (Extended Semantic Term Bounding Function) Let bextsem(Π, r, S,B) be defined such
that we have t ∈ bextsem(Π, r, S,B) iff

(i) t is captured by some attribute position α in B+(r) that is not reachable from malign cycles in
GA(Π) wrt. S, i.e., if α = att (p, i) then t = ti for some body atom p(t1, . . . , t`) ∈ B+(r),
and if α = attT (&g [X], i) then t = Y T

i for some external atom &g [YI](YO) ∈ B+(r) where
YT = XT

1 , . . . , Y
T

ar (&g); or

(ii) t ∈ bsem(Π, r, S,B).

Proposition 14 Function bextsem(Π, r, S,B) defined above is a TBF.
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Appendix B. Proofs

Appendix B.1. Liberal Safety (Section 3)

Proof of Proposition 2. There are only finitely many ordinary and external predicates with finite (input
and output) arity. 2

For the following proofs, let Bn+1,j denote the intermediate result when computing b∞Π,r,Sn(Π)(∅)
after the j-th iteration. Then Bn(r,Π) =

⋃
j≥0Bn,j and for each t ∈ Bn(r,Π) there is some j ≥ 0 such

that t ∈ Bn,j(r,Π).

Proof of Proposition 3. We prove this by induction on n.
For n = 0 we have S0(Π) = ∅ and the proposition holds trivially.
For the induction step n 7→ n + 1, assume that the attribute positions in Sn(Π) are lde-safe (outer

induction hypothesis). We first show that for each rule r and term t ∈ Bn+1(r,Π), the set of ground
instances of r in G∞Π (∅) contains only finitely many different substitutions for t.

As stated above, since t ∈ Bn+1(r,Π) there is some j ≥ 0 such that t ∈ Bn+1,j(r,Π) . We consider
Bn+1,j(r,Π) and again prove this by induction on j. For j = 0 we have Bn+1,0(r,Π) = ∅ and the
proposition holds trivially. For the induction step j 7→ j + 1, assume that the terms in Bn+1,j(r,Π)
are bounded (inner induction hypothesis). Let t ∈ Bn+1,j+1(r,Π). If t ∈ Bn+1,j(r,Π) then the claim
follows from the inner induction hypothesis. Otherwise t is added in step j + 1. By the outer induction
hypothesis all attribute positions in Sn(Π) have a finite range in G∞Π (∅). By the inner induction hypoth-
esis there are only finitely many substitutions for all terms t ∈ Bn+1,j(r,Π) in G∞Π (∅). This fulfills the
conditions of TBFs (Definition 7). Since b is a TBF, this implies that there are also only finitely many
substitutions for all t ∈ b(r, Sn(Π), Bn+1,j). This proves the inner induction statement and, by definition
of Bn(r,Π), also that for each t ∈ Bn+1(r,Π) the set of ground instances of r in G∞Π (∅) contains only
finitely many different substitutions for t.

If att (p, i) ∈ Sn+1(Π), then for each rule r ∈ Π and atom p(t1, . . . , tar(p)) ∈ H(r) we have
ti ∈ Bn+1(r,Π). As we have shown, this means that there are only finitely many different substitutions
for ti in the ground instances of r in the set G∞Π (∅). As there are also only finitely many different rules
in Π, and the number of substitutions for the term ti in the head of r is finite, this implies that also the set{
ti | p(t1, . . . , tar(p)) ∈ A(G∞Π (∅))

}
is finite.

If att I(&g [X], i) ∈ Sn+1(Π), then the i-th input parameter is either of type constant and Yi is a
constant or a variable, or it is of type predicate. If it is of type constant and Yi is a constant, then there
exists only one ground instance. If it is of type constant and Yi is a variable, then Yi ∈ Bn+1(r,Π),
for which we have shown that there are only finitely many different substitutions for Y . If it is of type
predicate input parameter p, then the range of all attribute positions att (p, 1), . . . , att (p, ar(p)) inG∞Π (∅)
is finite by the (outer) induction hypothesis.

If att O(&g [X], i) ∈ Sn+1(Π), then either att I(&g [X], 1), . . . , att I(&g [X], ar I(&g)) ∈ Sn(Π), or r
contains some &g [Y](X) s.t. Yi is bounded.

If att I(&g [X], 1), . . . , att I(&g [X], ar I(&g)) ∈ Sn(Π), then the range of all input parameters in
G∞Π (∅) is finite by the (outer) induction hypothesis. But then there exist only finitely many oracle calls
to &g . As each such call can introduce only finitely many new values, also the range of each output
parameter inG∞Π (∅) is finite. If r contains an external atom &g [Y](X) such that Yi is bounded, then only
finitely many substitutions for att O(&g [X], i) can satisfy the rule body, thus G∞Π (Π) will also contain
only finitely many values for att O(&g [X], i). Thus, the (outer) induction hypothesis holds for n + 1,
which proves the statement. 2
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Proof of Corollary 4. If a ∈ S∞ then a ∈ Sn for some n ≥ 0 and the claim follows from Proposition 3.
2

Proof of Corollary 5. Since Π is lde-safe by assumption, a ∈ S∞(Π) for all attribute positions a of Π.
Then by Corollary 4, the range of all attribute positions of Π in G∞Π (∅) is finite. But then there exists also
only a finite number of ground atoms in G∞Π (∅). Since the original non-ground program Π is finite, this
implies that also the grounding is finite. 2

Proof of Proposition 6. We construct the grounding grndC(Π) as the least fixpoint G∞Π (∅) of the
grounding operator GΠ(X), which is known to be finite by Corollary 5. The set C is then implicitly
given by the set of constants appearing in grndC(Π). It remains to show that indeed grndC(Π) ≡pos

grndC(Π). We will show the more general proposition grndC(Π) ≡pos grndC′(Π) for any C ′ ⊇ C.
(⇒) Suppose A ∈ AS

(
grndC(Π)

)
. We show now that A is an answer set of grndC′(Π). First

observe that A 6|= B+(r) for all r ∈ grndC′(Π) \ grndC(Π); otherwise r ∈ GΠ

(
grndC(Π)

)
, which

contradicts the assumption that grndC(Π) is the least fixpoint of GΠ(∅). Therefore, A |= grndC′(Π).
Moreover fgrndC(Π)A = fgrndC′(Π)A, hence A is a subset-minimal model of the FLP-reduct of
grndC′(Π) iff A is a subset-minimal model of the FLP-reduct of grndC(Π), which is the case because
A ∈ AS

(
grndC(Π)

)
. Therefore A ∈ AS

(
grndC′(Π)

)
.

(⇐) Now suppose A ∈ AS
(
grndC′(Π)

)
. Then we have A′ = A ∩ A

(
grndC(Π)

)}
is a model

of grndC(Π). Then we have A′ 6|= B+(r) for all r ∈ grndC′(Π) \ grndC(Π); otherwise r ∈
GΠ

(
grndC(Π)

)
, which contradicts the assumption that grndC(Π) is the least fixpoint of GΠ(∅). There-

fore, A′ |= grndC′(Π). But this implies that A = A′: by construction of A′ we have A′ ⊆ A,
and A′ ( A would imply that A is not subset-minimal, which contradicts the assumption that A ∈
AS
(
grndC′(Π)

)
. Moreover, fgrndC(Π)A

′
= fgrndC′(Π)A. Therefore A′ is a subset-minimal model

of the FLP-reduct of grndC(Π) iff A is a subset-minimal model of the FLP-reduct of grndC′(Π), which
is the case because A ∈ AS

(
grndC′(Π)

)
. Thus we have A′ ∈ AS

(
grndC(Π)

)
. The observation

A′ = A concludes the proof. 2

Proof of Proposition 7. If t is in the output of bsyn(Π, r, S,B), then one of the conditions holds. If
Condition (i) holds, then t is a constant, hence there is only one ground instance. If Condition (ii) holds,
then t must also occur as value for att (q, j), which has a finite range by assumption.

If Condition (iii) holds, then t is output of an external atom such that there are only finitely many
substitutions of its constant inputs and the attribute positions of all predicate inputs have a finite range by
assumption. Thus there are only finitely many different oracle calls with finite output each. 2

Proof of Proposition 8. If Condition (i) holds, then the claim follows immediately from finiteness of
the domain of the respective external atom.

If Condition (ii) holds, then the external atom cannot introduce new constants. Because the set of
constants in the extension of the respective input parameter Yj is finite by assumption that att (Yj , k) ∈ S
for all 1 ≤ k ≤ ar(Yj), it follows that also the set of constants in the output of the external atom is finite.

If Condition (iii) holds, then there are only finitely many different substitutions for t because the
output of the respective external atom is bound by the precondition of TBFs and the finite fiber ensures
that there are only finitely many different inputs for each output. 2

Proof of Theorem 9. For t ∈ b(Π, r, S,B), t ∈ bi(Π, r, S,B) for some 1 ≤ i ≤ `. Then there are only
finitely many substitutations for t in G∞Π (∅) because bi is a TBF. 2
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Algorithm GroundHEXNaive:
Input: An lde-safe HEX-program Π
Output: A ground HEX-program Πg s.t. AS(Πg) ≡ AS(Π)

(a) Πp = Π ∪ {r&g[Y](X)
inp | &g[Y](X) in r ∈ Π}}

Replace all external atoms &g[Y](X) in all rules r in Πp by e&gY(X)
(b) repeat

Πpg ← grndC(Πp) with constants C in Πp // partial grounding
(c) for all models A of Πpg over A(Πpg ) do // check if the grounding is large enough
(d) for &g[Y](X) in a rule r ∈ Π do // evaluate all external atoms

(e) for y ∈ {c | r&g[Y](X)
inp (c) ∈ A} do

(f) Let O = {x | f&g(A,y,x) = 1}
Πp ← Πp ∪ {e&g[y](x) ∨ ne&g[y](x)←| x ∈ O} // add ground guessing rules

until Πpg did not change
(g) Πg ← Πpg

Remove input auxiliary rules and external atom guessing rules from Πg

Replace all e&g[y](x) in Πg by &g[y](x)

return Πg

Appendix B.2. Grounding Liberally Domain-expansion Safe HEX-Programs (Section 4)

Towards a proof of the soundness and correctness of Algorithm GroundHEX we first consider a
slower but easier to prove variant GroundHEXNaive of it, for which we show soundness and complete-
ness; we then prove that the optimizations in GroundHEX do not harm these properties.

Compared to the naive Algorithm GroundHEXNaive, Algorithm GroundHEX contains the following
modifications. The first one concerns the ordinary ASP grounder. We allow the grounder to optimize the
grounding as formalized by Definition 18.

The second change concerns the external atoms evaluated at (d). Intuitively, an external atom may be
skipped if it can only return constants, which are guaranteed to appear also elsewhere in the grounding.

The third optimization concerns the enumeration of assignments. Note that Step (c) in GroundHEX-
Naive enumerates all models of Πpg . That is, in order to ground the program, an ASP solver must be
called, which is computationally expensive and in fact unnecessary. Step (d) in GroundHEX simply enu-
merates assignments directly extracted from the partial grounding, constructed in a way guaranteeing that
all relevant ground instances of the external atoms are represented in the grounding.

We now illustrate the algorithm with an example.

Example 22 Let Π = {d(x); q(Y ) ← d(X),&concat [X, a](Y )} be the program, where the exter-
nal atom &concat [c1, c2](c3) is true iff c3 is the concatenation of c1 and c2. Then in the first iter-
ation Πp = {d(x) ∨ d(y); q(Y ) ← d(X), e&concat[X,a](Y ); ginp(X) ← d(X)}, where ginp is the
unique auxiliary input predicate for &concat [X, a](Y ). The grounding step yields then Πpg = {d(x);
q(Y ) ← d(X), e&concat[X,a](Y ); ginp(X, a) ← d(X) | X,Y ∈ {x, y}}. Now the algorithm comes
to the checking phase at (c) and (d). Note that ginp(x, a) and ginp(y, a) appear in all models A of Πpg .
Therefore the algorithm evaluates &concat under inputs x, a and y, a and collects all output tuples x such
that f&g(A, x, a,x) = 1 resp. f&g(A, y, a,x) = 1 holds. This holds for the output tuples xa and ya .
Thus, Step (f) adds the rules e&g[x,a](xa) ∨ ne&g[x,a](xa) ← and e&g[y,a](xa) ∨ ne&g[y,a](ya) ← to Πp

and grounding starts over again. In the next iteration, the rule instances q(xa)← d(x), e&concat[x,a](xa)
and q(ya) ← d(y), e&concat[y,a](ya) will appear in Πpg . However, as no new atoms ginp(y) appears in
any of the models of the updated Πpg , the loop terminates after the second iteration. 2
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We now come to the formal proof that this procedure always returns a grounding which has the same
answer sets as the original program. As the programs Πp and Πpg are iteratively updated in the algorithm,
whenever we write Πp or Πpg in one of the proofs, then by convention we refer to the status after the
main loop terminated, i.e., at Step (g) (resp. Step (g) in Algorithm GroundHEX).

A key concept in our proofs will be that of representation of external atoms in a ground program.

Definition 22 For a ground external atom &g [y](x) in a rule r, its representation degree in a program
Π is 0, if Π contains a rule e&g[y](x) ∨ ne&g[y](x) ←. It is n + 1, if Π contains a rule with head
e&g[y](x)∨ne&g[y](x) and the maximum representation degree of all &h[w](v) s.t. es,&h[w](v) occurs in
in the body, is n. Otherwise (i.e., there is no rule with head e&g[y](x) ∨ ne&g[y](x)), the representation
degree is undefined.

If the representation degree for some ground external atom is undefined, we also say that the external
atom is not represented. Intuitively, if an external atom is represented, this means that the program
contains a guessing rule for the respective replacement atom. The representation degree specifies on how
many other external atom replacements this guess depends on. Note that in general, an external atom
can have multiple representation degrees simultaneously. However, in the following we will only use its
minimum representation degree and can therefore drop the prefix minimum.

Towards a proof of the soundness and correctness of Algorithm GroundHEXNaive, we first prove the
following lemma.

Lemma 15 Let Πg = GroundHEXNaive(Π) and C be the constants which appear in Πg . Then for any
C ′ ⊇ C and each model A of grndC(Π), A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π).

Proof. Let A be a model of grndC(Π). Then it can be extended to a model Apg of Πpg as follows:

• For all e&g[y](x) ∈ A(Πpg), add e&g[y](x) if f&g(A,y,x) = 1 and add atom ne&g[y](x) otherwise.

• Add all g&g
inp(y) ∈ A(Πpg), for all predicates g&g

inp occurring in the head of some rainp (for an
external atom a = &g [Y](X)).

This satisfies each ground instance of each input auxiliary rule rainp because the head g&g
inp(y) is true.

Moreover, because A is a model of grndC(Π) = Πg and Πpg contains e&gy(x) in place of &g [y](x) and
we set e&g[y](x) to true iff f&g(A,y,x) = 1, it satisfies also all remaining rules.

We show now that A is also a model of grndC′(Π). Let r ∈ grndC′(Π) and suppose A 6|= r, then
A 6|= H(r) and A |= B(r). Since A |= B(r), we have A |= a for each ordinary literal a ∈ B(r). If
there would be only ordinary literals in B(r), then Πg would also contain this rule instance because all
constants in B(r) must appear in the atoms which are true in A und thus in Πg . Hence, A could not be
a model of Πg . Therefore there must be external atoms in B(r).

We show now that each positive external atom in r is represented in Πpg (with degree 0). Suppose
there is an external atom in B(r) which is not represented in Πpg . Then, due to safety of r, which forbids
cyclic passing of constant input within a rule body, there is also a ‘first’ unrepresented external atom
&g [v](u), i.e., one such that all its input constants in v either: (1) appear in a positive ordinary atom, (2)
appear in the output list of a represented external atom, or (3) were already constants in the program.
In all three cases, the input auxiliary rule for &g [v](u) is instantiated for this v because its body atoms
are potentially true (they are ordinary atoms or replacement atoms of represented external atoms), i.e.,
g&g

inp(v) appears in the program and is therefore true in Apg . Thus, the loop at (e) would evaluate &g
with Apg and v and determine all tuples w s.t. f&g(Apg ,v,w) = 1. However, f&g(Apg ,v,u) = 0,
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because otherwise rule e&g[v](u)∨ne&g[v](u)← would have been added at (f) to Πp and thus &g [v](u)
would be represented in Πpg , which contradicts our assumption. But if f&g(Apg ,v,u) = 0 then also
f&g(A,v,u) = 0 because Apg and A differ only on input auxiliary atoms and external atom replacement
atoms, which would imply A 6|= B(r).

Thus, all positive external atoms are represented in Πpg . But as default-negated ones cannot introduce
new values due to ordinary safety, all constants in r also appear in Πg , thus r ∈ Πg . But then A could
not be a model of Πg if A |= B(r), hence A 6|= B(r). 2

Now we can show that Algorithm GroundHEXNaive is sound and complete.

Theorem 16 If Π is a lde-safe HEX-program and Πg = GroundHEXNaive(Π), then Πg ≡ Π.

Proof. Let Πg = GroundHEXNaive(Π). For the proof, observe that Πg = grndC(Π) where C is the
set of all constants which appear in Πg . We show now

grndC(Π) ≡ grndC′(Π)

for any C ′ ⊇ C. Because Π ≡ grndC(Π) for Herbrand universe C ⊇ C by definition of the HEX-
semantics, this implies the proposition.

Termination of the algorithm follows from Theorem 10, where we will prove that an optimized ver-
sion of the algorithm, which may produce a larger grounding (wrt. the number of constants) but need less
iterations, terminates. As the grounding produced by this algorithm is even smaller, it terminates as well.

(⇒) Let A ∈ AS
(
grndC(Π)

)
. By Lemma 15 it is also a model of grndC′(Π). It remains to show

that it is also a subset-minimal model of fgrndC′(Π)
A. Since C ⊆ C ′, fgrndC(Π)

A ⊆ fgrndC′(Π)
A.

By Lemma 15, A 6|= B(r) for any r ∈ grndC′(Π) \ grndC(Π), thus fgrndC(Π)
A

= fgrndC′(Π)
A.

But since A ∈ AS
(
grndC(Π)

)
, it is a minimal model of fgrndC(Π)

A, thus also of fgrndC′(Π)
A, i.e.,

A ∈ AS
(
grndC′(Π)

)
.

(⇐) Let A′ ∈ AS
(
grndC′(Π)

)
. We show that A = A′ ∩ A

(
grndC(Π)

)
is an answer set of

grndC(Π). Because grndC(Π) ⊆ grndC′(Π), it is trivial that A is a model of grndC(Π). It remains to
show that it is also a subset-minimal model of fgrndC(Π)

A. By Lemma 15, A is a model of grndC′(Π).
Clearly, A ⊆ A′. But A ( A′ would imply that A′ is not subset-minimal, which contradicts the
assumption that it is an answer set of grndC′(Π), thus A = A′. Because grndC(Π) ⊆ grndC′(Π) and
A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π), it holds that fgrndC(Π)A = fgrndC′(Π)A. Because
A is a subset-minimal model of grndC′(Π)A, it is a subset-minimal model of fgrndC(Π)A. Thus, A is
an answer set of grndC(Π). 2

We now come to the proof of soundness and completeness of our optimized Algorithm GroundHEX.
We start with a lemma analogous to Lemma 15.

Lemma 17 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg . Then for any
C ′ ⊇ C and each model A of grndC(Π), A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π).

Proof. Let A be an model of grndC(Π). Then it can be extended to a model Apg of Πpg as follows:

• For all e&g[y](x) ∈ A(Πpg), add e&g[y](x) if f&g(Ag,y,x) = 1 and add atom ne&g[y](x) other-
wise.

• Add all g&g
inp(y) ∈ A(Πpg), for all predicates g&g

inp occurring in the head of some rainp (for an
external atom a = &g [Y](X)).
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This satisfies all guessing rules as for each &g [y](x) one of the atoms e&g[y](x) or ne&g[y](x) is true,
and each input auxiliary rule rainp because the head g&g

inp(y) is true. Moreover, because A is a model of
grndC(Π), it is also a model of the (possibly) less restrictive program Πg . Since Πpg contains e&gy(x)
in place of &g [y](x) and we set e&g[y](x) in Apg to true iff f&g(A,y,x) = 1, Apg satisfies also all
remaining rules in program Πpg .

We show now that A is a model of grndC′(Π). Let r ∈ grndC′(Π) and suppose A 6|= r, i.e.,
A 6|= H(r) but A |= B(r).

As we have seen in the proof of Theorem 16, all lde-safety relevant positive external atoms in r are
represented with degree 0 in the program computed by Algorithm GroundHEXNaive. As such external
atoms are handled equivalently by our optimized algorithm, they are also represented in Πpg . We show
that this holds also for positive external atoms which are not lde-safety relevant.

Suppose r contains an external atom which is not lde-safety relevant and which is not represented
in Πpg . Then there is a ‘first’ such external atom &g [v](u) in B(r), i.e., its input list only contains
constants which (1) appear in ordinary atoms, (2) appear in lde-safety relevant external atoms, or (3)
were already constants in the program. In all three cases, the input auxiliary rule for &g [v](u) is
instantiated for this v because its body atoms are potentially true (ordinary atoms appear also inB(r) and
are potentially true, otherwise r would not have been added to Πg; external atoms are all not lde-safety
relevant and are potentially true since they are represented with degree 0), i.e., g&g

inp(v) appears in the
program. Moreover, the respective external atom guessing rule is instantiated for v and u because all its
body atoms are potentially true (with the same argument as for input auxiliary rules). Thus, &g [v](u)
would be represented in Πp with some degree > 0, and thus also in Πpg and Πg .

Thus, all positive external atoms are represented in Πpg . But as default-negated ones cannot introduce
new values due to ordinary safety, all constants in r also appear in Πg , thus a strengthening of r would
be in Πg . But then A could not be a model of Πg if A |= B(r), hence A 6|= B(r). 2

We now show some additional lemmas to simplify the proof of soundness and completeness of the
optimized algorithm GroundHEX.

Lemma 18 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg . Every answer set A
of Πg can be extended to an answer set Apg of Πpg .

Proof. Let A ∈ AS(Πg). Then Apg is constructed by iteratively adding additional atoms to A as
follows:

• If the body B of an external atom guessing rule e&g[y](x)∨ ne&g[y](x)← B in Πpg is satisfied by
Apg , add e&g[y](x) if f&g(A,y,x) = 1 and add atom ne&gy(x) otherwise.

• Add all g&g
inp(y) ∈ A(Πpg) if the body of the respective input auxiliary rule is satisfied by Apg .

Note that this operation is monotonic because input auxiliary rules and external atom guessing rules
contain only positive body literals.

Then the fixpoint of this operation Apg is by construction a model of all input auxiliary rules and
external atom guessing rules. Moreover, it is also a model of all remaining rules because A is a model
of the corresponding rules in Πg with external atoms in place of replacement atoms, and we set the truth
values of the external atom replacement atoms exactly to the truth values of the external atoms in A. Note
that there might be external atoms in Πg for which neither e&g[y](x) nor ne&g[y](x) is added to Apg , but
then the body of the respective external atom guessing rule is unsatisfied by Apg . But since the body of
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an external atom guessing rule is a subset of the body of the rule where this external atom occurs, also
this rule is satisfied.

It remains to show that Apg is also a subset-minimal model of fΠpg
Apg . Suppose there is a smaller

model A′pg ( Apg . Then Apg \ A′pg must contain at least one atom which is not a replacement atom
or an input auxiliary atom, because by construction of Apg such atoms are only set to true if necessary,
i.e., if they are supported by A, and all rules used to derive such atoms are also in fΠpg

Apg . We now
show that the restriction of A to ordinary atoms A′ ( A (i.e., without replacement atoms e&g[y](x) and
ne&g[y](x) and without external atom input atoms g&g

inp(y)) is a model of fΠg
A, which contradicts the

assumption that A is an answer set of Πg .
Note that, except for the external atom guessing and input auxiliary rules, the reduct fΠpg

Apg contains
the same rules as fΠg

A with replacement atoms instead of external atoms. Thus, for r ∈ fΠg
A, the

corresponding rpg ∈ fΠpg
Apg contains the same ordinary literals in the head and body.

We show now that A′pg |= rpg implies A′ |= r. If A′pg is a model of rpg , then we have either (1)
A′pg |= h for some h ∈ H(rpg), or (2) A′pg 6|= b for some b ∈ B(rpg). In Case (1), we also have
h ∈ H(r). Since A′pg and A′ coincide on non-replacement and non-input atoms, this implies A′ |= r. In
Case (2), b is either (2a) a non-replacement literal, or (2b) a (positive or default-negated) external atom
replacement. In Case (2a), we also have b ∈ B(r). Since A′pg and A′ coincide on such atoms, this
implies A′ |= r. In Case (2b), we either have (2b′) Apg 6|= b, or (2b′′) b is positive (since a default-
negated atom cannot become false by removing atoms from the assignment) and some literal b′ in the
body of the external atom guessing or in the input rule for b is false in A′pg ; in this case b is represented
in Πp with some degree n. In Case (2b′), A falsifies by construction of Apg the external atom in B(r)
which corresponds to the replacement atom b. In Case (2b′′), b′ also appears in B(rpg). Note that b′

can be another external replacement atom. But in this case, the external atom corresponding to b′ is
represented with some degree < n. Thus, we start the case distinction for b′ again. However, because the
degree is reduced with every iteration, we will eventually end up in one of the other cases.

Thus, A′ would be a model of fΠg
A, which contradicts the assumption that A is an answer set of

Πg . This shows that Apg is an answer set of Πpg . 2

Lemma 19 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg . Every answer set A
of grndC(Π) can be extended to an answer set Ap of grndC(Πp).

Proof. Let A ∈ AS
(
grndC(Π)

)
. Then Ap is constructed by iteratively adding additional atoms to A

as follows:

• If the body B of an external atom guessing rule e&g[y](x) ∨ ne&g[y](x) ← B in grndC(Πp) is
satisfied by Ap, add e&g[y](x) if f&g(A,y,x) = 1 and add atom ne&g[y](x) otherwise.

• Add all g&g
inp(y) ∈ A

(
grndC(Πp)

)
if the body of the respective input auxiliary rule is satisfied by

Ap.

Note that this operation is monotonic because input auxiliary rules and external atom guessing rules
contain only positive body literals.

Then the fixpoint of this operation Ap is by construction a model of all ground input auxiliary rules
and external atom guessing rules. Moreover, it is also a model of all remaining rules in grndC(Πp)
because A is a model of the corresponding rules in grndC(Π) with external atoms in place of replacement
atoms, and we set the truth values of the external atom replacement atoms exactly to the truth values of the
external atoms in A. Note that there might be external atoms &g [y](x) for which neither e&g[y](x) nor
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ne&g[y](x) is added to Ap, but then the body of the respective external atom guessing rule is unsatisfied
by Ap. But since the body of an external atom guessing rule is a subset of the body of the rule where this
external atom occurs, also this rule is satisfied.

Thus Ap is a model of grndC(Πp). It remains to show that it is also a subset-minimal model of
fgrndC(Πp)

Ap . Suppose there is a smaller model A′p ( Ap. Then Ap \A′p must contain at least one
atom which is not a replacement atom or an input auxiliary atom, because by construction of Ap such
atoms are only set to true if necessary, i.e., if they are supported by A, and all rules used to derive such
atoms are also in fgrndC(Πp)

Ap . We now show that the restriction of A to ordinary atoms A′ ( A (i.e.,
without replacement atoms e&g[y](x) and ne&g[y](x) and without external atom input atoms g&g

inp(y)) is
a model of fgrndC(Π)

A, which contradicts the assumption that A is an answer set of grndC(Π).
Note that, except for the external atom guessing and input auxiliary rules, the reduct fgrndC(Πp)

Ap

contains the same rules as fgrndC(Π)
A with replacement atoms instead of external atoms. Thus, for

r ∈ fgrndC(Π)
A, the corresponding rp ∈ fgrndC(Πp)

Ap contains the same ordinary literals in the
head and body.

We show now that A′p |= rp implies A′ |= r. If A′p is a model of rp, then we have either (1) A′p |= h
for some h ∈ H(rp), or (2) A′p 6|= b for some b ∈ B(rp). In Case (1), we also have h ∈ H(r). Since
A′p and A′ coincide on non-replacement and non-input atoms, this implies A′ |= r. In Case (2), b is
either (2a) a non-replacement literal, or (2b) a (positive or default-negated) external atom replacement.
In Case (2a), we also have b ∈ B(r). Since A′p and A′ coincide on ordinary atoms, this implies A′ |= r.
In Case (2b), we either have (2b′) Ap 6|= b, or (2b′′) b is positive (since a default-negated atom cannot
become false by removing atoms from the assignment) and some literal b′ in the body of the external atom
guessing or in the input rule for b is false in A′p; in this case b is represented in grndC(Πp) with some
degree n. In Case (2b′), A falsifies by construction of Ap the external atom in B(r) which corresponds
to the replacement atom b. In Case (2b′′), b′ also appears in B(rp). Note that b′ can be another external
replacement atom. But in this case, the external atom corresponding to b′ is represented with some degree
< n. Thus, we start the case distinction for b′ again. However, because the degree is reduced with every
iteration, we will eventually end up in one of the other cases.

Thus, A′ would be a model of fgrndC(Π)
A, which contradicts the assumption that A is an answer

set of grndC(Π). This shows that Ap is an answer set of grndC(Πp). 2

Lemma 20 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg . It holds that
AS(Πg) = AS(grndC(Π)).

Proof. (⇒) Let A ∈ AS(Πg). Then by Lemma 18 it can be extended to an answer set Apg of Πpg . By
Definition 18, Apg is also an answer set of grndC(Πp).

Let r ∈ grndC(Π) and let r′ be the respective rule in grndC(Πp) with replacement atoms instead of
external atoms. (1) If there is no strengthening of r in Πg , then there is also no strengthening of r′ in Πpg .
Then by Definition 18, every answer set of grndC(Πp) falsifies some ordinary body literal of r′. Thus
this holds also for Apg . But all ordinary literals of r′ are also in r and A coincides with Apg on ordinary
literals, thus A is a model of r. (2) If there is a strengthening r̄ of r in Πg , then there is also a strengthening
r̄′ of r′ in Πpg from which r̄ was generated by replacing external replacement atoms by external atoms.
Because Apg is an answer set of grndC(Πp), it is also a model of r̄′. Moreover, by Definition 18, it
satisfies also all ordinary literals B(r′) \B(r̄′). This is the same set as B(r) \B(r̄). Because A and Apg

coincide on ordinary literals, also A is a model of r. Thus, A is a model of grndC(Π).
We show now that A is also a subset-minimal model of fgrndC(Π)

A. Because we have seen that
A 6|= B(r) for every r ∈ grndC(Π) which has no strengthening in Πg , it follows that fΠg

A contains a
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strengthening r̄ for every rule r ∈ fgrndC(Π)
A. Conversely, by Definition 18 every rule in fΠg

A is a
strengthening of some rule r ∈ fgrndC(Π)

A. Thus, the rules in fgrndC(Π)
A are even more restrictive,

i.e., every model of fgrndC(Π)
A is also a model of fΠg

A. Thus, if there would be a smaller model
A′ ( A of fgrndC(Π)

A, it would also be a model of fΠg
A, which contradicts the assumption that A

is an answer set of Πg .
(⇐) Let A ∈ AS

(
grndC(Π)

)
, then it is also a model of Πg because this program is (possibly) less

restrictive. It remains to show that A is also a subset-minimal model of fΠg
A. By Lemma 19, A can be

extended to an answer set Ap of grndC(Πp).
Let for every r ∈ grndC(Π) be r′ the respective rule in grndC(Πp) with replacement atoms instead

of external atoms. Note that the rules in fΠg
A are strengthenings of the rules in fgrndC(Π)

A. Let
r ∈ grndC(Π). (1) If there is no strengthening of r in Πg , then also r′ has no strengthening in Πpg .
But this means, that every answer set of grndC(Πp) falsifies an ordinary body literal in r′, thus also Ap.
Because A and Ap coincide on ordinary literals, also A falsifies some ordinary literal in B(r), thus r is
not in fgrndC(Π)

A. (2) Now suppose there is a strengthening r̄ of r in Πg . Then A |= B(r) implies
A |= B(r̄). Conversely, if A |= B(r̄), then the missing literals in B(r) \ B(r̄) are satisfied as well
because they are satisfied by all answer sets of grndC(Πp), including Ap, which coincides with A on
ordinary atoms (otherwise the literal would not have been removed by the optimizer).

Now suppose fΠg
A has a smaller model A′ ( A. Then A′ is a model of fgrndC(Π)

A because we
have seen that the missing literals are satisfied as well. 2

Now we can prove Theorem 10.

Proof of Theorem 10. Let Πg = GroundHEX(Π) and let C be the constants which appear in Πg .
The differences to Algorithm GroundHEXNaive are that we (i) use a faithful (optimized) ASP

grounding procedure to compute Πg instead of the naive grndC(Πp); (ii) consider only lde-safety rele-
vant external atoms in Part (b); and (iii) a different set of assignments in Part (c). We will now show that
the algorithm is still correct.

We first ignore modification (iii) and show that the algorithm is still correct if only modifications (i)
and (ii) are active.

We need to show that AS(Πg) = AS(Π). Recall that we have AS(Πg) = AS
(
grndC(Π)

)
by

Lemma 20, thus it is sufficient to show that AS
(
grndC(Π)

)
= AS

(
grndC′(Π)

)
for any C ′ ⊇ C.

(⇒) Let A ∈ AS
(
grndC(Π)

)
. By Lemma 17, A is a model of grndC′(Π). It remains to show that

it is also a subset-minimal model of fgrndC′(Π)
A. As C ⊆ C ′, fgrndC(Π)

A ⊆ fgrndC′(Π)
A. More-

over, by Lemma 17 A 6|= B(r) for any r ∈ grndC′(Π)\grndC(Π), thus fgrndC(Π)
A

= fgrndC′(Π)
A.

But since A ∈ AS
(
grndC(Π)

)
, it is a subset-minimal model of fgrndC(Π)

A, thus it is also a model of
fgrndC′(Π)

A, i.e., A ∈ AS
(
grndC′(Π)

)
.

(⇐) Let A′ ∈ AS
(
grndC′(Π)

)
. We show that A = A′ ∩ A

(
grndC(Π)

)
is an answer set of

grndC(Π).
Because grndC(Π) ⊆ grndC′(Π), it is trivial that A is a model of grndC(Π). It remains to show

that it is also a subset-minimal model of fgrndC(Π)
A.

By Lemma 17, A is also a model of grndC′(Π). But then A = A′ because A ( A′ would imply
that A′ is not subset-minimal, which contradicts the assumption that it is an answer set of grndC′(Π).
Because grndC(Π) ⊆ grndC′(Π) and A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π) by Lemma 17,
we have fgrndC(Π)A = fgrndC′(Π)A. Because A is a subset-minimal model of grndC′(Π)A, it is a
subset-minimal model of fgrndC(Π)A. Thus, A is an answer set of grndC(Π).
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Finally, consider modification (iii). While Algorithm GroundHEXNaive loops for all models of Πpg ,
the optimized algorithm constructs the considered assignments such that the output of the external atoms
is maximized: all monotonic input atoms are set to true, all antimonotonic input atoms to false, and for
nonmonotonic input atoms all combinations are checked (except facts, which are always true). Every
model of Πpg considered by Algorithm GroundHEX, is contained in some assignment enumerated by
Algorithm GroundHEXNaive. The output of the external atom wrt. this assignment may be larger, but
never smaller. Thus, the optimized algorithm only produces larger but never smaller groundings wrt. the
set of constants. As we have shown in Lemma 17, this guarantees that the program has the same answer
sets.

We also need to show that the algorithm terminates. But this follows from the observation that each
run of the loop at (c) corresponds to a (restricted) application of operator GΠ; while GΠ instantiates rules
whenever their positive body is satisfied by some of the enumerated assignments, our algorithm also
respects the negative part of the rule body, i.e., it is even more restrictive. But by Corollary 5, G∞Π (∅) is
finite for lde-safe programs, thus the grounding produced by our algorithm is finite as well. Therefore the
algorithm terminates. 2

Appendix B.3. Related Notions of Safety (Section 6)

Proof of Proposition 11. Suppose Π is strongly safe. We show that for any attribute position α of Π,
we have a ∈ Sn(Π) for some n ≥ 0, i.e., a is lde-safe.

Let a be an attribute position of Π and let j be the number of malign cycles wrt. ∅ in GA(Π) from
which a is reachable. We prove by induction that if a is reachable from j ≥ 0 malign cycles wrt. ∅ in
GA(Π), then a is lde-safe.

If j = 0 we make a case distinction. Case 1: if a is of form att (p, i), then there is no information flow
from a malign cycle wrt. ∅ to att (p, i). Therefore, for every rule r with p(t1, . . . , t`) ∈ H(r) we have
that ti ∈ Bn+1(r,Π) for all n ≥ 0 due to Condition (i) in Definition 21. But then att (p, i) is lde-safe.

Case 2: if a is of form att I(&g [X], i), then for every Yi ∈ Y with type(&g , i) = const we have
Yi ∈ Bn+1(r,Π) due to Condition (i) in Definition 21, and for every predicate pi ∈ Y with type(&g , i) =
pred we have that att (pi, j) is lde-safe for every 1 ≤ j ≤ ar(pi) by Case 1; note that att (pi, j) is not
reachable from any malign cycle wrt. ∅ because this would by transitivity of reachability mean that
also att I(&g [X], i) is reachable from such a cycle, which contradicts our assumption. But then also
att I(&g [X], i) is lde-safe by Definition 8.

Case 3: if a is of form att O(&g [X], i), then no att I(&g [X], j) for 1 ≤ j ≤ ar I(&g) is reachable
from a malign cycle wrt. ∅, because then also att O(&g [X], i) would be reachable from such a cycle. But
then by Definition 8, att O(&g [X], i) is lde-safe. Hence, attribute positions of any kind, which are not
reachable from malign cycles wrt. ∅, are lde-safe.

Induction step j 7→ j + 1: If a is reachable from j + 1 malign cycles wrt. ∅, then there is an
attribute position α′ in such a cycle C from which a is reachable. The malign cycle C wrt. ∅ contains an
attribute position of kind att O(&g [X], i), corresponding to an external atom &g [Y](X) in rule r. Since
att O(&g [X], i) is cyclic in GA(Π), &g [Y](X) is cyclic in ADG(Π). Then by strong safety of Π, each
variable in Y occurs in a body atom p(t1, . . . , t`) ∈ B+(r) which is not part of C, i.e., it is captured by
att (p, k) for some 1 ≤ k ≤ ar(p). But since p(t1, . . . , t`) is not part of the cycle C in ADG(Π), also
att (p, k) is not part of it. Therefore att (p, k) is reachable from (at least) one malign cycle wrt. ∅ less than
a, i.e., it is reachable from at most j malign cycles. Thus att (p, k) is lde-safe by induction hypothesis.
But then by Condition (ii) in Definition 9, also a is lde-safe. 2
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Proof of Proposition 12. We first reformulate the definitions of blocking and savior attribute positions
in an inductive way, which is possible because criteria are monotonic.

Blocking:

• blocked0(r) = ∅ for all r ∈ Π

• blockedn+1(r) =
{

att (p, i) | att (p, i) is dangerous in r and att (p, i) captures X in r and
for every &g [Y](X) with X ∈ X,

for every Y ∈ Y there is a body atom
q(t1, . . . , t`) such that X = ti
for some 1 ≤ i ≤ ar(q) and att (q, i) ∈ saviorn

}
,

for all n ≥ 0

• blocked∞(r) =
⋃

n≥0 blockedn(r)

Savior attribute positions:

• savior0 = ∅

• saviorn+1 =
{

att (p, i) | for all r ∈ Π with p(t1, . . . , t`) ∈ H(r), either
ti is a constant; or
ti is captured by some att (q, j) ∈ saviorn in B+(r); or
att (p, i) ∈ blockedn(r)

}
,

for all n ≥ 0

• savior∞ =
⋃

n≥0 saviorn

We show now by induction on n for all n ≥ 0:

• If att (p, i) ∈ blockedn(r) and att (p, i) captures X in r, then X ∈ Bn(r,Π, S).

• If att (p, i) ∈ saviorn for some n ≥ 0, then att (p, i) ∈ Sn(Π).

For n = 0 this is trivial.
For the induction step n 7→ n + 1, suppose att (p, i) ∈ blockedn+1(r). Then att (p, i) is dangerous

and captures some X in r. For every &g [Y](X) with X ∈ X and for every variable Y ∈ Y there is
a body atom q(t1, . . . , t`) such that X = tj for some 1 ≤ j ≤ ar(q) and att (q, j) ∈ saviorn Then,
by the induction hypothesis, att (q, j) is lde-safe. But then by Condition (ii) in Definition 9 all input
variables Y ∈ Y are declared bounded in the first step, i.e., Y ∈ Bn+1,1(r,Π). Then by Condition (iii)
in Definition 9 also all output variables X ∈ X are declared bounded in the second step, i.e., X ∈
Bn+1,2(r,Π). Thus we have X ∈ Bn+1(r,Π, Sn(Π)).

Now suppose att (p, i) in saviorn+1. Then we have for all r ∈ Π with p(t1, . . . , t`) ∈ H(r) that

(i) ti is a constant; or

(ii) ti is captured by some att (q, j) ∈ saviorn in B+(r); or

(iii) att (p, i) ∈ blockedn(r).
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In Case (i), ti ∈ Bn+1(r,Π, Sn(Π)) by Condition (i) in Definition 9. In Case (ii), att (q, j) is lde-safe by
the induction hypothesis and thus ti is declared bounded by Condition (ii) in Definition 9. In Case (iii),
it holds that ti ∈ Bn+1(r,Π, S) as shown above.

This shows that all dangerous (but blocked) attribute positions are lde-safe. It remains to show that
also all non-dangerous attribute positions are lde-safe. Let a be such an attribute position. If it occurs in
a cycle in GA(Π), then it occurs also in a cycle in GĀ(Π) because in this graph nodes from GA(Π) may
be merged, i.e., the graph is less fine-grained. If it is of type att (p, i), then it is dangerous and we already
know that it is lde-safe. Otherwise it is an external input attribute position of form att I(&g [X], i) or an
output attribute position of form att O(&g [X], i). If it is an input attribute position, then we know that its
cyclic input depends (possibly transitively) on lde-safe ordinary attribute positions. As the output attribute
positions of external atoms become lde-safe as soon as the input becomes lde-safe by Definition 8, lde-
safety will be propagated by Condition (iii) in Definition 9 along the cycle, beginning at the ordinary
predicates, i.e., the input parameter will be declared lde-safe after finitely many steps (since the cycle is
of finite length). This shows that all attribute positions in cycles in GA(Π) are lde-safe.

As all attribute positions in cycles are lde-safe, the remaining attribute positions (attribute positions
which depend on a cycle but are not in a cycle) will also be declared lde-safe after finitely many steps by
Definition 8. 2

Proof of Proposition 13. By Theorem 7 by Calimeri et al. (2007) F (Π) is VI-restricted, and thus by
Proposition 12 it is also lde-safe using bsynsem(Π, r, S,B). 2

Proof of Proposition 14. If t is in the output of bextsem(Π, r, S,B), then one of the conditions holds.
If Condition (i) holds, then there is no information flow from malign cycles wrt. S to t. However, such
cycles are the only source of infinite groundings: the attribute positions in S have a finite domain by
assumption. For the remaining attribute positions in the cycle, the well-ordering guarantees that only
finitely many different values can be produced in the cycle.

If Condition (ii) holds, then the claim follows from Proposition 8. 2

Appendix C. Benchmark Problem Encodings

In this appendix, we give details to some of the encodings used for our benchmarks in Section 5; for
the complete set of encodings we refer to Redl (2014). The encodings are very natural representations
of the underlying problems in HEX and have not been optimized for our algorithms, thus they have been
developed under realistic conditions. For each problem we show the lde-safe version and point out how
it can be transformed into a strongly safe program. However, in all programs the underlying idea is
the same, namely to import or generate a sufficiently large domain in advance and use this domain to
manually bound variables which are otherwise not (strongly) safe.

Appendix C.1. Reachability

We assume that the instance consists of two facts start(s) and end(e). The goal is to check if node e
is reachable from node s and to compute a witness in this case (i.e., a path from s to e).

The problem encoding uses the following set of rules to import the relevant part of the graph, con-
sisting of all nodes and edges reachable from s. We use an external atom &out [X](Y ) to get all nodes Y
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which are directly reachable from the node X .

edge(X,Y )← node(X),&out [X](Y )

node(X)← start(X)

node(X)← end(X)

node(X)← edge(X,Y )

We then guess the path as a set of pairs (n, i), where n is the node visited in step i. Constraints are used
to ensure that the path is consecutive and reaches e in the last step.

path(X, 0)← start(X)

← path(X,N), path(Y,N), X 6= Y

path(Y,N) ∨ path(Y,N)← node(Y ),#int(N)

← path(X,N), path(Y,N2 ),N2 = N + 1,not edge(X,Y )

existspath(N)← path(X,N)

← #int(N),not existspath(N), existspath(N2 ),N2 = N + 1

lastnode(X)← path(X,N),N2 = N + 1,not existspath(N2 )

← end(Z), lastnode(Y ), Z 6= Y

The strongly safe version of the program needs to import the whole graph a priory because the external
atom &out [X](Y ) appears in a cycle and thus needs a domain predicate which bounds Y . This can be
realized by adding an external atom &allNodes[](Y ) to the first rule of the encoding, provided that it is
true for all nodes Y of the graph.

Appendix C.2. Mergesort

In this benchmark encoding, lists are encoded as string constants. A dedicated separator character
allows for decoding the list representations in the external atoms.

We first use a set of rules to split the input list inp, given by a fact list(inp), recursively into half. For
each list l, its halves l1 and l2 are generated by the use of an external atom &splitHalf [l](l1, l2). We then
derive an atom sublist(l, l1, l2) that allows us later to reassemble the list from its (sorted) sublists. Let ε
denote the empty list.

sublist(L,H1 ,H2 )← list(L),&splitHalf [L](H1 ,H2 )

sublist(L,H1 ,H2 )← sublist( ,L, ),&splitHalf [L](H1 ,H2 ),H1 6= ε,H2 6= ε

sublist(L,H1 ,H2 )← sublist( , ,L),&splitHalf [L](H1 ,H2 ),H1 6= ε,H2 6= ε

We declare each sublist of length 1 immediately as sorted. We use an external atom &getLength[l](L) to
get the length L of list l.

sorted(L,L)← sublist(L, , ),&getLength[L](1)

sorted(L,L)← sublist( ,L, ),&getLength[L](1)

sorted(L,L)← sublist( , ,L),&getLength[L](1)

50



Finally, we realize the merge step as follows. For each list l and its sublists l1 and l2, we deter-
mine the sorted versions s1 and s2 of l1 and l2, respectively, and merge them using external atom
&merge[s1, s2](s) to get the sorted version of l.

sorted(L,S )←sublist(L,H1 ,H2 ), sorted(H1 ,H1s), sorted(H2 ,H2s),

&merge[H1s,H2s](S )

output(Sorted)←list(Final), sorted(Final ,Sorted)

Note that both the splitting and the merging part uses external atoms in cycles, thus the program is not
strongly safe. In order to make it strongly safe, we need to generate all lists (i.e., permutations of the
input list) a priori and add domain predicates.

For the strongly safe version of the program, note that the domain for sorting a list of size n consists of
all n! permutations (we cannot exclude any permutations in advance unless we solve parts of the problem
before grounding). That is, for a strongly safe encoding one needs to generate all permutations l and
add them as facts of kind perm(l) to the program. This allows for adding atoms of kind perm(L) to the
remaining rules in order to make a variable L safe, but is clearly infeasible in practice.

Appendix C.3. Route Planning

We present the encodings for the two route planning scenarios separately. Once the single route
planning scenario was introduced, the extension to pair route planning is quite simple. In fact, we will
present a more general encoding which allows for planning tours for an arbitrary number of persons.

Appendix C.3.1. Single Route Planning
We start by guessing a sequence of the locations which are defined in the instance by facts of kind

location(loc). The following rules ensure that for a set L of n locations, the atoms seq(i, loci) for
0 ≤ i < n, order the locations such that L = {loci | 0 ≤ i < n}.

seq(I, L) ∨ seq(I, L)← location(L),#int(I) (R1)
← seq(I1 , L), seq(I2 , L), I1 6= I2

← seq(I,L1 ), seq(I,L1 ),L1 6= L2

haveSeq(L)← seq(I, L)

← location(L),not haveSeq(L)

haveLoc(I)← seq(I, L)

← seq(I, L), I1 < I,#int(I1 ),not haveLoc(I1)

The following rules choose exactly one restaurant and add it to the set of locations to visit, if necessary;
possible locations for having lunch are assumed to be defined by facts of kind possibleRestaurant(r).

restaurant(R) ∨ restaurant(R)← haveLunch, possibleRestaurant(R)

restaurantChosen ← restaurant(R)

← restaurant(R1 ), restaurant(R2 ),R1 6= R2

← haveLunch,not restaurantChosen

location(R)← restaurant(R)
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We further need rules to check if our tour has to include a restaurant. The constant limit is to be re-
placed by an integer which defines the maximal costs of a tour without restaurant. The external atom
&longerThan[path, limit ]() is true if the path encoded in the extension of path is longer than limit ,
and false otherwise. Note that despite the rules (R3) and (R4), the choice between haveLunch and
haveLunch in rule (R2) is not redundant due to the use of the FLP-reduct. 11

haveLunch ∨ haveLunch ← (R2)
haveLunch ← &longerThan[path, limit ]() (R3)

haveLunch ← not &longerThan[path, limit ]() (R4)

The following rules plan the tour using the external atom &path[L1 ,L2 ](X,Y,Cost ,Type). Atoms of
form path(L1 ,L2 , X, Y,Cost ,Type) are used to encode the path (consisting of edges (X,Y ) with costs
Cost and type Type) from L1 to L2 . Since the same station may be visited multiple times, the end points
L1 to L2 must be included to make the representation unique.

path(L1 ,L2 , X, Y,Cost ,Type)←seq(Nr ,L1 ), seq(NrNext ,L2 ), (R5)
NrNext = Nr + 1,

&path[L1 ,L2 ](X,Y,Cost ,Type)

Finally, we ensure that all pairs of sequent locations are connected. Otherwise, the program would still
have answer sets (leaving some locations unconnected) if a location is not reachable.

pathExists(L1 ,L2 )←seq(Nr ,L1 ), seq(NrNext ,L2 ),NrNext = Nr + 1,

path(L1 ,L2 , X, Y,Cost ,Type)

←seq(Nr ,L1 ), seq(NrNext ,L2 ),NrNext = Nr + 1, (R6)
not pathExists(L1 ,L2 )

For the strongly safe version of the program, the full map material needs to be imported in advance.
Under the assumption that it is encoded as a set of facts of kind map(x, y, c, t) to represent connections
between stations x and y with costs c and type t, adding the atom map(X,Y,Cost ,Type) to rule R5
makes the program strongly safe, but obviously blows up the grounding.

Appendix C.3.2. Pair and Group Route Planning
Compared to single route planning, the predicates location , seq , haveSeq , haveLoc and path are

extended by an additional argument P , which is inserted at argument position 1. It allows for discrim-
inating multiple persons. While we considered the special case of two persons in our benchmarks, the
encoding is strictly more general and allows arbitrary many persons who need to be defined as facts of

11The FLP-reduct ΠA wrt. a model A must not contain constraints, and hence (R6) cannot check the existence of paths in ΠA.
But then, without further techniques, the FLP check could fail as ΠA might have a smaller model A′ with disconnected locations.
However, as rule (R1) enforces the same sequence of locations in ΠA and rule (R5) deterministically computes the shortest paths
between two successive locations, this can only happen if A′ and A encode different sets of locations; this requires that A and A′

represent tours with and without a restaurant, respectively, or vice versa. But rule (R2) excludes this, as it ensures that the choice
between haveLunch and haveLunch is the same in both models; without rule (R2), neither haveLunch nor haveLunch might
be true in the A′ as either rule (R3) or (R4) will be missing in ΠA.
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kind person(p).

seq(P, I, L) ∨ seq(P, I, L)←person(P ), location(L),#int(I)

←person(P ), seq(P, I1 , L), seq(P, I2 , L),

I1 6= I2

←person(P ), seq(P, I,L1 ), seq(P, I,L1 ),

L1 6= L2

haveSeq(P,L)←person(P ), seq(P, I, L)

←person(P ), location(P,L),not haveSeq(P,L)

haveLoc(P, I)←person(P ), seq(P, I, L)

←person(P ), seq(P, I, L), I1 < I,#int(I1 ),

not haveLoc(P, I1)

Computing the path and ensuring its existence is extended to multiple persons as follows.

path(P,L1 ,L2 , X, Y,Cost ,Type)←person(P ),

seq(P,Nr ,L1 ), seq(P,NrNext ,L2 ),

NrNext = Nr + 1,

&path[L1 ,L2 ](X,Y,Cost ,Type)

pathExists(P,L1 ,L2 )←person(P ),

seq(P,Nr ,L1 ), seq(P,NrNext ,L2 ),

NrNext = Nr + 1,

path(P,L1 ,L2 , X, Y,Cost ,Type)

←person(P ),

seq(P,Nr ,L1 ), seq(P,NrNext ,L2 ),

NrNext = Nr + 1,

not pathExists(P,L1 ,L2 )

As above, adding map(X,Y,Cost ,Type) to the former rule makes the program strongly safe.
The following rules choose a meeting point and include it in the tour of each person. It is assumed

that the possible meeting locations are defined by facts of form possibleMeeting(m).

meeting(M) ∨meeting(M)← possibleMeeting(M)

meetingChosen ← meeting(M)

← meeting(M1 ),meeting(M2 ),M1 6= M2

← not meetingChosen

location(P,M)← person(P ),meeting(M)

If the tour is longer than the given limit limit , then the meeting location should be a restaurant. The
external atom &longerThanForPerson[path, p, limit ]() is true if the path for person p encoded in the
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extension of path is longer than limit , and false otherwise.

haveLunch ∨ haveLunch ←
haveLunch ← person(P ),&longerThanForPerson[path, P, limit ]()

haveLunch ← person(P ),not &longerThanForPerson[path, P, limit ]()

← haveLunch,meeting(M),not possibleRestaurant(M)

← haveLunch,meeting(M), possibleRestaurant(M)

As for the encoding from Section Appendix C.3, the choice between haveLunch and haveLunch is not
redundant.
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