
Journal of Artificial Intelligence Research 49 (2014) 269–321 Submitted 09/13; published 02/14

Efficient HEX-Program Evaluation Based on Unfounded Sets

Thomas Eiter EITER@KR.TUWIEN.AC.AT
Michael Fink FINK@KR.TUWIEN.AC.AT
Thomas Krennwallner TKREN@KR.TUWIEN.AC.AT
Christoph Redl REDL@KR.TUWIEN.AC.AT
Institut für Informationssysteme
Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

Peter Schüller PETERSCHUELLER@SABANCIUNIV.EDU

Faculty of Engineering and Natural Sciences
Sabanci University
Orhanli, Tuzla, 34956 Istanbul, Turkey

Abstract
HEX-programs extend logic programs under the answer set semantics with external computa-

tions through external atoms. As reasoning from ground Horn programs with nonmonotonic ex-
ternal atoms of polynomial complexity is already on the second level of the polynomial hierarchy,
minimality checking of answer set candidates needs special attention. To this end, we present an
approach based on unfounded sets as a generalization of related techniques for ASP programs. The
unfounded set detection is expressed as a propositional SAT problem, for which we provide two
different encodings and optimizations to them. We then integrate our approach into a previously
developed evaluation framework for HEX-programs, which is enriched by additional learning tech-
niques that aim at avoiding the reconstruction of the same or related unfounded sets. Furthermore,
we provide a syntactic criterion that allows one to skip the minimality check in many cases. An
experimental evaluation shows that the new approach significantly decreases runtime.

1. Introduction

Answer Set Programming (ASP) is a declarative problem solving approach. Due to expressive
extensions and efficient systems like SMODELS (Simons, Niemelä, & Soininen, 2002), DLV (Leone,
Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello, 2006) and CLASP (Gebser, Kaufmann, & Schaub,
2012), it has been gaining popularity for many applications (Brewka, Eiter, & Truszczyński, 2011).
However, current trends in computing, such as context awareness or distributed systems, raised the
need for access to external sources in a program. For instance, external sources on the Web range
from light-weight data access (e.g., XML, RDF, or data bases) to knowledge-intensive formalisms
(e.g., OWL ontologies).

To cater for this need, Eiter, Ianni, Schindlauer, and Tompits (2005) defined HEX-programs as
an extension of ASP with so-called external atoms, through which the user can couple any external
information source with a logic program. Roughly, such atoms pass information, given by predi-
cate extensions, from the program to an external source which returns output values of an (abstract)
function that it computes. For example, a rule nb(X,Y) ← &neighbor [′map ′, X](Y) may infor-
mally import for a point X on a map that is stored in the file map (in a particular data format), each
point Y in the neighborhood of X into the predicate nb. Such convenient external access has been

c©2014 AI Access Foundation. All rights reserved.

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

exploited for many applications, including querying data and ontologies (Eiter et al., 2008b; Hoehn-
dorf et al., 2007; Marano et al., 2010), e-government (Zirtiloǧlu & Yolum, 2008), fuzzy answer set
programming (Nieuwenborgh, Cock, & Vermeir, 2007a), multi-context reasoning (Brewka & Eiter,
2007; Eiter et al., 2012b), (Nieuwenborgh et al., 2007b; Basol et al., 2010). The formalism is highly
expressive as recursive data exchange between the rules and external sources is possible.

The semantics of HEX-programs is model-based and given by answer sets following the ap-
proach of Faber, Leone, and Pfeifer (2011), which extends the answer set semantics of logic pro-
grams (Gelfond & Lifschitz, 1991) to logic programs with aggregates; the Faber et al. approach
(known as the FLP semantics) preserves the property that answer sets have, in the spirit of the
closed world assumption, smallest positive information content, which is formally captured by a
minimality condition on models.

The current approach for the evaluation of HEX-programs (Eiter et al., 2006a, 2011) is to rewrite
a given HEX-program to an answer set program by (i) eliminating external atoms in favor of auxiliary
atoms using so called replacement atoms, and (ii) introducing auxiliary rules such that the answer
sets of the HEX-program Π correspond to a subset of the answers sets of the resulting program Π̂
in which the auxiliary atoms faithfully represent the values of the external atoms; this compatibility
condition of an answer set of Π̂ is tested in a postcheck.

For computing the answer sets of a (disjunctive) logic program P like Π̂, different methods have
been proposed. An immediate one is to implement the definition of an answer set and test whether
a given interpretation is a minimal model of the so called reduct of the program P wrt. the inter-
pretation; to this end, a suitable candidate answer set might be guessed or generated by heuristics.
This approach was essentially adopted for the solvers GNT (Janhunen et al., 2006) and CMODELS

(Lierler, 2005), which use for this test a logic program, respectively a SAT encoding. A different
approach was presented by Leone et al. (1997) based on the notion of unfounded set (Van Gelder,
Ross, & Schlipf, 1991), which they extended from normal (non-disjunctive) to disjunctive logic
programs. Intuitively, a set U of atoms is unfounded wrt. to a model of a program P , if switching
all atoms in U to false does not lead to violated rules; the answer sets of P are then its models
that are unfounded-free, i.e., the models disjoint from all respective unfounded sets. For checking
(un)foundedness of a given candidate answer set, Koch et al. (2003) presented a SAT encoding.
Drescher et al. (2008) later exploited findings of them and Leone et al. to extend the technique of
conflict-driven clause learning used by the CLASP solver to disjunctive logic programs.

In all the quoted works, however, access to external sources was not an issue, and thus they
cannot be deployed to HEX-programs. In fact, in addition to the compatibility check of an answer set
of the replacement program Π̂, the current HEX evaluation must in a second step test the minimality
of the interpretation induced for the HEX-program Π wrt. the program reduct. This method, which
we refer to as the explicit FLP check, turns out to be less efficient in practice, and it often dominates
the total runtime; thus a more efficient method is desirable.

Motivated by this and the seminal approach of Leone et al., we consider in this paper the use of
unfounded sets as an alternative to the explicit FLP check for HEX-programs, which we refer to as
the unfounded set check. To this end, we extend the notion of unfounded sets for disjunctive logic
programs to HEX-programs, following the lines of Faber (2005), where unfounded sets for logic
programs with aggregates were defined, and consider their use in combination with clause learning
techniques. Our main contributions are summarized as follows:

• We present a basic encoding of unfounded set existence to a set of nogoods, i.e., constraints
that have to be satisfied, and we show that its solutions are in 1-1 correspondence with the

270

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

unfounded sets. The latter can thus be computed running a SAT solver, followed by a post-
processing step which checks that the values of replacement atoms are compatible with the
external call results. Benchmarks show that this strategy is already more efficient than the
explicit FLP check.

• We then present an advanced encoding of unfounded set existence that is reusable for any
interpretation. Compared to our first encoding, it is conceptually more involved and has
(slightly) higher initialization cost, but it has the advantage that it can be reused for all un-
founded set checks and needs no separate initialization for each check. Our benchmarks show
that the advanced encoding is superior to the first one for many practical problems.

• Next, we consider optimizations which hinge on dependencies between external and ordinary
atoms that are determined in careful analysis. These optimizations can be integrated into our
encodings by adding further nogoods which restrict the search space to relevant parts.

• We consider how to exploit information gained in the unfounded set check of a candidate an-
swer set in answer set candidate generation, i.e., in the evaluation of the program Π̂. Adopt-
ing a Conflict Driven Clause Learning approach (Drescher et al., 2008), this step has been
recently enhanced by external behavior learning (Eiter et al., 2012a), in which nogoods de-
scribing the external source behavior are learned during the search to guide model generation
towards proper guesses. We show how to learn in the candidate generation step additional
nogoods from unfounded sets that avoid the reconstruction of the same or related unfounded
sets, yielding further gain.

• We present a syntactic decision criterion that can be used to decide whether a program pos-
sibly has unfounded sets. If the result of this check is negative, then the computationally
expensive search for unfounded sets can be skipped entirely. The criterion is based on atom
dependency and, loosely speaking, says that there are no cyclic dependencies of ground atoms
through external atoms. This property can be efficiently checked for a given ground HEX-
program using standard methods. In fact it applies to a range of applications, in particular for
input-stratified programs, where external sources are accessed in a workflow to produce in-
put for the next stage of computation. However, advanced applications of HEX-programs can
have cycles through external atoms, e.g., in natural encodings of problems on multi-context
systems (Brewka & Eiter, 2007) or abstract argumentation systems (Dung, 1995), for which
the FLP check can not be simply skipped.

• In further elaboration, we then consider a program decomposition based on the dependency
graph that is induced by a program Π (note that exploiting syntactic modularization of un-
founded sets can be traced back to Leone et al., 1997; Koch et al., 2003). We show that Π
has some unfounded set wrt. a candidate answer set A exactly if some of the components ΠC

in its decomposition has some unfounded set wrt. A; as computing the decomposition can be
realized efficiently and does not incur large overhead, we can apply the decision criterion for
skipping the FLP check efficiently on a finer-grained level, and the search for unfounded sets
can be guided to relevant program parts.

• An experimental evaluation on advanced reasoning applications shows that unfounded sets
checking combined with learning methods of Eiter et al. (2012a) improves HEX-program
evaluation considerably, sometimes drastically. More specifically, the benchmark applications

271

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

include reasoning tasks in Multi-Context Systems (Brewka & Eiter, 2007; Eiter et al., 2012b),
abstract argumentation (Dung, 1995), terminological default reasoning over description logic
knowledge bases (Baader & Hollunder, 1995), and conformant planning (Goldman & Boddy,
1996; Smith & Weld, 1998). The experiments have been carried out with DLVHEX version
2.3.0, a prototype solver for HEX-programs, which was extended to support the techniques
developed in this paper. The decomposition approach can yield a considerable gain, as it
appears e.g. for the HEX-encoding of a Dung-style argumentation semantics (Dung, 1995)
and DL-programs (Eiter et al., 2008a). On the other hand, for the terminological default
reasoning benchmark, our syntactic criterion lets us conclude that the FLP check is obsolete.
In conclusion, the new approach enables significant speedup and thus enlarges the scope of
HEX applicability.

1.1 Organization

The rest of this paper is organized as follows. The next section provides preliminaries on HEX-
programs and their evaluation via answer sets of a transformed ASP program without external
atoms. In Section 3, we define unfounded sets and present a basic and a uniform encoding of
unfounded set search using nogoods. Section 4 considers refinements and optimizations of the
encodings, as well as external behavior learning to prevent reconstruction of unfounded sets. In
Section 5, we give a syntactic decision criterion to avoid the FLP check and a program decom-
position method exploiting it. Experimental results of a prototype implementation are reported in
Section 6. In Section 7, we consider related work and extensions of our approach. In Section 8, we
conclude and point out issues for further research.

2. Preliminaries

In this section, we start with some basic definitions, and then introduce HEX-programs.
In accordance with Gebser et al. (2012) and Eiter et al. (2012a), a (signed) literal is a positive or a

negative formula Ta resp. Fa, where a is a ground atom of form p(c1, . . . , c`), with predicate p and
constants c1, . . . , c`, abbreviated p(c). For a literal σ= Ta or σ= Fa, let σ denote its opposite, i.e.,
Ta= Fa and Fa= Ta. An assignment A over a (finite) set of atoms A is a consistent set of signed
literals Ta or Fa, where Ta expresses that a ∈ A is true and Fa that it is false; A is complete,
also called an interpretation, if no assignment A′⊃A exists. We denote by AT = {a | Ta∈A}
and AF = {a | Fa∈A} the set of atoms that are true resp. false in A, and by ext(q,A) = {c |
Tq(c)∈A} the extension of a predicate q in A. Furthermore, A|q is the set of all literals over
atoms with predicate q in A. For a list q = q1, . . . , qk of predicates, we write p ∈ q iff qi = p for
some 1 ≤ i ≤ k, and let A|q =

⋃
j A|qj .

A nogood is a set {L1, . . . , Ln} of signed literals Li, 1 ≤ i ≤ n. An interpretation A is a
solution to a nogood δ (resp. to a set ∆ of nogoods), iff δ 6⊆ A (resp. δ 6⊆ A for all δ ∈ ∆).

Example 1 The interpretation A = {Ta,Fb,Tc} is a solution to the nogood {Ta,Tb,Tc} but
not to {Ta,Fb,Tc}.

2.1 HEX-Programs

Next, we recall syntax and semantics of HEX-programs.

272

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

2.1.1 HEX-PROGRAM SYNTAX

As introduced by Eiter et al. (2005), HEX-programs are a generalization of (disjunctive) extended
logic programs under the answer set semantics (Gelfond & Lifschitz, 1991). HEX-programs extend
ASP programs by external atoms, which enable a bidirectional interaction between a program and
external sources of computation. External atoms have a list of input parameters (constants or pred-
icate names) and a list of output parameters. Informally, to evaluate an external atom, the reasoner
passes the constants and extensions of the predicates in the input tuple to the external source asso-
ciated with the external atom. The external source computes output tuples which are matched with
the output list. Syntactically, a ground external atom is of the form

&g [p](c), (1)

where &g is an external predicate, p = p1, . . . , pk are the input list consisting of predicate names
or object constants, and c = c1, . . . , cl are the output list consisting of constant terms. Predicates in
the input list are sometimes called input predicates.

A default literal is a formula b or not b, where b is a ground ordinary atom of form p(c1, . . . , c`)
with constants ci, 1 ≤ i ≤ `, or and external atom. For every set S of ordinary and external atoms,
we let notS = {not b | b ∈ S}.

Ground HEX-programs are then defined similar to ground ASP programs.

Definition 1 (Ground HEX-programs) A ground HEX-program consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (2)

where each ai is an ordinary ground atom, each bj is either an ordinary ground atom or a ground
external atom, and k + n > 0.1

For a rule r, the head is H(r) = {a1, . . . , ak} and the body is B(r) = B+(r) ∪ notB−(r),
where B+(r) = {b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body.
If B(r) = ∅, then r is a fact, and we omit←. For a program Π, let A(Π) be the set of all ordinary
atoms and EA(Π) be the set of all external atoms occurring in Π. For a default literal b, let tb = Ta
if b = a for an atom a, and tb = Fa if b = not a. Furthermore, fb = Fa if b = a and fb = Ta if
b = not a.

We call a rule r a constraint, if B(r) = ∅.

Example 2 For rule r = a∨b← c,not dwe haveH(r) = {a, b},B+(r) = {c} andB−(r) = {d}.
We further have tc = Tc, fc = Fc, t not d = Fd and f not d = Td.

We will also consider non-ground programs (i.e., with variables allowed in place of object con-
stants) in our examples. In particular, external atoms &g [X](Y) may contain variables in their
input list X and output list Y. For such programs, suitable safety conditions allow for using a
grounding procedure which transforms the program to a variable-free program with the same an-
swer sets (Eiter, Ianni, Schindlauer, & Tompits, 2006). However, we limit our formal investigation
to ground programs.

1. For simplicity, we do not formally introduce strong negation but view, as customary, classical literals ¬a as new
atoms together with a constraint which disallows that a and ¬a are simultaneously true.

273

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

Example 3 The program

domain(a); domain(b)

sel(X)← domain(X),not nsel(X)

nsel(X)← domain(X),not sel(X)

encodes the problem of partitioning two domain elements a and b into two sets sel and nsel .

2.1.2 HEX-PROGRAM SEMANTICS

An ordinary ground atom a is true relative to assignment A, denoted A |= a, if Ta ∈ A and
false otherwise. A default-negated ground atom not a is true relative to assignment A, denoted
A |= not a, if Fa ∈ A and false otherwise.

The semantics of a ground external atom of form (1) wrt. an interpretation A is given by the
value of a 1+k+l-ary Boolean oracle function f&g that is defined for all possible values of A, p and
c, such that &g [p](c) is true relative to A, denoted A |= &g [p](c), if and only if f&g(A,p, c) = 1.

Example 4 (Set Partitioning) Consider the program Π

sel(a)← domain(a),&diff [domain,nsel](a)

nsel(a)← domain(a),&diff [domain, sel](a)

domain(a)

where for predicates p and q, &diff [p, q](X) computes the set of all elements X which are in
the extension of p but not in the extension of q. Informally, this program implements a choice
from sel(a) and nsel(a).

Satisfaction of ordinary rules and ASP programs (Gelfond & Lifschitz, 1991) is then extended to
HEX-rules and programs in the obvious way: a rule r is satisfied by assignment A, denoted A |= r,
iff A |= h for some h ∈ H(r), or A 6|= b for some b ∈ B+(r), or A |= b for some b ∈ B−(r). A
program Π is satisfied by assignment A iff A |= r for all r ∈ Π. An interpretation A is a model of
a program Π, denoted A |= Π, iff A |= r for all r ∈ Π.

The notion of extension ext(·,A) for external predicates &g with input lists p is naturally
defined by ext(&g [p],A) = {c | f&g(A,p, c) = 1}.
Definition 2 (FLP-Reduct (Faber et al., 2011)) For an interpretation A over a program Π, the
FLP-reduct of Π wrt. A is the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules whose
body is satisfied by A.

An assignment A1 is smaller or equal to another assignment A2 wrt. a program Π, denoted
A1 ≤Π A2, iff {Ta ∈ A1 | a ∈ A(Π)} ⊆ {Ta ∈ A2 | a ∈ A(Π)}.
Definition 3 (Answer Set) An answer set of Π is a ≤Π-minimal model A of fΠA.

Example 5 Consider the program Π:

p← &id [q]()

q ← p

where f&id (A, p) = 1 iff Tp ∈ A is true. Then Π has the answer set A1 = ∅; indeed it is a
≤Π-minimal model of fΠA1 = ∅. Note that A2 = {Tp,Tq} is not an answer set of Π, as it is not
a minimal model of fΠA2 = Π.

274

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

2.2 Evaluation of HEX-Programs

A possible way to determine the answer sets of a HEX-program Π is to use a transformation to an
ASP program without external atoms whose answer sets encompass all answer sets of Π. We now
describe such a transformation. Each external atom a = &g [p](c) in a rule r ∈ Π is replaced
by an ordinary ground replacement atom â = e&g[p](c) (resulting in a rule r̂), and an additional
rule e&g[p](c) ∨ ne&g[p](c) ← is added to the program. The answer sets of the resulting guessing
program Π̂ are determined by an ASP solver and projected to non-replacement atoms. However,
the resulting assignments might be spurious answer sets of Π, as the values of &g [p] and e&g[p](c)

relative to an interpretation may not coincide. Each answer set of Π̂ is thus merely a candidate which
must be checked against the external sources. If no discrepancy is found, the model candidate is a
compatible set of Π. More precisely,

Definition 4 (Compatible Set) A compatible set of a program Π is an assignment Â such that
(i) Â is an answer set (Gelfond & Lifschitz, 1991) of the guessing program Π̂, and

(ii) f&g(Â,p, c) = 1 iff Te&g[p](c) ∈ Â for all external atoms &g [p](c) in Π, i.e., the guessed
values coincide with the values of the oracle functions.

A subset of the compatible sets of Π represents the answer sets of Π, where each answer set A
of Π is given by the restriction of a unique compatible set Â to the non-replacement atoms. More
formally, an answer set A of a program Π corresponds to the compatible set

κ(Π,A) = A ∪ {Tea,Fnea | a is an external atom in Π,A |= e}
∪ {Fea,Tnea | a is an external atom in Π,A 6|= e} .

To filter out those compatible sets that do not yield answer sets, each compatible set Â has to be
checked against models of the FLP reduct. To be more specific, a procedure called explicit FLP
check constructs the reduct fΠA and checks whether it has a model A′ smaller than A; if such
an A′ is found, it rejects A, otherwise outputs A as an answer set.

The explicit FLP check rewrites the HEX-program to an ASP program without external atoms
and amounts to the search for answer sets of the following program, in which the truth values of all
replacement atoms coincide with the according oracle function values:

Check(Π,A) = fΠ̂Â ∪ {← a | a ∈ A(Π), Ta 6∈ Â} ∪ {a ∨ a′ ←| Ta ∈ Â}
∪ {← not smaller} ∪ {smaller ← not a | a ∈ A(Π), Ta ∈ Â} .

It consists of the reduct fΠ̂Â and rules that restrict the search to proper subinterpretations of Â,
where smaller is a new atom. Moreover, as we actually need to search for models and not just
compatible sets, rules of the form a ∨ a′ ← (where a′ is a new atom for each Ta ∈ Â) make sure
that atoms can be arbitrarily true without having a justifying rule in Π.

Proposition 1 Let A be an interpretation extracted from a compatible set Â of program Π. Then
the program Check(Π,A) has an answer set A′ such that f&g(A′,p, c) = 1 iff Te&g[p](c) ∈ A′

for all external atoms &g [p](c) in Π, if and only if A is not an answer set of Π.

Because of the guessing rules, we can rewrite all rules in fΠ̂Â except the guesses on replacement
atoms to constraints as follows:

CheckOptimized(Π,A) = f̄Π̂Â ∪ {← a | a ∈ A(Π), Ta 6∈ Â} ∪ {a ∨ a′ ←| Ta ∈ Â}
∪ {← not smaller} ∪ {smaller ← not a | a ∈ A(Π), Ta ∈ Â}.

275

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

External Atom
Evaluation

Π
add external replacement
atoms + guessing rules

Main Search (CDNL) Plugin
1

check unverified
external atom guesses

...

FLP Check
(Unfounded Set Check)

Plugin
k

Answer
Sets

Π̂

Model Candidates

Compatible Sets

Step S1

Step S2

Figure 1: Overview of the framework for evaluating HEX-programs.

where f̄Π̂Â denotes the FLP reduct of Π̂ wrt. interpretation Â with each rule of form (2) except
guessing rules for replacement atoms being rewritten to

← not a1, . . . ,not ak, b1, . . . , bm, not bm+1, . . . ,not bn .

Proposition 2 Let A be an interpretation extracted from a compatible set Â of program Π. Then
the program CheckOptimized(Π,A) has an answer set A′ such that f&g(A′,p, c) = 1 if and only
if Te&g[p](c) ∈ A′ for all external atoms &g [p](c) in Π, if and only if A is not an answer set of Π.

This program is more efficient for evaluation. Our comparison in Section 6 uses this optimized
version of the explicit check, but still demonstrates a significant performance gain by our novel
approach.

Example 6 (cont’d) Reconsider the program Π = { p ← &id [q](); q ← p } from above. Then the
corresponding guessing program is Π̂ = {p← e&id [q](); q ← p; e&id [q]()∨ne&id [q]()←} and yields
the compatible sets Â1 = ∅ and Â2 = {Tp,Tq,Te&id [p]}. While A1 = ∅ is also a ≤Π-minimal
model of fΠA1 = ∅, A2 = {Tp,Tq} is not a ≤Π-minimal model of fΠA2 = Π. Indeed, the
program

Check(Π,A2) = Π̂ ∪ {p ∨ p′ ←; q ∨ q′ ←; e&id [q]() ∨ e′&id [q]()←} ∪ {← not smaller}
∪ {smaller ← not p} ∪ {smaller ← not q; smaller ← not e&id [q]()}

has the answer set A′ =
{

Fp,Tp′,Fq,Tq′,Fe&id [q](),Tne&id [q](),Te
′
&id [q](),Tsmaller

}
and

f&id (A′, q, ε) = 0 and Fe&id [q]() ∈ A′.

276

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Basic
Encoding

Uniform
Encoding

Assumptions

search for UFS
candidates

verify
candidate

External
Atom

Evaluation

Main Search
(CDNL) unfounded free

Π

compatible
set Â

FLP Checks

ΓA
Π

ΩΠ
AA

UFS

Figure 2: FLP Check based on Unfounded Sets

The complete prodedure of computing answer sets of HEX-programs has been described by Eiter
et al. (2012a) and is shown as a block diagram in Figure 1; the first version introducing this approach
was DLVHEX version 2.1.0. Step S1 enumerates compatible sets; we reuse this part of the evaluation
process from prior work and do not modify it. Step S2 checks whether a compatible set is indeed a
HEX answer set. The improvement of the efficiency of S2 is the focus of this work. S1 transforms
the input program Π into Π̂ by introducing replacement atoms and guesses for replacement atoms.
The main search enumerates model candidates, i.e., answer sets of Π̂. (Depending on heuristics, this
search can evaluate external atoms for guiding the search.) Model candidates are verified against
the semantics of external atoms. If this check fails, the main search continues to enumerate model
candidates; if the check succeeds, then the model candidate is a compatible set. S2 checks whether
a compatible set is an answer set of Π. Previous work realized this step using an explicit FLP check.
In this work we propose two alternatives to carry out this FLP check based on unfounded sets.

Figure 2 depicts a block diagram of the FLP checks proposed in this work, called basic and
uniform encoding. Both encodings are SAT theories. The basic encoding builds on the program
Π and the compatible set Â. The uniform encoding is based only on Π (hence we can reuse it for
all compatible sets), however it requires us to set solver assumptions based on Â. The encoding
(and assumptions) are used to search for unfounded set (UFS) candidates (by a SAT solver). A
UFS candidate has to be verified against the values of external atoms (these are guessed in the UFS
encoding). If all UFS candidates fail the external atom check, or if there are no UFS candidates,
then Â is an unfounded-free compatible set and hence an answer set of Π. Otherwise the FLP check
found an unfounded set wrt. Â and the main search continues looking for a new model candidate.

We next describe our encodings for UFS-checking.

277

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

3. Unfounded Set Detection

As described in Section 2.2, the minimality check, also called the explicit FLP check, is compu-
tationally costly and involves much overhead: all models of Check(Π,A) must be enumerated,
and calls to the external sources to test compatibility must be made. Even worse, as we need to
search for a smaller model and not just for a smaller compatible set, Check(Π,A) usually (to our
experience) has even more models than the original program. Moreover, it appears that in many
current application scenarios there is no smaller model of the reduct fΠA, i.e., most assignments
extracted from compatible sets Â pass the FLP check. There are two possible reliefs: developing a
cheaper minimality check or to avoid the minimality check if possible. While this section targets at
the former idea, the latter one is addressed in Section 5.

To this end, we present a novel FLP check algorithm based on unfounded sets (UFS). Instead of
explicitly searching for smaller models of the reduct, we check whether the candidate answer set is
unfounded-free. To this end, we use unfounded sets for HEX-programs akin to those by Faber (2005)
for programs with arbitrary aggregates.

Definition 5 (Unfounded Set) Given a program Π and an assignment A, let X be any set of or-
dinary ground atoms appearing in Π. Then, X is an unfounded set for Π wrt. A if, for each rule
r having some atoms from X in the head, at least one of the following conditions holds, where
A

.∪ ¬.X = (A \ {Ta | a ∈ X}) ∪ {Fa | a ∈ X}:

(i) some literal of B(r) is false wrt. A,

(ii) some literal of B(r) is false wrt. A
.∪ ¬.X , or

(iii) some atom of H(r) \X is true wrt. A.

Intuitively, an unfounded set is a set of atoms which only circularly support each other; by
assigning all of them false, no violation of any rule will be introduced. As for answer sets, their
minimality enforces now that no subset of the atoms that are true in an answer set can form an un-
founded set; in fact, answer sets can be characterized in terms of unfounded sets, using the following
notion.

Definition 6 (Unfounded-free Interpretations) An interpretation A of a program Π is unfounded-
free, iff AT ∩X = ∅, for every unfounded set X of Π wrt. A.

The following result is a generalization of a respective result for ordinary (disjunctive) logic
programs (Leone et al., 1997) and logic programs with aggregates (Faber, 2005).

Theorem 3 (Characterization of Answer Sets) A model A of a HEX-program Π is an answer set
of Π iff it is unfounded-free.

Example 7 Consider the program Π and A1 from Example 6. Trivially, A1 is unfounded-free, and
thus A1 is an answer set of Π. On the other hand, the set X = {p, q} is an unfounded set w.r.t. A2,
since X intersects with the head of p ← &id [q]() and A

.∪ ¬.X 6|= &id [q](). Therefore A2 is not
unfounded-free and not an answer set of Π.

278

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

3.1 Basic Encoding of the Unfounded Set Search

We realize the search for unfounded sets using nogoods, i.e., for a given Π and an assignment A we
construct a set of nogoods, such that solutions to this set correspond to (potential) unfounded sets;
we then use a SAT solver to search for such unfounded sets.

More specifically, our encoding of unfounded set detection uses a set

ΓA
Π = NA

Γ,Π ∪OA
Γ,Π ,

of nogoods whereNA
Γ,Π contains all necessary constraints and the setOA

Γ,Π are optional optimization
nogoods that prune irrelevant parts of the search space; the latter is related to the one of Drescher
et al. (2008) but respects external atoms. The idea is that the set of ordinary atoms of a solution to
ΓA

Π represents a (potential) unfounded set U of Π wrt. A, while the replacement atoms encode the
truth values of the corresponding external atoms under A

.∪ ¬.U .
For a rule r, let B+

o (r) ⊆ B+(r) consist of all ordinary atoms, and let Be(r) ⊆ B(r) consist of
all external replacement atoms. Then, ΓA

Π is built over atoms A(ΓA
Π) = A(Π̂) ∪ {hr, lr | r ∈ Π},

where hr, and lr are new atoms for every rule r in Π. The necessary part

NA
Γ,Π = {{Fa | Ta ∈ A}} ∪

(⋃
r∈ΠRr,A

)
of ΓA

Π consists of a nogood {Fa | Ta ∈ A}, which eliminates unfounded sets that do not intersect
with true atoms in A, and of nogoods Rr,A = Hr,A ∪ Cr,A for every r ∈ Π where
• Hr,A = {{Thr} ∪ {Fh | h ∈ H(r)}}∪{{Fhr,Th} | h ∈ H(r)}, called the head criterion,

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set; and

• Cr,A =

{{Thr} ∪
{Fa | a ∈ B+

o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪
{Th | h ∈ H(r),A |= h}} if A |= B(r),

{} otherwise,
called the conditional part Cr,A, encodes that Condition (i), (ii) or (iii) of Definition 5 must
hold if hr is true.

More specifically, for an unfounded set U and a rule r with H(r) ∩ U 6= ∅ (hr is true) it must
not happen that A |= B(r) (Condition (i) fails), no a ∈ B+

o (r) with A |= a is in the unfounded set
and all a ∈ Be(r̂) are true under A

.∪ ¬.U (Condition (ii) fails), and all h ∈ H(r) with A |= h are
in the unfounded set (Condition (iii) fails). Concrete instances for OΓ,A

Π are defined in Section 4.

Example 8 Consider Π = {r1 : p ← &id [p]()} and the compatible set Â = {Tp,Te&id [p]}. The
nogood set NA2

Γ,Π is {{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 , Te&id [p](),Tp}}.
Towards computing unfounded sets, observe that every unfounded set can be extended to a solution
to the nogood set ΓA

Π over A(ΓA
Π). Conversely, the solutions to ΓA

Π include specific extensions of
the unfounded sets, given for each unfounded set U by assigning true to all atoms in U , to all hr
such that H(r) intersects with U , and to all replacement atoms e&g[p](c) such that &g [p](c) is true
under A

.∪ ¬.U , and assigning false to all other atoms in A(ΓA
Π). More formally,

Definition 7 (Induced Assignment of an Unfounded Set wrt. ΓA
Π) Let U be an unfounded set of

a program Π wrt. assignment A. The assignment induced by U wrt. ΓA
Π , denoted IΓ(U,ΓA

Π ,Π,A),
is

IΓ(U,ΓA
Π ,Π,A) = I0

Γ(U,Π,A) ∪ {Fa | a ∈ A(ΓA
Π),Ta 6∈ I0

Γ(U,Π,A)} ,

279

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

where

I0
Γ(U,Π,A) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π, H(r) ∩ U 6= ∅} ∪

{Te&g[p](c) | &g [p](c) ∈ EA(Π), A
.∪ ¬.U |= &g [p](c)} .

We call a set N of nogoods conservative, if it holds for every unfounded set U of Π wrt. A that
IΓ(U,ΓA

Π ,Π,A) is a solution to N . We then show that the solutions to ΓA
Π include all assignments

induced by unfounded sets of Π wrt. A, assuming that OΓ,A
Π is conservative.

Proposition 4 Let U be an unfounded set of a program Π wrt. assignment A such that AT∩U 6= ∅.
Then IΓ(U,ΓA

Π ,Π,A) is a solution to ΓA
Π .

Note that the converse does not hold, i.e., not every solution corresponds to some induced as-
signment; intuitively this is because it does not reflect the semantics of external sources. Regardless
of this we immediately obtain from Proposition 4 a useful test for unfounded-freeness.

Corollary 5 If ΓA
Π has no solution, then U ∩AT = ∅ for every unfounded set U of Π.

Using the following result, we can find the unfounded sets of Π wrt. A among all solutions
to ΓA

Π by using a postcheck on the external atoms.

Theorem 6 Let S be a solution to ΓA
Π such that

(a) Te&g[p](c) ∈ S and A 6|= &g [p](c) implies A
.∪ ¬.U |= &g [p](c); and

(b) Fe&g[p](c) ∈ S and A |= &g [p](c) implies A
.∪ ¬.U 6|= &g [p](c)

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

Informally, the proposition states that the non-replacement atoms in S that are true and also
appear in Π form an unfounded set, provided that truth of the replacement atoms e&g[p](c) in S co-
incides with the truth of the corresponding &g [p](c) under A

.∪ ¬.U (as in Definition 7). However,
this check is just required if the truth values of e&g[p](c) in S and of &g [p](c) under A differ. This
gives rise to an important optimization for the implementation: external atoms, whose (known) truth
value of &g [p](c) under A matches the truth value of e&g[p](c) in S, do not need to be postchecked.

It follows immediately from Definition 7 that this postcheck does not eliminate unfounded sets,
as formalized by the following proposition.

Proposition 7 Let U be an unfounded set of a program Π wrt. assignment A such that AT∩U 6= ∅.
Then IΓ(U,ΓA

Π ,Π,A) fulfills Conditions (a) and (b) of Theorem 6.

Example 9 Reconsider program Π = {r1 : p← &id [p]()} from Example 8 and the compatible set
Â2 = {Tp,Te&id [p]}. The nogood setNA2

Γ,Π = {{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p](),Tp}}
has solutions S⊇{Thr1 ,Tp,Fe&id [p]()}, which correspond to the unfounded set U = {p}. Here,
Fe&id [p]() represents that A2

.∪ ¬.U 6|= &id [p]().

Note that due to the premises in Conditions (a) and (b) of Theorem 6, the postcheck is faster
if Te&g[p](c) ∈ S whenever A |= &g [p](c) holds for many external atoms in Π. This can be
exploited during the construction of S as follows: if it is not absolutely necessary to set the truth
value of e&g[p](c) differently, then carry over the value from &g [p](c) under A. Specifically, this is
successful if e&g[p](c) does not occur in ΓA

Π .

280

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

3.2 Uniform Encoding of the Unfounded Set Search

The encoding ΓA
Π presented in the previous subsection has the disadvantage that it depends on

the current assignment A. Therefore it needs to be generated separately for every unfounded set
check if the assignment changed (which is very likely). As this causes significant overhead, we
present now an advanced encoding which can be reused for any assignment. We introduce some
additional variables which represent the truth values of the atoms in the current assignment. Prior
to an unfounded set check, the current assignment is injected by setting the values of these variables
to fixed values, which can be done using assumptions as supported by modern SAT solvers such
as CLASP. Changing assumptions is much easier than changing the encoding, which leads to an
additional speedup in some cases, especially for programs which need many unfounded set checks.

Our advanced encoding uses a set ΩΠ of nogoods. As before, the idea is that the set of ordinary
atoms of a solution to ΩΠ represents a (potential) unfounded set U of Π wrt. some assignment A,
while the replacement atoms encode the truth values of the corresponding external atoms under A

.∪
¬.U . The encoding ΩΠ is conceptually more complex than ΓA

Π ; the initialization is computationally
(slightly) more costly, hence the advantages of our new encoding become visible for instances with
many compatible sets (thus many unfounded set checks), while it might be counterproductive for
small instances.

The nogood set ΩΠ is built over the atoms of Π̂ and and further fresh atoms not occurring in Π̂:
hr and lr, for every rule r in Π, aA for every ordinary atom a ∈ A(Π̂) (i.e. ordinary atoms in Π and
replacement atom auxiliaries), and aA

.
∪¬.U , aA∧U , aA∨U for every ordinary atom a ∈ A(Π). The

auxiliary atoms aA, aA
.
∪¬.U , aA∧U , aA∨U are used to make the encoding usable for any assignment

A. Only during the unfounded set check with respect to a certain assignment, we will temporarily
add assumptions to the solver which force certain truth values of the atoms aA for all a ∈ A(Π̂)
depending on the current assignment A. Intuitively, aA represents the truth value of a in A and
aA

.
∪¬.U of a in A

.∪ ¬.U (where U is the current unfounded set), aA∧U represents that a is true in
A and is contained in U , and aA∨U represents that a is false in A or it is contained in U .

To this end, a set of assumptions is a consistent set A of signed literals. A solution A to a
nogood δ resp. a set ∆ of nogoods satisfies A, if A ⊆ A. That is, assumptions fix the truth value
of some atoms. Modern ASP and SAT solvers support assumptions natively, and they can be easily
undone without a complete reset of the reasoner and recreating the whole problem instance. This is
an essential feature for efficiently implementing our improved encoding.

Our encoding ΩΠ is then
ΩΠ = NΩ,Π ∪OΩ,Π ,

where NΩ,Π = {{Fa | a ∈ A(Π)}} ∪⋃a∈A(Π)Da ∪
⋃

r∈Π(Hr ∪ Cr) is the necessary part and

• {Fa | a ∈ A(Π)} encodes that we search for a nonempty unfounded set;

• Da =

{
{FaA∧U ,TaA,Ta}, {TaA∧U ,FaA}, {TaA∧U ,Fa}

}
∪{

{FaA∨U ,FaA}, {FaA∨U ,Ta}, {TaA∨U ,TaA,Fa}
}
∪{

{TaA
.
∪¬.U ,FaA}, {TaA

.
∪¬.U ,Ta}, {FaA

.
∪¬.U ,TaA,Fa}

}
encodes that aA∧U is true iff aA and a are both true, aA∨U is true iff aA is false or a is true,
and aA

.
∪¬.U is true iff aA is true and a is false;

• Hr = {{Thr} ∪ {Fh | h ∈ H(r)}} ∪ {{Fhr,Th} | h ∈ H(r)}
encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set; and

281

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

• Cr =

{{Thr} ∪
{TaA | a ∈ B+(r̂)} ∪ {FaA | a ∈ B−(r̂)} ∪ (i)

{FaA∧U | a ∈ B+
o (r)} ∪ {ta | a ∈ Be(r̂)} ∪ (ii)

{ThA∨U | h ∈ H(r)}} (iii)

encodes that if hr is true, then one of (i), (ii) or (iii) in Definition 5 must hold.

More specifically, for an unfounded set U and a rule r with H(r) ∩ U 6= ∅ (hr is true) it
must not happen that A |= B(r) (Condition (i) fails), no a ∈ B+

o (r) with A |= a is in
the unfounded set and all a ∈ Be(r̂) are true under A

.∪ ¬.U (Condition (ii) fails), and all
h ∈ H(r) with A |= h are in the unfounded set (Condition (iii) fails).

Example 10 For Π = {r1 : p← &id [p]() } in Example 6, the constructed nogood set is

ΩΠ = {{Fp}, {FpA∧U ,TpA,Tp}, {TpA∧U ,FpA}, {TpA∧U ,Fp},
{FpĀ∨U ,Fp}, {FpĀ∨U ,Tp}, {TpĀ∨U ,TpA,Fp}, {TpA

.
∪¬.U ,FpA},

{TpA
.
∪¬.U ,Tp}, {FpA

.
∪¬.U ,TpA,Fp},

{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p]()A,Te&id [p](),TpĀ∨U}} .
Towards computing unfounded sets, observe that every unfounded set can be extended to a solution
to the set of nogoods ΩΠ overA(ΩΠ). Conversely, the solutions to ΩΠ include specific extensions of
all unfounded sets, which are again characterized by induced assignments; that is, by assigning true
to all atoms in U , to all hr such that H(r) intersects with U , and to all replacement atoms e&g[p](c)

such that &g [p](c) is true under A
.∪ ¬.U , appropriate truth values to the auxiliary atoms according

to their intuitive meaning, and assigning false to all other atoms inA(ΩΠ). More formally, this leads
us to the following assignment:

Definition 8 (Induced Assignment of an Unfounded Set wrt. ΩΠ) Let U be an unfounded set of
a program Π wrt. assignment A. The assignment induced by U wrt. ΩΠ, denoted IΩ(U,ΩΠ,Π,A),
is

IΩ(U,ΩΠ,Π,A) = I0
Ω(U,Π,A) ∪ {Fa | a ∈ A(ΩΠ),Ta 6∈ I0

Ω(U,Π,A)} ,
where

I0
Ω(U,Π,A) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π, H(r) ∩ U 6= ∅} ∪

{Te&g[p](c) | &g [p](c) ∈ EA(Π), A
.∪ ¬.U |= &g [p](c)} ∪

{TaA | a ∈ A(Π),Ta ∈ A} ∪ {TâA | a ∈ EA(Π),A |= a} ∪
{TaA∧U | a ∈ A(Π),Ta ∈ A, a ∈ U} ∪
{TaA

.
∪¬.U | a ∈ A(Π),Ta ∈ A, a 6∈ U} ∪

{TaA∨U | a ∈ A(Π),Fa ∈ A or a ∈ U} .
If we adopt for an assignment A the assumption set

AA = {TaA | a ∈ A(Π),Ta ∈ A} ∪ {FaA | a ∈ A(Π),Fa ∈ A} ∪
{TâA | a ∈ EA(Π),A |= a} ∪ {FâA | a ∈ EA(Π),A 6|= a} ,

then all assignments induced by unfounded sets of Π wrt. A are solutions to ΩΠ wrt. AA (but not
conversely, because intuitively the latter do not reflect the semantics of external sources).

As before, we call a set of nogoods N conservative, if IΩ(U,ΩΠ,Π,A) is a solution to N for
every unfounded set U of Π wrt. A. Under this property, those interpretations are solutions of the
whole nogood set which comply with the assumptions from A.

282

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Proposition 8 Let U be an unfounded set of a program Π wrt. assignment A such that AT∩U 6= ∅.
If OΩ,Π is conservative, then IΩ(U,ΩΠ,Π,A) is a solution to ΩΠ that satisfies AA.

Corollary 9 If ΩΠ has no solution which satisfies AA, then U ∩AT = ∅ for every unfounded set
U of Π (assuming OΩ,Π is conservative).

The next property allows us to find the unfounded sets of Π wrt. A among all solutions to ΩA that
satisfy AA by using a postcheck on the external atoms.

Theorem 10 Let S be a solution to ΩΠ (with conservative OΩ,Π) that satisfies AA such that

(a) Te&g[p](c) ∈ S and A 6|= &g [p](c) implies A
.∪ ¬.U |= &g [p](c); and

(b) Fe&g[p](c) ∈ S and A |= &g [p](c) implies A
.∪ ¬.U 6|= &g [p](c),

where U = {a ∈ A(Π) | Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

As for ΓA
Π , the proposition states that the non-replacement atoms in S that are true and appear

in Π form an unfounded set, provided that each replacement atom e&g[p](c) in S has the same truth
value as &g [p](c) under A

.∪ ¬.U (as in Definition 8). Again, this check is just required if the truth
value of e&g[p](c) in S is different from the one of &g [p](c) under A.

Similarly as for the encoding Γ, it follows immediately from Definition 8 that this postcheck
does not eliminate unfounded sets, as formalized by the following proposition.

Proposition 11 Let U be an unfounded set of a program Π wrt. assignment A such that AT∩U 6=
∅. Then IΩ(U,ΩΠ,Π,A) fulfills Conditions (a) and (b) of Theorem 10.

Example 11 Reconsider program Π = {r1 : p ← &id [p]()} from Example 6 and the compatible
set A2 = {Tp,Te&id [p]}. The nogood set

ΩΠ = {{Fp}, {FpA∧U ,TpA,Tp}, {TpA∧U ,FpA}, {TpA∧U ,Fp},
{FpĀ∨U ,Fp}, {FpĀ∨U ,Tp}, {TpĀ∨U ,TpA,Fp}, {TpA

.
∪¬.U ,FpA},

{TpA
.
∪¬.U ,Tp}, {FpA

.
∪¬.U ,TpA,Fp},

{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p]()A,Te&id [p](),TpĀ∨U}}
with assumptions AA2 = {TpA} has solutions S⊇{Thr1 ,Tp,TpA,Fe&id [p], TpA∧U , TpĀ∨U ,
FpA

.
∪¬.U}, which correspond to the unfounded set U = {p}. Here, Fe&id [p]() represents that

A2
.∪ ¬.U 6|= &id [p]().

We will see in Section 6 that the encoding ΩΠ is superior to ΓA
Π for many practically relevant

programs. The effect becomes especially visible if they need many unfounded set checks, which in-
tuitively is the case when many answer sets exist; here reusability of the encoding is very beneficial,
while for small programs with few answer sets, the incurred overhead does not lead to savings.

4. Optimization and Learning

In this section we first discuss some refinements and optimizations of our nogood encodings for UFS
search. In particular, we present nogoods which prune irrelevant parts of the search space; they can
be integrated into both encodings ΓA

Π and ΩΠ under suitable adjustments. After that, we propose a
strategy for learning nogoods from detected unfounded sets, avoiding that the same unfounded set
is generated later again.

283

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

4.1 Optimization

We present now three optimizations which turned out to be effective in improving UFS search,
where the second and the third exclude each other, i.e., they can not be used simultaneously.

4.1.1 RESTRICTING THE UFS SEARCH TO ATOMS IN THE COMPATIBLE SET

First, not all atoms in a program are relevant for the unfounded set search: atoms that are false under
A can be ignored.

Proposition 12 Suppose U is an unfounded set of Π wrt. an interpretation A such that A 6|= a for
some a ∈ U . Then U \ {a} is an unfounded set of Π wrt. A.

The nogoods for this optimization are simple. In the encoding ΓA
Π , we add the conservative

nogood {Ta} for each a ∈ A(Π) with A 6|= a to the optimization part OA
Γ,Π and in the encoding

ΩΠ the conservative nogood {FaA,Ta} for each a ∈ A(Π) to the optimization part OΩ,Π.

4.1.2 AVOIDING GUESSES OF REPLACEMENT ATOMS

In some situations, the truth value of a replacement atom b in a solution S to ΓA
Π resp. ΩΠ with

assumptions AA is irrelevant. That is, both STb = (S \ {Tb,Fb}) ∪ {Tb} and SFb = (S \
{Tb,Fb}) ∪ {Fb} are solutions to ΓA

Π resp. ΩΠ that satisfy AA, and they represent the same
unfounded set. We then can set the truth value of b to an (arbitrary) fixed value instead of inspecting
both alternatives. The next proposition states a sufficient criterion for this irrelevance.

Proposition 13 Let b be a replacement atom, and let S be a solution to ΓA
Π resp. ΩΠ satisfying

AA. If for every rule r ∈ Π such that b ∈ B+(r̂) ∪B−(r̂) and A |= B(r), either

(a) for some a ∈ B+
o (r) such that A |= a, it holds that Ta ∈ S, or

(b) for some a ∈ H(r) such that A |= a, it holds that Fa ∈ S,

then both STb and SFb are solutions to ΓA
Π resp. ΩΠ that satisfy AA.

This property can be utilized by adding conservative nogoods. Recall that A(ΓA
Π) and A(ΩΠ)

contain atoms lr for every r ∈ Π. They intuitively serve to encode for a solution S to ΓA
Π resp. ΩΠ

with assumptionsAA whether the truth values of the replacement atoms in B(r) are relevant or can
be set arbitrarily. The following nogoods label relevant rules r, forcing lr to be false iff some of the
conditions in Proposition 13 holds. For the encoding ΓA

Π , we add to OA
Γ,Π for each rule r:

LA
Γ,r ={{Tlr,Ta} | a ∈ B+

o (r),A |= a} ∪ {{Tlr,Fa} | a ∈ H(r),A |= a} ∪
{{Flr} ∪ {Fa | a ∈ B+

o (r),A |= a} ∪ {Ta | a ∈ H(r),A |= a}} .

For the encoding ΩΠ, we add to OΩ,Π for each rule r:

LΩ,r ={{Tlr,Ta,TaA} | a ∈ B+
o (r)} ∪ {{Tlr,Fa,TaA} | a ∈ H(r)} ∪

{{Flr} ∪ {FaA∧U | a ∈ B+
o (r)} ∪ {TaĀ∨U | a ∈ H(r)}} .

These constraints exclusively enforce either Tlr or Flr. Hence, the truth value of lr determin-
istically depends on the other atoms, i.e., the nogoods do not cause additional guessing.

By Proposition 13 we can set the truth value of a replacement atom b arbitrarily, if lr is false
for all r such that b ∈ B+(r̂) or b ∈ B−(r̂). However, it must be ensured that changing the truth

284

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

value of replacement atoms does not harm the satisfaction of the conditions in Theorem 6 (resp.
Theorem 10).

As mentioned after Theorem 6, it is beneficial to set the truth value of e&g[p](c) to the one of
&g [p](c) under A, because this can reduce the number of external atoms that must be checked.
Importantly, this also relaxes the antecedence of the conditions in Theorem 6 (resp. Theorem 10),
and guarantees that they are not harmed. The following nogoods enforce a coherent interpretation
of the replacement atoms.

For the encoding ΓA
Π we add to OA

Γ,Π for each rule r:

FA
Γ,r =

{
{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Fb} | b ∈ Be(r̂),A |= b

}
∪{

{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Tb} | b ∈ Be(r̂),A 6|= b
}
,

while for the encoding ΩΠ we add to OΓ,Π for each rule r:

FΩ,r =
{
{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {TbA,Fb} | b ∈ Be(r̂)

}
∪{

{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {FbA,Tb} | b ∈ Be(r̂)
}
.

In summary, the encoding ΓA
Π has the optimization part OA

Γ,Π =
⋃

r∈Π L
A
Γ,r ∪ FA

Γ,r and the
encoding ΩΠ the optimization part OΩ,Π =

⋃
r∈Π LΩ,r ∪ FΩ,r.

We give now an example for this optimization using our encoding Γ.

Example 12 Consider the program Π = {r1 : p ← &id [p](); r2 : q ← &id [q]()}, and the com-
patible set Â = {Tp,Tq,Te&id [p](),Te&id [q]()}. Then the necessary part of encoding ΓA

Π has
solutions S1 ⊇ {Thr1 ,Tp,Fe&id [p](),Fhr2 ,Fq,Fe&id [q]()} and S2 ⊇ {Thr1 ,Tp,Fe&id [p](),
Fhr2 ,Fq,Te&id [q]()} (which represent the same unfounded set U = {p}). Here, the optimiza-
tion part for r2, LA

r2 ∪FA
r2 = {{Tlr2 ,Fq}, {Flr2 ,Tq}, {Flr2 ,Te&id [q]()}}, eliminates solutions S2

for ΓA
Π . This is beneficial as for solutions S1 the postcheck is easier (e&id [q]() in S1 and &id [q]()

have the same truth value under A).

Note that if this optimization is not used, then for all rules r the atom lr is in fact not needed
and thus unconstrained. To avoid an exponential increase of the number of UFS candidates, these
atoms should then be set to a fixed value.

4.1.3 EXCHANGING NOGOODS BETWEEN UFS AND MAIN SEARCH

The third optimization allows for the exchange of learned knowledge about external atoms between
the UFS check and the main search for compatible sets. For this purpose, we first define nogoods
which correctly describe the input-output relationship of external atoms.

Definition 9 A nogood of the form N = {Tt1, . . . ,Ttn, Ff1, . . . ,Ffm, σe&g[p](c)}, where σ is T
or F, is a valid input-output-relationship, if for every assignment A such thatN \{σe&g[p](c)} ⊆ A
it holds that A |= &g [p](c) if σ = F, and A 6|= &g [p](c) if σ = T.

Here, the signed literals with atoms ti, 1 ≤ i ≤ n, resp. fj , 1 ≤ j ≤ m, reflect the relevant true
resp. false atoms in the interpretation A, built over predicates which occur in the input list p. Tech-
niques for learning such nogoods have been described by Eiter et al. (2012a) and exploit properties
of external sources (such as monotonicity and functionality) to restrict the size of N .

Let N be a nogood which is a valid input-output-relationship learned during the main search,
i.e., for compatible sets of Π̂, and let F̄ = T and T̄ = F.

285

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

Definition 10 (Nogood Transformation TΓ) For a valid input-output relationship N = {Tt1,
. . . , Ttn, Ff1, . . . ,Ffm, σe&g[p](c)} and an assignment A, the nogood transformation TΓ is de-
fined as

TΓ(N,A) =

∅ if Fti ∈ A for some 1 ≤ i ≤ n,
{ {Ft1, . . . ,Ftn} ∪ {σe&g[p](c)} ∪
{Tfi | 1 ≤ i ≤ m,A |= fi} } otherwise.

The next result states that TΓ(N,A) can be considered, for all valid input-output relationshipsN
under all assignments A, without losing unfounded sets.

Proposition 14 Let N be a valid input-output relationship, and let U be an unfounded set wrt. Π
and A. IfOA

Γ,Π contains only conservative nogoods, then IΓ(U,ΓA
Π ,Π,A) is a solution to TΓ(N,A)

(i.e., also nogoods TΓ(N,A) are conservative).

Hence, all valid input-output relationships for external atoms that are learned during the search
for compatible sets can be reused (applying the above transformation) for the UFS check. Moreover,
during the evaluation of external atoms in the postcheck for candidate unfounded sets (i.e., solutions
to ΓA

Π), further valid input-output relationships might be learned. They can in turn be used by
(further) unfounded set checks (in transformed form) but also in the search for compatible sets.

Example 13 (Set Partitioning) For the program Π from Example 4, consider the compatible set
Â = {Tdomain(a),Tsel(a),Te&diff [nsel](a)}. Suppose the main search has learned the input-
output relationshipN = {Tdomain(a), Fnsel(a),Fe&diff [nsel](a)}. Then the transformed nogood
is aTΓ(N,A)={{Fdomain(a), Fe&diff [nsel](a)}}; it intuitively encodes that if domain(a) is not in
the unfounded set U , then e&diff [nsel](a) is true under A

.∪ ¬.U . This holds because e&diff [nsel](a)
is true under A and can only change its truth value if domain(a) becomes false.

This learning technique can be adopted for our encoding ΩΠ as follows.

Definition 11 (Nogood Transformation TΩ) For a valid input-output relationship N , the nogood
transformation TΩ is defined as

TΩ(N) = {{σe&g[p](c)} ∪ {Tt1A,Ft1, . . . ,TtnA,Ftn,Ff1A
.
∪¬.U , . . . ,FfmA

.
∪¬.U}} .

Compared to TΓ(N,A), the main difference is that TΩ(N) is reusable for every assignment, similar
to the definition of our unfounded set detection problem ΩΠ.

The next result states that TΩ(N) can be considered, for all valid input-output relationships N
under all assignments A, without losing unfounded sets.

Proposition 15 Let N be a valid input-output relationship, and let U be an unfounded set wrt. Π
and A. If OΩ,Π contains only conservative nogoods, then IΩ(U,ΩΠ,Π,A) is a solution to TΩ(N)
(i.e., also nogoods TΩ(N) are conservative).

Hence, also with encoding ΩΠ all valid input-output relationships for external atoms that are
learned during the search for compatible sets can be reused and vice versa.

286

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Example 14 (cont’d) Reconsider the program Π from Example 4 and the compatible set Â =
{Tdomain(a),Tsel(a),Te&diff [domain,nsel](a)}. Suppose the main search has learned the input-
output relationship N = {Tdomain(a), Fnsel(a),Fe&diff [domain,nsel](a)}. The transformed no-
good is

TΩ(N)={{Tdomain(a)A,Fdomain(a),Fnsel(a)A
.
∪¬.U ,Fe&diff [domain,nsel](a)A

.
∪¬.U}} ;

it intuitively encodes that if domain(a) is true in the assignment A but not in the unfounded set U ,
and if nsel(a) is false in A

.∪ ¬.U , then e&diff [domain,nsel](a) is true under A
.∪ ¬.U . This holds as

e&diff [domain,nsel](a) is true under A and can only change its truth value if domain(a) gets false.

The nogood exchange also benefits from our advanced encoding. With our previous encoding ΓA
Π ,

we needed to build the SAT instance from scratch for every unfounded set check. Thus, nogoods
learned in the main search for compatible sets need to be transformed and added to the UFS de-
tection problem for every check (otherwise they are lost). With our new encoding ΩΠ, this is done
only once because learned nogoods are kept for multiple unfounded set checks. This also allows us
to make use of advanced forgetting heuristics in SAT solvers more effective.

Finally, an important note is that the optimizations presented in Section 4.1.2 and 4.1.3 can not
be used simultaneously (differently from the optimizations in Section 4.1.1 and 4.1.2 resp. 4.1.1 and
4.1.3), as this can result in contradictions due to (transformed) learned nogoods. We thus disabled
the optimization for avoiding guesses of replacement atoms (Section 4.1.2) in our experiments.

4.2 Learning Nogoods from Unfounded Sets

Until now we have considered merely detecting unfounded sets. A strategy to learn from detected
unfounded sets for the main search for compatible sets is missing. We next develop such a strategy
which we call unfounded set learning (UFL).

Example 15 Consider the program Π = { p← &id [p](); x1∨x2∨· · ·∨xk ←}. As we know from
Example 7, U = {p} is a UFS of the subprogram Π′ = { p← &id [p]() } wrt. A = {Tp,Te&id ()}.
The same is true for Π and moreover for every A′ ⊃ A; i.e., p must never be true.

The program in Example 15 has many compatible sets, and half of them (all where p is true) will fail
the UFS check for the same reason. We thus develop a strategy for generating additional nogoods to
guide the search for compatible sets in a way such that the same unfounded sets are not reconsidered.
We present two such strategies, but will focus on the first one because our experiments have shown
that the first one is superior for all our instances.

4.2.1 UFS-BASED LEARNING

For an unfounded set U of Π wrt. A we define a set L1(U,Π,A) of learned nogoods as follows.
Suppose that r1, . . . , rj are all rules r in Π such that H(r) ∩ U 6= ∅ and U ∩ B+

o (r) = ∅, i.e., the
set of all “external” rules of Π wrt. U (rules which do not directly depend positively on U). Then

L1(U,Π,A) = {{σ0, σ1, . . . , σj} | σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ j)} ,

where Hi = {Th | h ∈ H(ri) \ U, A |= h} ∪ {Fb | b ∈ B+
o (ri), A 6|= b}. Formally we can show

that adding this set of nogoods is correct, i.e., does not prune answer sets:

287

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

Proposition 16 If U is an unfounded set of Π wrt. A, then every answer set of Π is a solution to
the nogoods in L1(U,Π,A).

Example 16 Consider the program Π from Example 15 and suppose we have found the unfounded
set U = {p} wrt. the interpretation A = {Tp,Tx1}∪{Fxi | 1 < i ≤ k}. Then the learned nogood
L1(U,A,Π) = {Tp} immediately guides the search to the part of the search tree where p is false,
i.e., roughly half of the guesses are avoided.

4.2.2 REDUCT-BASED LEARNING

A different learning strategy is based on the models of fΠA rather than the unfounded set U itself,
hinging on the observation that for every unfounded set U , A

.∪ ¬.U is a model of fΠA; hence
U 6= ∅ refutes A as a minimal model of fΠA. This was noted by Faber (2005) for aggregates.

We exploit this to construct nogoods from a nonempty U wrt. a model A as follows. The
interpretation A

.∪ ¬.U is not only a model of fΠA, but of all programs Π′ ⊆ fΠA. Hence, if an
assignment A′ falsifies at least the rules of Π which A falsifies, and A′T ⊃ (A

.∪ ¬.U)T, then A′

is not an answer set of Π. This yields the following nogood set L2(U,Π,A). Suppose r1, . . . , rn
are all rules r of Π which are not in its FLP-reduct wrt. A (i.e., A 6|= B(ri). Then

L2(U,Π,A) = {{Ta | a ∈ (A
.∪ ¬.U)T} ∪ {σ0, σ1, . . . , σn}

| σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ n} ,

where Hi = {ta | a ∈ B(r̂), Â 6|= a}, 1 ≤ i ≤ n. That is, each nogood consists of the true-part
of the smaller model A

.∪ ¬.U of the reduct fΠA, an unfounded atom σ0 (i.e. true in A but not in
A

.∪ ¬.U), and a false body literal σi (1 ≤ i ≤ n) for each rule of Π with unsatisfied body wrt. A.

Example 17 Let Π = {p ← &id [p](); q ← &id [q]()}, where &id [a]() evaluates to true iff a is
true. Suppose A = {Tp,Tq}. Then U = {Tp,Tq} is an unfounded set wrt. A. In the above
construction rule we have A

.∪ ¬.U = {}, σ0 ∈ {Tp,Tq} and n = 0 (because both rule bodies are
satisfied wrt. A). The learned nogoods are L2(U,Π,A) = {{Tp}, {Tq}}.

In Example 17, the learned nogoods will immediately guide the search to the interpretation
{Fp,Fq}, which is the only one which becomes an answer set. Formally, we can show:

Proposition 17 If U is an unfounded set of Π wrt. A and A |= Π, then each answer set of Π is a
solution to all nogoods in L2(U,Π,A).

However, L2(U,Π,A) appeared to be clearly inferior to L1(U,Π,A) from Section 4.2.1. In-
formally, its nogoods overfit the detected unfounded set and do not generalize well to other ones.

5. Deciding the Necessity of the Minimality Check

Although the minimality check based on unfounded sets is more efficient than the explicit minimal-
ity check, the computational costs are still high. Moreover, during the evaluation of Π̂ for computing
the compatible set Â, the ASP solver has already made an unfounded set check, and we can safely
assume that it is founded from the perspective of the ASP solver. Hence, all remaining unfounded
sets which were not discovered by the ASP solver must involve external sources, as their behavior
is not fully captured by the ASP solver.

288

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

In this section we pursue these ideas and give a decision criterion for deciding whether a fur-
ther UFS check is necessary. We eventually define a class of programs which needs no additional
UFS check. Intuitively, we show that every unfounded set that is not already detected during the
construction of Â contains input atoms of external atoms involved in cycles. If the program has no
such input atom, then the UFS check is superfluous. Afterwards, we show how to apply this crite-
rion, which holds in practically relevant cases, to program components; this often yields additional
speedup. However, there are also cases where the UFS check can not be skipped; e.g., recursive
URL retrieval from a web resource (which requires cyclic use of an external atom).

5.1 Basic Decision Criterion

We start with a definition of atom dependency.

Definition 12 (Atom Dependency) For a ground program Π, and ground atoms p(c) and q(d), we
say that

(i) p(c) depends on q(d), denoted p(c)→ q(d), if for some rule r ∈ Π we have p(c) ∈ H(r) and
q(d) ∈ B(r);

(ii) p(c) depends externally on q(d), denoted p(c)→e q(d), if some rule r∈Π and external atom
&g [q1, . . . , qn](e) ∈ B+(r)∪B−(r) exist such that p(c) ∈ H(r) and q ∈ {q1, . . . , qn}.

In the following, we consider dependency graphs GR
Π = (V,E) for a ground program Π, whose

vertices V are the ground atoms and whose edges E are given by a binary relation R over ground
atoms (E = R). We call p(c)→ q(d) also an ordinary edge and p(c)→e q(d) an e-edge.

We establish a lemma that allows us to restrict our attention to the “core” of an unfounded set,
i.e., its most essential part; we can disregard atoms in a cut of GR

Π, which is defined as follows.

Definition 13 (Cut) Let U be an unfounded set of Π wrt. A. A set of atoms C ⊆ U is a cut of GR
Π,

if

(i) b→e a /∈ GR
Π, for all a ∈ C and b ∈ U (C has no incoming e-edge from U),

(ii) b→ a 6∈ GR
Π and a→ b 6∈ GR

Π, for all a ∈ C and b ∈ U \ C (there are no ordinary edges
between C and U \ C).

We first prove that cuts can be removed from unfounded sets and the resulting set is still an
unfounded set.

Lemma 18 (Unfounded Set Reduction Lemma) Let U be an unfounded set of Π wrt. a complete
assignment A, and let C be a cut of GR

Π. Then, Y = U \ C is an unfounded set of Π wrt. A.

Example 18 Consider the following program:

Π = {r ← &id [r](); p← &id [r](); p← q; q ← p} .

Then we have p → q, q → p, r →e r and p →e r. Π has the unfounded set U = {p, q, r}
wrt. A = {Tp,Tq,Tr}. Observe that C = {p, q} is a cut of GR

Π, and therefore U \ C = {r} is an
unfounded set of Π wrt. A.

289

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

Next we prove that intuitively, for each unfounded set U of Π, either the input to some external
atom is unfounded itself, or U is already detected when Π̂ is evaluated.

Lemma 19 (EA-Input Unfoundedness) Let U be an unfounded set of Π wrt. an assignment A. If
GR

Π has no edge x→e y such that x, y ∈ U , then U is an unfounded set of Π̂ wrt. Â.

Example 19 Reconsider the program Π from Example 18. Then the unfounded set U ′ = {p, q}
wrt. A′ = {Tp,Tq,Fr} is already detected when

Π̂ = { e&id [r]() ∨ ne&id [r]()← ; r ← e&id [r](); p← e&id [r](); p← q; q ← p }

is evaluated by the ASP solver because no edges p →e q and q →e p exist. In contrast, the
unfounded set U ′′ = {p, q, r} wrt. A′′ = {Tp,Tq,Tr} is not detected by the ASP solver because
p, r ∈ U ′′ and p→e r.

Thus, the unfounded sets of Π wrt. A that are not recognized during the evaluation of Π̂ have
cyclic dependencies over input atoms of some external atom. Programs with acyclic dependencies
do not need additional UFS checks.

Recall that a cycle wrt. a binary relation R is a sequence C = c0, c1, . . . , cn, cn+1 of elements,
n ≥ 0, such that (ci, ci+1) ∈ R for all 0 ≤ i ≤ n and c0 = cn+1. A set S contains a cycle wrt. R,
if there is a cycle C = c0, c1, . . . , cn, cn+1 wrt. R such that ci ∈ S for all 0 ≤ i ≤ n+ 1.

Informally, the next proposition states that each unfounded set of Π wrt. A which contains
no cycle through the input atoms to some external atom corresponds to some unfounded set of Π̂
wrt. Â, i.e., the unfoundedness is already detected when Π̂ is evaluated.

Let→d = → ∪ ← ∪ →e, where← is the inverse of→ (i.e. ← = {(x, y) | (y, x) ∈ →}). A
cycle c0, c1, . . . , cn, cn+1 under→d is called an e-cycle, if it contains an e-edge, i.e., ci →e ci+1 for
some 0 ≤ i ≤ n.

Theorem 20 (Relevance of e-cycles) Let U 6= ∅ be an unfounded set of Π wrt. an interpretation
A which does not contain any e-cycle under→d. Then Π̂ has a nonempty unfounded set wrt. Â.

Corollary 21 If a program Π has no e-cycle under→d and Π̂ has no unfounded set wrt. an inter-
pretation Â, then A is unfounded-free for Π.

This corollary can be used to increase the performance of an evaluation algorithm as follows:
if there is no cycle under→d containing e-edges, then an explicit unfounded set check is not nec-
essary because the unfounded set check during the evaluation of Π̂ is sufficient. Note that this test
can be done efficiently (in fact in linear time, similar to deciding stratifiability of an ordinary logic
program). Moreover, in practice one can abstract from →d by using analogous relations on the
level of predicate symbols instead of atoms. Clearly, if there is no e-cycle in the predicate depen-
dency graph, then there can also be no e-cycle in the atom dependency graph. Hence, the predicate
dependency graph can be safely used to decide whether the unfounded set check can be skipped.

Example 20 All example programs so far need an UFS check, but the program Π = {out(X) ←
&diff [set1, set2](X)}∪F , where diff computes the set difference of unary predicates set1 and set2

and F is any set of facts, needs no UFS check as there is no e-cycle under→d. Also the program
Π = {str(Z) ← dom(Z), str(X), str(Y), not &concat [X,Y](Z)} (where &concat takes two
constants and computes their string concatenation) needs no UFS check; there is a cycle over an
external atom, but no e-cycle under→d.

290

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Unfortunately, the converse of Theorem 20 does not hold, that is, Π̂ may fail to be unfounded-
free wrt. Â but no unfounded set of Π wrt. A contains an e-cycle; thus, the condition in Corollary 21
is not necessary for unfounded-freeness of Π wrt. A. However, the following generalization of
Theorem 20 allows us to conclude that if Π̂ is unfounded-free wrt. Â, then every unfounded set U
of Π wrt. A must contain an atom that provides input to an external atom on a cycle under→d.

Definition 14 (Cyclic Input Atoms) For a program Π, an atom a is a cyclic input atom, if some
edge b→e a with a path from a to b under→d exists.

Let CA(Π) denote the set of all cyclic input atoms of program Π.

Theorem 22 (Unfoundedness of Cyclic Input Atom) Let U 6= ∅ be an unfounded set of Π wrt. A
such that U ∩ CA(Π) = ∅. Then, Π̂ has a nonempty unfounded set wrt. Â.

As a consequence of Theorem 22, we can add the nogood {Fa | a ∈ CA(Π)} to ΓA
Π . Again

using predicate symbols instead of atoms reduces the overhead of the dependency graph.

Example 21 Reconsider Π in Example 18. Then U = {p, q} is an unfounded set wrt. A =
{Tp,Tq,Fr}; as U is disjoint from CA(Π) = {r}, it is detected during the evaluation of Π̂.

5.2 Program Decomposition

The usefulness of the decision criterion can be increased by decomposing the program into com-
ponents, such that the criterion can be applied componentwise. This allows us to restrict the UFS
check to components with e-cycles, while e-cycle-free components can be ignored.

Let C be a partitioning of the ordinary atomsA(Π) of Π into subset-maximal strongly connected
components under → ∪ →e. We define for each partition C ∈ C the subprogram ΠC associated
with C as ΠC = {r ∈ Π | H(r) ∩ C 6= ∅}.

We next show that if a program has an unfounded set U wrt. A, then U ∩C is an unfounded set
wrt. A for the subprogram of some strongly connected component C.

Theorem 23 Let U 6= ∅ be an unfounded set of Π wrt. A. Then, for some C ∈ C it holds that U ∩C
is a nonempty unfounded set of ΠC wrt. A.

Note that constraints (i.e., rules with empty head) do not harm this proposition. Each constraint
r of kind← B(r) can be rewritten to p← B(r),not p for a new atom p, and C = {p} is a strongly
connected component with ΠC = {r}, which does not contain an e-cycle. Thus, for the rewritten
constraints the according subprograms ΠC can be ignored anyways.

This proposition states that a search for unfounded sets can be done independently for the sub-
programs ΠC for all C ∈ C. If there is an unfounded set of Π wrt. an assignment, then there is also
an unfounded set of at least one program component wrt. this assignment. We know by Corollary 21
that programs Π without e-cycles can only contain unfounded sets that are already detected when
Π̂ is solved. If we apply Theorem 23 to the subprograms ΠC , we can safely ignore e-cycle-free
program components.

Example 22 Reconsider the program Π from Example 18. Then C contains the components C1 =
{p, q} and C2 = {r} and we have ΠC1 = {p ← &id [r](); p ← q; q ← p} and ΠC2 = {r ←
&id [r]()}. By Theorem 23, each unfounded set of Π wrt. some assignment A gives rise to an

291

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

unfounded set of either ΠC1 or ΠC2 . E.g., consider U = {p, q, r} and A = {Tp,Tq,Tr}; then
U ∩ {r} = {r} is an unfounded set of ΠC2 wrt. A. As ΠC1 has no e-cycles, we conclude from
Corollary 21 that all unfounded sets of ΠC1 are already detected when Π̂ (resp., Π̂C1) is evaluated.
Hence, only ΠC2 needs an additional UFS check. Indeed, the only unfounded set of Π̂ that is not
detected when Π̂ is evaluated is {r}, which is unfounded wrt. each interpretation A ⊇ {Tr} for
ΠC2 and Π.

Finally, we show that splitting, i.e., the component-wise check for foundedness, does not lead
to spurious unfounded sets.

Proposition 24 If U is an unfounded set of ΠC wrt. A such that U ⊆ C, then U is an unfounded
set of Π wrt. A.

The results can be generalized to subprograms that are larger than strongly connected compo-
nents; however, we leave a detailed study of this for future work.

6. Implementation and Evaluation

For implementing our technique, we integrated CLASP into our prototype system DLVHEX; we use
CLASP as an ASP solver for computing compatible sets and as a SAT solver for solving the nogood
set of the UFS check.

In our experiments, we will also use external behavior learning (EBL) as developed by Eiter
et al. (2012a). The basic idea is to learn additional nogoods from evaluations of external atoms,
which capture (parts of) the behavior of external sources. Thus, these nogoods eliminate model
candidates which violate the known semantics of external atoms.

Regarding a concrete setting, there is a large number of combinations of EBL and the techniques
presented in this paper. Indeed, we may either activate or deactivate external behavior learning and
use either the explicit or the UFS-based minimality check. In the latter case, we can further use
unfounded set learning (UFL), the decision criterion for skipping the unfounded set check can be
exploited or ignored, and program decomposition might be used or not. Moreover, we can choose
between the encodings Γ and Ω. In total, these are 34 different settings.

However, we will restrict our discussion to some interesting configurations. In general, we will
activate the developed features stepwise such that in our tables the efficiency increases from left
to right. We will start with the traditional algorithm based on an explicit minimality check without
any learning techniques of Eiter et al. (2012a) and from this paper (i.e., only conflict-driven learning
inside CLASP is used). In the next step we will add external behavior learning, while UFL is not pos-
sible with the explicit check. Then we switch from the explicit minimality check to the UFS-based
check without learning and without exploiting the decision criterion and program decomposition.
Nevertheless, this naive kind of UFS-based minimality checking is often more efficient than the
explicit minimality check with EBL. In the next step, we add the decision criterion and program
decomposition. In the following, monolithic (mol) means that both the decision criterion and the
program decomposition are off, and modular (mod) that they are on. Next we add EBL and UFL to
the UFS-based minimality check, and finally we switch the encoding from Γ to Ω (including EBL,
UFL and modular decomposition). However, we might skip some of the steps for specific bench-
marks and argue why they are uninteresting in the respective cases. Detailed instance information
and results with all combinations of parameters are available.2

2. http://www.kr.tuwien.ac.at/research/projects/hexhex/ufs

292

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Briefly, our results show a clear improvement, for both synthetic and application instances,
by the UFS check and EBL. Moreover, a closer analysis shows that the UFS check decreases in
some cases not only the runtime but also the number of enumerated candidates (UFS resp. model
candidates of the FLP reduct) and the number of external atom evaluations.

We evaluated the implementation on a Linux server with two 12-core AMD 6176 SE CPUs
with 128GB RAM running DLVHEX version 2.3.0. The evaluated techniques were configured using
commandline arguments. To the best of our knowledge, DLVHEX is the only implementation of the
HEX semantics. In each test run the CPU usage was limited to two CPU cores, running a Condor
load distribution system which ensures robust runtimes (i.e., multiple runs of the same instance have
negligible deviations). The timeout was uniformly set to 300 seconds for each instance; for each
parameter value, the average runtime over all instances is printed where timeouts, whose number is
shown in parentheses, are fully taken into account.

6.1 Detailed Benchmark Description and Experimental Results

We give now a detailed description of the benchmarks used in our experiments, and present the
results of our experimental evaluation.

6.1.1 SET PARTITIONING

This benchmark extends the program from Example 4 by the additional constraint

← sel(X), sel(Y), sel(Z), X 6=Y,X 6=Z, Y 6=Z

and varies the size of domain . The results are shown in Table 1. Here we see a big advantage of
the UFS check over the explicit check, for both computing all answer sets and finding the first one.
A closer investigation shows that the improvement is mainly due to the optimizations in Section 4,
which make the UFS check investigate significantly fewer candidates than the explicit FLP check.
Furthermore the UFS check requires fewer external computations.

Both the explicit and the UFS-based minimality check benefit from EBL if we compute all
answer sets, but the results show that the UFS-based check benefits more. In contrast, UFL (not
shown in the table) does not lead to a further speedup as no unfounded sets are found in this program.

The decision criterion and program decomposition improve the runtime slightly for small in-
stances. However, for large instances the decision criterion cannot avoid the UFS check in most
components of the program because of its cyclic structure. Thus a single UFS check over the whole
program is replaced by multiple UFS checks over individual program components, which involves
more overhead that becomes visible when computing all answer sets.

If we compute only one answer set, then EBL turns out to be counter-productive. This is be-
cause learning is involved with additional overhead, while we cannot profit much from the learned
knowledge if we abort after the first answer set, hence the costs exceed the benefit.

Using the encoding Ω instead of Γ increases the efficiency in this case, because there is not only
a large number of answer sets but also a large number of answer set candidates. Thus, a reusable
encoding is very beneficial, even if we compute only one answer set.

Since in the evaluation of this program no unfounded sets are encountered, it is obvious that
additional unfounded set checks over partial interpretations increase the overhead at no benefit;
hence we do not discuss respective results.

293

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

do
m

ai
n all answer sets first answer set

explicit +EBL UFS Γ UFS Γ +EBL Ω explicit +EBL UFS Γ UFS Γ +EBL Ω
mol mod mol mod

5 (1) 300.00 (1) 300.00 (1) 0.33 (0) 0.32 (0) 0.09 (0) 0.07 (0) 54.02 (0) 53.80 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
6 (1) 300.00 (1) 300.00 (1) 0.77 (0) 0.81 (0) 0.12 (0) 0.10 (0) 300.00 (1) 300.00 (1) 0.04 (0) 0.05 (0) 0.06 (0) 0.06 (0)
7 (1) 300.00 (1) 300.00 (1) 1.73 (0) 1.78 (0) 0.20 (0) 0.13 (0) 300.00 (1) 300.00 (1) 0.06 (0) 0.06 (0) 0.06 (0) 0.07 (0)
8 (1) 300.00 (1) 300.00 (1) 4.35 (0) 4.17 (0) 0.31 (0) 0.16 (0) 300.00 (1) 300.00 (1) 0.07 (0) 0.06 (0) 0.07 (0) 0.07 (0)
9 (1) 300.00 (1) 300.00 (1) 10.42 (0) 10.21 (0) 0.47 (0) 0.23 (0) 300.00 (1) 300.00 (1) 0.08 (0) 0.07 (0) 0.08 (0) 0.09 (0)

10 (1) 300.00 (1) 300.00 (1) 26.31 (0) 25.13 (0) 0.53 (0) 0.29 (0) 300.00 (1) 300.00 (1) 0.09 (0) 0.09 (0) 0.11 (0) 0.12 (0)
15 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 2.83 (0) 0.79 (0) 300.00 (1) 300.00 (1) 0.19 (0) 0.15 (0) 0.27 (0) 0.26 (0)
20 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 12.98 (0) 1.95 (0) 300.00 (1) 300.00 (1) 0.38 (0) 0.29 (0) 0.57 (0) 0.57 (0)
25 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 45.18 (0) 4.11 (0) 300.00 (1) 300.00 (1) 0.70 (0) 0.47 (0) 1.09 (0) 1.08 (0)

Table 1: Set Partitioning Benchmark Results

Note that the results are not comparable to those by Eiter et al. (2012a), because previous work
focused on the computation of subset-minimal compatible sets and did not perform a minimality
check wrt. the reduct, i.e., the semantics was different.

6.1.2 NONMONOTONIC MULTI-CONTEXT SYSTEMS

Nonmonotonic Multi-Context-Systems (MCSs) (Brewka & Eiter, 2007) are a generic formalism
for aligning knowledge bases called contexts, which emerged from an approach by Ghidini and
Giunchiglia (2001). The contexts are interlinked via bridge rules which enable belief exchange
across contexts; the MCS semantics requires that local belief sets are compliant with the bridge
rules. Such compliance can be impossible to achieve; that is, the MCS is inconsistent. To understand
the reasons for the latter, Eiter et al. (2012b) defined inconsistency explanations (IEs) for a MCS,
which can be computed with a HEX-program encoding. This encoding is based on Saturation,
which is a general technique for solving Σp

2 problems in disjunctive answer set programming (cf.,
Leone et al., 2006). Intuitively, a quantified Boolean formula (QBF) of the form ∃X∀YΦ(X,Y)
is evaluated using this technique as follows. Disjunctions are used to guess whether a variable v is
true or false. A ‘spoil’ atom is made true whenever Φ evaluates to true given truth assignments to
X and Y. Finally whenever ‘spoil’ is true, all literals over Y are set to true; this creates a unique
assignment of the respective atoms. Given a guess on X, its unique ‘spoil’ extension is an answer
set if and only if all guesses of truth assignments Y make the spoil atom true and saturate the guess
to become the unique extension—this holds due to the minimality condition on answer sets of the
reduct (see Definition 3).

We use the HEX-encoding for computing IEs as a benchmark, as the saturation is rich in cy-
cles through external atoms and disjunctive rule heads. External atoms in this benchmark evaluate
semantics of contexts in the MCS (i.e., the local belief sets or models).

We use random instances of different MCS topologies, i.e., connection graphs of contexts, cre-
ated with our MCS benchmark generator.3 Note that the topologies are by their structure bound
to certain system sizes (number of contexts), and that the difficulty of the instances varies among
topologies; thus larger instances may have shorter runtimes. Our instances have up to 10 contexts,
each consisting of a randomly generated consistent normal answer set program.

3. Described at http://www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html, online available at https://dmcs.
svn.sourceforge.net/svnroot/dmcs/dmcs/trunk

294

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

#ctx explicit +EBL UFS Γ UFS Γ +EBL +UFL Ω
mol mod

3 (6) 4.78 (0) 3.97 (0) 2.96 (0) 2.97 (0) 1.65 (0) 0.08 (0) 0.08 (0)
4 (10) 51.90 (1) 45.91 (1) 48.71 (1) 48.59 (1) 23.48 (0) 0.10 (0) 0.11 (0)
5 (8) 149.53 (3) 137.95 (3) 150.80 (3) 150.64 (3) 94.45 (1) 0.10 (0) 0.12 (0)
6 (6) 159.41 (3) 154.69 (3) 157.62 (3) 157.72 (3) 151.89 (3) 0.12 (0) 0.15 (0)
7 (12) 231.23 (9) 227.45 (9) 234.74 (9) 234.63 (9) 216.75 (8) 0.17 (0) 0.20 (0)
8 (5) 244.39 (4) 204.92 (3) 246.42 (4) 246.34 (4) 190.60 (3) 0.17 (0) 0.21 (0)
9 (8) 300.00 (8) 278.44 (7) 300.00 (8) 300.00 (8) 264.65 (6) 0.22 (0) 0.24 (0)

10 (11) 300.00 (11) 268.78 (9) 300.00 (11) 300.00 (11) 247.16 (8) 0.25 (0) 0.31 (0)

Table 2: Consistent MCSs Benchmark Results

#ctx
all answer sets

explicit +EBL UFS Γ UFS Γ +EBL +UFL Ω
mol mod

3 (9) 3.29 (0) 2.70 (0) 2.44 (0) 2.34 (0) 1.09 (0) 0.14 (0) 0.14 (0)
4 (14) 41.57 (1) 17.94 (0) 37.04 (1) 37.03 (1) 6.05 (0) 2.71 (0) 0.61 (0)
5 (11) 154.55 (5) 148.11 (5) 154.17 (5) 153.94 (5) 108.87 (2) 3.65 (0) 1.28 (0)
6 (18) 130.90 (7) 102.57 (6) 128.26 (7) 128.12 (7) 87.75 (4) 10.61 (0) 1.55 (0)
7 (13) 166.14 (5) 118.04 (5) 157.67 (5) 157.06 (5) 107.50 (4) 84.08 (2) 29.47 (0)
8 (6) 261.96 (5) 143.75 (2) 262.95 (5) 263.00 (5) 118.36 (2) 55.86 (1) 51.13 (1)
9 (14) 286.74 (13) 206.10 (9) 287.10 (12) 287.32 (12) 189.48 (8) 124.34 (5) 130.56 (6)

10 (12) 300.00 (12) 300.00 (12) 300.00 (12) 300.00 (12) 290.18 (11) 290.69 (11) 277.05 (11)

first answer set
#ctx explicit +EBL UFS Γ UFS Γ +EBL +UFL Ω

mol mod

3 (9) 0.09 (0) 0.09 (0) 0.08 (0) 0.08 (0) 0.08 (0) 0.08 (0) 0.09 (0)
4 (14) 0.13 (0) 0.14 (0) 0.11 (0) 0.12 (0) 0.12 (0) 0.11 (0) 0.13 (0)
5 (11) 0.16 (0) 0.17 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.16 (0)
6 (18) 0.18 (0) 0.19 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0) 0.18 (0)
7 (13) 0.19 (0) 0.17 (0) 0.17 (0) 0.17 (0) 0.15 (0) 0.15 (0) 0.17 (0)
8 (6) 0.23 (0) 0.20 (0) 0.21 (0) 0.20 (0) 0.17 (0) 0.17 (0) 0.19 (0)
9 (14) 0.32 (0) 0.27 (0) 0.28 (0) 0.28 (0) 0.22 (0) 0.23 (0) 0.28 (0)

10 (12) 0.44 (0) 0.33 (0) 0.39 (0) 0.39 (0) 0.29 (0) 0.29 (0) 0.34 (0)

Table 3: Inconsistent MCSs Benchmark Results

The number of candidates for smaller models of the FLP reduct equals the number of unfounded
set candidates as each unfounded set corresponds to a smaller model. However, as we stop the
enumeration as soon as a smaller model respectively an unfounded set is found, the explicit and the
UFS check may consider depending on the specific program and solver heuristics different numbers
of interpretations. This explains why the UFS check is sometimes slightly slower than the explicit
check. However, the delay between different UFS candidates was always smaller, which sometimes
makes it faster even if it visits more candidates.

The results for consistent and inconsistent MCSs are shown in Table 2 and 3, respectively, where
the number of instances of of each system size is given in parentheses. Intuitively, consistent and
inconsistent MCSs are dual, as for each candidate the explicit resp. UFS check fails (i.e., stops
early), vs. for some (or many) candidates the check succeeds (stops late). However, the mixed
results do not permit us to draw solid conclusions on the computational relationship of the evaluation

295

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

methods. Nonetheless, we can see that the UFS check based on Ω was often much faster than the
explicit check (up to three orders of magnitude).

As consistent MCSs have no IEs and hence no answer sets, we need not distinguish for them
between computing one or all answer sets. The effects of external behavior learning (Eiter et al.,
2012a) and of unfounded set learning are clearly evident in the MCS benchmarks, for both com-
puting the first and all answer sets. The UFS check profits more from EBL than the explicit check,
further adding to its advantage. By activating UFL (which is not possible in the explicit check) we
gain another significant speedup.

We now discuss the effects of the syntactic decision criterion and program decomposition. Due
to saturation, the encoding contains cycles where nearly all cycles in the HEX-program contain at
least one external atom. Therefore, the decision criterion can reduce the set of atoms, for which
the UFS check needs to be performed, only by the atoms that are defined in the EDB. This does
not yield significant efficiency improvements. However, the benchmark results for MCS instances
confirm that the syntactic check is cheap and does not hurt performance. Over all 186 instances, the
total runtime with decision criterion and program decomposition was 11,695 seconds compared to
11,702 seconds without, and the number of instance timeouts was the same.

If we use encoding Ω instead of Γ, we can observe another significant speedup for computing all
IEs of inconsistent MCSs. This is because there usually exist many answer sets (often thousands),
and thus a reusable encoding is very beneficial. In contrast, if we compute only the first answer set
or the MCS is consistent (no answer set exists), then the check with the more involved encoding Ω
is slightly slower; its reusability does not pay off if we abort after the first answer set.

In summary, we can observe that the encoding Ω leads to a significant performance gain over
encoding Γ, while the decision criterion and decomposition do not help. In our next benchmark we
will observe opposite effects.

6.1.3 ABSTRACT ARGUMENTATION

In this benchmark we compute ideal set extensions (Dung, Mancarella, & Toni, 2007) for randomly
generated instances of abstract argumentation frameworks (AFs) (Dung, 1995) of different sizes.
The problem of checking whether a given set of arguments is an ideal set of an AF is co-NP-
complete (Dunne, 2009). In this benchmark we use a HEX encoding that mirrors this complexity: it
guesses such a set and checks its ideality using the Saturation technique involving an external atom
(see Appendix A.1).

Table 4 shows the results for different numbers of arguments, where each entry is the average of
30 benchmark instances. We compare the following configurations for both computing all and the
first answer set.

In the first column we do an explicit minimality check without learning techniques. The second
column shows that learning (EBL) leads to almost the same runtime results. This can be explained
by the structure of the encoding, which does not allow for effectively reusing learned nogoods.

In the third column, we perform an UFS-based minimality check using our encoding Γ, but
without applying the decision criterion and decomposition. We can observe that this is already a
significant improvements compared to the explicit minimality check, illustrating the effectiveness
of our new approach. Similar as in the MCS benchmark, the number of reduct model candidates
is equal to the number of UFS candidates in most cases, but the UFS check again enumerates its
candidates faster; this explains the observed speedup.

296

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

#a
rg

s all answer sets
explicit +EBL UFS Γ UFS Γ +EBL Ω

mol mod +UFL

1 (30) 0.06 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
2 (30) 0.08 (0) 0.07 (0) 0.06 (0) 0.06 (0) 0.06 (0) 0.07 (0)
3 (30) 0.11 (0) 0.10 (0) 0.08 (0) 0.08 (0) 0.08 (0) 0.09 (0)
4 (30) 0.19 (0) 0.19 (0) 0.14 (0) 0.12 (0) 0.12 (0) 0.13 (0)
5 (30) 0.32 (0) 0.32 (0) 0.26 (0) 0.18 (0) 0.18 (0) 0.19 (0)
6 (30) 0.71 (0) 0.72 (0) 0.55 (0) 0.33 (0) 0.33 (0) 0.36 (0)
7 (30) 1.58 (0) 1.66 (0) 1.16 (0) 0.52 (0) 0.51 (0) 0.56 (0)
8 (30) 4.75 (0) 5.04 (0) 3.06 (0) 1.09 (0) 1.08 (0) 1.15 (0)
9 (30) 14.02 (0) 14.97 (0) 8.65 (0) 1.86 (0) 1.84 (0) 1.95 (0)

10 (30) 41.10 (0) 44.38 (0) 24.53 (0) 4.73 (0) 4.58 (0) 4.79 (0)
11 (30) 129.35 (1) 139.80 (2) 51.39 (0) 9.34 (0) 9.34 (0) 9.48 (0)
12 (30) 250.16 (12) 258.82 (17) 119.44 (0) 12.49 (0) 12.38 (0) 12.39 (0)
13 (30) 294.91 (27) 296.67 (27) 274.65 (19) 24.26 (0) 24.33 (0) 24.44 (0)
14 (30) 290.01 (29) 290.01 (29) 290.00 (29) 51.38 (3) 51.65 (3) 51.98 (3)
15 (30) 290.01 (29) 290.01 (29) 290.00 (29) 79.93 (3) 78.00 (3) 78.19 (3)
16 (30) 300.00 (30) 300.00 (30) 300.00 (30) 80.10 (4) 77.91 (4) 77.95 (4)
17 (30) 300.00 (30) 300.00 (30) 300.00 (30) 81.90 (5) 77.04 (5) 76.85 (5)
18 (30) 300.00 (30) 300.00 (30) 300.00 (30) 127.43 (8) 126.57 (8) 125.91 (8)
19 (30) 300.00 (30) 300.00 (30) 280.39 (28) 173.16 (13) 148.13 (10) 147.62 (10)
20 (30) 300.00 (30) 300.00 (30) 278.20 (27) 167.72 (12) 167.02 (12) 166.07 (12)

#a
rg

s first answer set
explicit +EBL UFS Γ UFS Γ +EBL Ω

mol mod +UFL

1 (30) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
2 (30) 0.07 (0) 0.07 (0) 0.06 (0) 0.06 (0) 0.06 (0) 0.06 (0)
3 (30) 0.09 (0) 0.09 (0) 0.08 (0) 0.08 (0) 0.07 (0) 0.08 (0)
4 (30) 0.14 (0) 0.14 (0) 0.12 (0) 0.10 (0) 0.10 (0) 0.12 (0)
5 (30) 0.22 (0) 0.22 (0) 0.21 (0) 0.15 (0) 0.15 (0) 0.17 (0)
6 (30) 0.46 (0) 0.47 (0) 0.42 (0) 0.27 (0) 0.27 (0) 0.29 (0)
7 (30) 0.76 (0) 0.79 (0) 0.68 (0) 0.37 (0) 0.37 (0) 0.40 (0)
8 (30) 2.34 (0) 2.44 (0) 1.98 (0) 0.89 (0) 0.90 (0) 0.94 (0)
9 (30) 7.35 (0) 7.82 (0) 5.76 (0) 1.36 (0) 1.28 (0) 1.34 (0)

10 (30) 19.47 (0) 21.05 (0) 15.37 (0) 3.54 (0) 3.53 (0) 3.68 (0)
11 (30) 63.39 (1) 67.39 (1) 26.30 (0) 4.61 (0) 4.66 (0) 4.69 (0)
12 (30) 119.65 (4) 126.18 (4) 60.88 (0) 6.11 (0) 6.11 (0) 6.13 (0)
13 (30) 197.04 (14) 201.27 (15) 149.25 (3) 16.34 (0) 16.49 (0) 16.50 (0)
14 (30) 227.27 (22) 227.72 (22) 218.00 (17) 41.28 (2) 41.68 (2) 41.76 (2)
15 (30) 260.02 (26) 260.02 (26) 260.01 (26) 40.92 (2) 41.38 (2) 41.62 (2)
16 (30) 230.04 (23) 230.04 (23) 230.02 (23) 40.63 (3) 40.69 (3) 40.84 (3)
17 (30) 250.03 (25) 250.03 (25) 250.01 (25) 35.24 (2) 35.60 (2) 35.57 (2)
18 (30) 270.02 (27) 270.02 (27) 270.01 (27) 74.89 (5) 75.47 (5) 75.10 (5)
19 (30) 230.06 (23) 230.06 (23) 211.12 (21) 66.58 (4) 67.03 (4) 67.04 (4)
20 (30) 220.07 (22) 220.07 (22) 200.29 (20) 81.81 (5) 82.33 (5) 82.45 (5)

Table 4: Argumentation Benchmark Results

When we enable the decision criterion and program decomposition, we can observe a further
speedup. This is because cycles in argumentation instances usually involve only small parts of
the overall program; thus the UFS search can be significantly simplified by excluding large pro-
gram parts. We further have observed that program decomposition without the decision criterion is
counter-productive (not shown in the table), because a single UFS search over the whole program is
replaced by many UFS searches over program components (without the decision criterion, no such
check is excluded). This incurs more overhead.

297

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

In the fifth column we enable EBL and UFL, which leads to a small speedup in some cases.
However, as already mentioned above, no effective reuse of learned nogoods is possible.

Switching the encoding from Γ to Ω leads to a small speedup in some cases, but is also coun-
terproductive in others. This is because the programs in this benchmark have usually only very
few compatible sets, and only few unfounded set checks need to be performed. Hence the lower
initialization overhead of the encoding Ω does not influence the runtime dramatically. On the other
hand, the higher complexity of the encoding Ω increases the runtime of small instances.

6.1.4 DEFAULT REASONING OVER DESCRIPTION LOGICS

A prominent instance of HEX-programs are DL-programs, which combine description logic on-
tologies with rules; they result by using a special external atom that is available as DL-plugin in
DLVHEX. Via DL-programs, we obtain an encoding of terminological default reasoning over de-
scription logic ontologies in the approach of Baader and Hollunder (1995) into HEX-programs, in
which defaults require cyclic dependencies over external atoms. However, as all such dependencies
involve default negated atoms, we have no cycles according to Definition 12, which respects only
positive dependencies. Hence, the decision criterion comes to the conclusion that no UFS check is
required.

We used variants of the benchmarks presented by Eiter et al. (2012a), which query wines from
an ontology and classify them as red or white wines, where a wine is assumed to be white unless
the ontology explicitly entails the opposite. In this scenario, the decision criterion eliminates all
unfounded set checks. However, as there is only one compatible set per instance, there would be
only one unfounded set check anyway, hence the speedup due to the decision criterion is not sig-
nificant. But the effect of the decision criterion can be increased by slightly modifying the scenario
such that there are multiple compatible sets. This can be done, for instance, by nondeterministic
default classifications, e.g., if a wine is not Italian, then it is either French or Spanish by default. Our
experiments have shown that with a small number of compatible sets, the performance enhancement
due to the decision criterion is marginal, but increases with larger numbers of compatible sets. For
instance, for 243 compatible sets (and thus 243 unfounded set checks) we could observe a speedup
from 13.59 to 12.19 seconds.

6.1.5 CONFORMANT PLANNING

In classical AI planning, a planning domain contains a description of actions with their preconditions
and effects in the world. Finding a plan means to find a sequence of actions that reaches from a given
initial state a state fulfilling a given goal condition. Conformant planning (Goldman & Boddy, 1996;
Smith & Weld, 1998) is the same problem but where the initial state is only partially specified and/or
the domain is nondeterministic, such that by executing the plan we reach the goal regardless of the
action outcomes and the actual initial state.

We here experimented on a very simple conformant planning domain: two robots with a limited
sensor range patrol an area, in which is an object at an unknown initial location. The goal is to find
a sequence of movements of the two robots such that they detect the object in all cases. For exper-
iments we used an encoding which realizes conformant planning using Saturation (see above) and
contains an external atom for computing whether the patrol robots detect object (cf. Appendix A.2).
In general, deciding the existence of a short (polynomial length bounded) conformant plan is Σp

3-

298

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

m
ap

si
ze

pl
an

le
ng

th all answer sets

explicit UFS Γ UFS Γ +EBL +UFL Ω Ω
mol mod -EBL-UFL +EBL+UFL

3×4 (10) 1 7.10 (0) 0.12 (0) 0.11 (0) 0.11 (0) 0.12 (0) 0.12 (0) 0.14 (0)
4×4 (10) 1 10.66 (0) 0.16 (0) 0.15 (0) 0.15 (0) 0.15 (0) 0.15 (0) 0.18 (0)
5×4 (10) 1 10.69 (0) 0.15 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.15 (0)
6×4 (10) 2 206.45 (2) 1.98 (0) 1.38 (0) 1.67 (0) 1.69 (0) 1.09 (0) 1.35 (0)
7×4 (10) 2 258.82 (5) 2.85 (0) 1.79 (0) 2.44 (0) 2.43 (0) 1.50 (0) 1.84 (0)
8×4 (10) 3 300.00 (10) 36.80 (0) 16.41 (0) 40.94 (0) 40.99 (0) 10.42 (0) 13.88 (0)
9×4 (10) 3 300.00 (10) 43.20 (0) 19.53 (0) 78.11 (0) 77.10 (0) 13.91 (0) 19.62 (0)

10×4 (10) 4 300.00 (10) 300.00 (10) 274.53 (5) 300.00 (10) 300.00 (10) 203.70 (2) 252.31 (5)
11×4 (10) 4 300.00 (10) 299.76 (9) 239.61 (5) 300.00 (10) 300.00 (10) 174.86 (2) 209.41 (3)
12×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
13×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
14×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
15×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
16×4 (10) 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

m
ap

si
ze

pl
an

le
ng

th first answer set

explicit UFS Γ UFS Γ +EBL +UFL Ω Ω
mol mod -EBL-UFL +EBL+UFL

3×4 (10) 1 0.89 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.06 (0) 0.06 (0)
4×4 (10) 1 1.36 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.06 (0) 0.06 (0) 0.06 (0)
5×4 (10) 1 2.23 (0) 0.06 (0) 0.07 (0) 0.06 (0) 0.06 (0) 0.07 (0) 0.07 (0)
6×4 (10) 2 7.21 (0) 0.22 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.12 (0) 0.13 (0)
7×4 (10) 2 17.39 (0) 0.34 (0) 0.22 (0) 0.21 (0) 0.20 (0) 0.17 (0) 0.18 (0)
8×4 (10) 3 139.26 (1) 6.07 (0) 2.73 (0) 2.73 (0) 2.69 (0) 1.45 (0) 1.78 (0)
9×4 (10) 3 150.50 (3) 3.24 (0) 1.47 (0) 1.69 (0) 1.70 (0) 0.89 (0) 1.16 (0)

10×4 (10) 4 255.89 (7) 92.19 (2) 47.58 (0) 82.84 (2) 82.52 (2) 24.23 (0) 31.36 (0)
11×4 (10) 4 300.00 (10) 97.11 (2) 39.99 (0) 84.08 (1) 83.85 (1) 19.53 (0) 25.85 (0)
12×4 (10) 5 287.76 (9) 198.75 (5) 143.52 (4) 184.81 (5) 184.78 (5) 131.46 (4) 136.64 (4)
13×4 (10) 5 300.00 (10) 287.07 (9) 211.97 (5) 277.79 (9) 277.71 (9) 165.64 (4) 185.84 (4)
14×4 (10) 6 300.00 (10) 300.00 (10) 244.33 (7) 300.00 (10) 300.00 (10) 213.89 (5) 232.85 (6)
15×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 285.36 (9) 296.10 (9)
16×4 (10) 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

Table 5: Conformant Planning Benchmark Results

complete, see Turner (2002), but if action executability is decidable in polynomial time, the problem
is in Σp

2; our example domain enjoys the property.
Our results are displayed in Table 5, which shows averages over 10 instances per size. The

instances consist of n×4 grids with n∈{3, . . . , 16}, the plan length required for finding a solution
increases with larger instance sizes. (This is because the number of robots does not increase while
the two robots must still cover the whole area.) Instances were generated by randomly placing
robots in opposite quarters of the map.

As expected we observe that the explicit FLP check performs worst, followed by the monolithic
UFS check with Γ encoding, and the modular UFS Γ encoding; the UFS Ω encoding (without
external behavior nor unfounded set learning) performs best. External behavior learning (EBL) and
unfounded set learning (UFL) do not improve the performance, on the contrary it increases the run
times significantly for the modular UFS Γ check and slightly for the Ω check. EBL does not change
times significantly for the explicit check, therefore we omit results for explicit +EBL.

By looking into profiling information and at the domain we found the reasons: (a) the external
atoms depend on a large part of the interpretation (locations of all robots) so EBL cannot cut away

299

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

significant portions of the search space; (b) evaluating the external atom takes a negligible amount
of time, so beneficial effects of EBL will be outweighed by is computational overhead. For UFL we
observed that the benchmark instances contain only few unfounded sets (pruning less than half of
the answer set candidates) and thus UFL cannot improve performance given the overhead it incurs.
We conclude that in some scenarios, using EBL and UFL can reduce efficiency.

As in the Ω check the UFS check encoding is constructed only once, the overhead for EBL
and UFL observed with the Γ encoding no longer has such a big impact. Nevertheless Ω without
learning slightly outperforms Ω with UFL and EBL. An analysis of the number of UFS checks and
the number of external atom evaluations (not shown in table) revealed that UFL and EBL decreases
(i) the number of unfounded set checks needed and (ii) the number of external atoms evaluated (in
one 9×4 instance, from 5132 to 3341). Thus if external computations would be more costly, the
positive effects of UFL and EBL on Ω would outweigh their computational overhead and it would
be beneficial to activate UFL and EBL in this domain.

Interestingly, for small map sizes we see that with the Ω encoding, the 3×4 instances actually
seem to be harder to solve than the larger 4×4 and 5×4 instances. This is because all these instances
require plan length 1 to find a solution; so the larger instances are more constrained than the smaller
instances because there robots have less freedom to move around while still detecting all objects.
Hence, for 5×4 maps the solver finds solutions faster than for 4×4 maps.

The conclusion from this benchmark is that depending on the computational task in external
atoms, UFL and EBL can be beneficial or harmful for efficiency of reasoning.

6.2 Summary

Our experiments have shown that the learning technique EBL developed by Eiter et al. (2012a) and
the techniques introduced in this paper lead to significant performance improvements in most cases,
with few exceptions for specific benchmarks. The effects of external behavior learning (EBL) are
clearly evident both for the explicit minimality check and for the unfounded set-based check, but are
even more prominent with the latter. Independently of whether EBL is used or not, unfounded set
checking pushes the efficiency of HEX-program evaluation compared to explicit minimality check-
ing. Moreover, it allows for learning of additional nogoods, which is also advantageous in most of
our benchmarks. Regarding the two problem encodings, the benchmarks show that the UFS check
is usually faster with the Ω encoding than with the Γ encoding, however the former UFS check
involves more initialization overhead, which might be counterproductive for small programs.

The decision criterion may lead to an additional speedup and does not introduce notable over-
head, thus it can always be activated. Finally, program decomposition often leads to an additional
performance gain, but should only be used in combination with the decision criterion because oth-
erwise a single UFS check is replaced by multiple UFS checks, which involves more overhead.

7. Discussion

We now discuss related work and outline some possible starting points for extensions.

7.1 Related Work

Constraint answer set solving (Gebser, Ostrowski, & Schaub, 2009) can be seen as a special case
of HEX-programs. It extends ASP by dedicated constraint atoms in rule bodies (comparisons of

300

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

numeric constraint variables) that allow for a bidirectional exchange of information between the
logic program and the constraint solver. While the constraint solver is a concrete instance of an
external source, HEX-programs support arbitrary external sources. The idea of external behavior
learning (EBL), introduced by Eiter et al. (2012a) is further related to the work of Drescher and
Walsh (2012) since both approaches generate nogoods on-the-fly.

Besides grounding, one of the main differences between ASP and SAT solving is foundedness,
i.e., the truth of each atom in an answer set is justified by a non-circular derivation from rules and
facts. To account for circularity, the notion of unfounded set has been introduced by van Gelder et
al. (1991) for defining the well-founded semantics of logic programs with negation, by constructing
the least fixpoint of a monotone operator on partial assignments; the total fixpoints of this operator
correspond to the stable models of the logic program. This actually allows to give a characterization
of the stable models in terms of unfounded sets. In fact, unfounded set checking turned out to be a
fruitful model-based approach in ASP solving, which has an equally successful syntactic counterpart
known as loop formulas (Lin & Zhao, 2004; Lee & Lifschitz, 2003; Lee, 2005). Different kinds of
unfounded set checks with different complexities have been developed for various program classes.

The computation of answer sets by a model generate and test approach, which is pursued by
many ASP solvers, requires that a form of minimality check or unfounded set check is carried
out already for ordinary logic programs (i.e., in absence of external atoms). However, for normal
program this test is tractable and it is frequently realized using source pointers (Simons et al., 2002).
Intuitively, the reasoner stores for each atom a pointer to a rule which possibly supports this atom.
The list of source pointers is updated during propagation. If at some point there is no supporting
rule for an atom, then it can conclude that this atom must be false.

In the context of ASP, the notion of unfounded set has been explicitly formulated and ex-
tended to disjunctive logic programs by Leone et al. (1997), who proved that the stable models
of a disjunctive logic program are its models that are unfounded-free. This results was the basis
for the architecture of the DLV solver, which generates answer set candidates that are checked for
unfounded-freeness. This test, which like answer set checking for disjunctive answer set programs,
is co-NP-complete (Faber, 2005), has been reduced by Koch et al. (2003) to unsatisfiability testing
of a SAT instance. This approach has been later extended to conflict-driven learning and unfounded
set checking by Drescher et al. (2008), where two instances for the CLASP solver, an ASP instance
and a SAT instance, are used to generate and check answer set candidates, respectively. In parallel
to our work, this technique was recently refined by exploiting assumptions such that the encoding
of the unfounded set search does not need to be adopted to the current assignment (Gebser, Kauf-
mann, & Schaub, 2013). This is related to our uniform encoding of the unfounded set search, but
still restricted to disjunctive ASP without external sources. For HEX-programs, the unfounded set
search needs to respect the semantics of external atoms and is thus a more general problem. Al-
viano, Calimeri, Faber, Leone, and Perri (2011) consider normal logic programs with monotone
and antimonotone aggregate atoms, and defined unfounded sets for such programs. Based on this,
they extended the well-founded semantics of Van Gelder et al. (1991), which—although closely
related—is weaker than the general FLP semantics (Faber et al., 2011).

We now considered unfounded set checking in the presence of external sources and for FLP
answer sets, for which the results by Drescher et al. (2008) do not immediately carry over. Indeed,
already for ground Horn programs, the presence of nonmonotonic external atoms that are decidable
in polynomial time makes unfoundedness checking intractable (more precisely, co-NP-complete),
such that deciding the existence of an FLP answer set is a Σp

2-complete problem in the ground case.

301

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

For computationally harder external atoms, the complexity may increase relative to an oracle for
the external function (see Faber, 2005). However, the results from this paper do still apply in such
cases.

Drescher et al. (2008) employed also a splitting technique, which goes back to the work of Leone
et al. (1997); it is related to our program decomposition, but works for ASP programs without exter-
nal sources only. Note that our notion of splitting is different from the well-known splitting sets by
Lifschitz and Turner (1994), as we consider only positive dependencies for ordinary atoms. While
we consider e-cycles, which are specific for HEX-programs, the interest of Drescher et al. (2008)
was with head-cycles, which may arise with disjunctive rule heads. In fact, our approach may be re-
garded as an extension of the one of Drescher et al., since the evaluation of Π̂ follows their principles
of performing UFS checks in case of head-cycles.

For the evaluation of the FLP semantics, an unfounded set check or explicit FLP check is instru-
mental. we just mention that other semantics of HEX-programs may not involve such a step which
is intractable in general (as follows from Leone et al., 2006, already for ground Horn programs with
nonmonotonic external atoms that are decidable in polynomial time). For instance, Shen (2011)
and Shen and Wang (2011) present a well-justified semantics where unfounded set checking is es-
sentially replaced by a fixpoint iteration which, intuitively, tests if a model candidate reproduces
itself but excludes circular justifications. However, the complexity of answer set computation does
not decrease by this approach in general, and in particular deciding well-justified answer set exis-
tence for ground Horn programs with nonmonotonic external atoms that are decidable in polynomial
time is Σp

2-complete, and thus as hard as deciding the existence of answer sets as in Definition 3.

7.2 Extensions

We have designed our unfounded set check as a postcondition test; that is like the explicit FLP check,
it is carried out only after a complete assignment has been generated as an answer set candidate.
However, in certain cases it might be obvious that a partial interpretation (in which some truth values
are open) can be extended to an answer set, because the existence of an unfounded set is guaranteed
for any extension to a complete assignment. One can then backtrack earlier, which intuitively leads
to a saving for certain classes of instances.

Exploring this idea, we have generalized our framework with a control component which de-
cides, based on a heuristics, when an unfounded set check is carried out; in the standard setting,
this is whenever an assignment in the model generation is complete (i.e., a complete assignment is
given).

A UFS check on partial assignments, that is sound with respect to any extension to a complete
assignment, is possible if the ASP solver has finished unit propagation over a maximal subset of
the program such that the interpretation is already complete on it, and all guessed values of external
atom replacements are correct. We thus used this criterion, which is easy to test, for a greedy
heuristics to issue UFS checks in our prototype system.

However, in contrast to our initial expectation, we found that for all our benchmarks the UFS
check wrt. partial assignments was not productive. A closer look reveals that this is essentially be-
cause nogood learning from unfounded sets (UFL) effectively avoids the reconstruction of the same
unfounded set anyway. It therefore rarely happens that UFS checking wrt. a partial interpretation
identifies an unfounded set earlier than UFS checking wrt. complete interpretations. Therefore, we
believe that UFS checking wrt. a partial interpretation rarely identifies an unfounded set earlier than
UFS checking wrt. complete assignments. As UFS checking for HEX-programs involves the evalu-

302

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

#a
rg

s all answer sets first answer set
Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)

+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

5 (1) 0.07 (0) 0.09 (0) 0.11 (0) 0.05 (0) 0.06 (0) 0.07 (0)
6 (1) 0.10 (0) 0.13 (0) 0.15 (0) 0.06 (0) 0.07 (0) 0.09 (0)
7 (1) 0.13 (0) 0.15 (0) 0.19 (0) 0.07 (0) 0.08 (0) 0.11 (0)
8 (1) 0.18 (0) 0.20 (0) 0.26 (0) 0.08 (0) 0.10 (0) 0.14 (0)
9 (1) 0.24 (0) 0.26 (0) 0.35 (0) 0.09 (0) 0.12 (0) 0.17 (0)

10 (1) 0.29 (0) 0.33 (0) 0.47 (0) 0.11 (0) 0.14 (0) 0.21 (0)
15 (1) 0.80 (0) 0.96 (0) 1.61 (0) 0.24 (0) 0.38 (0) 0.73 (0)
20 (1) 1.96 (0) 2.46 (0) 4.92 (0) 0.51 (0) 0.97 (0) 2.30 (0)
25 (1) 4.15 (0) 5.52 (0) 11.25 (0) 0.97 (0) 1.98 (0) 4.50 (0)

Table 6: Set Partitioning with UFS Checking over Partial Assignments

#c
tx Ω Ω partial (periodically) Ω partial (max)

+EBL+UFL +EBL+UFL +EBL+UFL

3 (6) 0.08 (0) 0.09 (0) 0.10 (0)
4 (10) 0.11 (0) 0.11 (0) 0.12 (0)
5 (8) 0.12 (0) 0.12 (0) 0.13 (0)
6 (6) 0.15 (0) 0.15 (0) 0.16 (0)
7 (12) 0.20 (0) 0.20 (0) 0.21 (0)
8 (5) 0.21 (0) 0.21 (0) 0.22 (0)
9 (8) 0.24 (0) 0.24 (0) 0.27 (0)

10 (11) 0.31 (0) 0.31 (0) 0.32 (0)

Table 7: Consistent MCSs Benchmark Results with UFS Checking over Partial Assignments

#c
tx all answer sets first answer set

Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)
+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

3 (9) 0.14 (0) 0.13 (0) 0.16 (0) 0.09 (0) 0.09 (0) 0.10 (0)
4 (14) 0.61 (0) 0.64 (0) 0.88 (0) 0.13 (0) 0.13 (0) 0.14 (0)
5 (11) 1.28 (0) 1.36 (0) 1.81 (0) 0.16 (0) 0.16 (0) 0.17 (0)
6 (18) 1.55 (0) 1.67 (0) 2.49 (0) 0.18 (0) 0.18 (0) 0.18 (0)
7 (13) 29.47 (0) 31.54 (0) 44.90 (1) 0.17 (0) 0.17 (0) 0.18 (0)
8 (6) 51.13 (1) 51.22 (1) 51.66 (1) 0.19 (0) 0.20 (0) 0.21 (0)
9 (14) 130.56 (6) 130.99 (6) 133.84 (6) 0.28 (0) 0.27 (0) 0.28 (0)

10 (12) 277.05 (11) 277.20 (11) 278.21 (11) 0.34 (0) 0.35 (0) 0.36 (0)

Table 8: Inconsistent MCSs Benchmark Results with UFS Checking over Partial Assignments

ation of external sources and compatibility testing, this easily leads to costs that are higher than the
potential savings. A more detailed analysis requires further studies; since the results do not seem to
be promising, we leave this for possible future work.

Table 6–10 show the benchmark results if UFS checking wrt. partial assignments is enabled
when computing all or the first answer set only.

The first column shows the runtime with UFS checking wrt. complete interpretations only, using
encoding Ω, EBL and UFL (equivalent to the last column in the tables in Section 6). The second
column shows the results with UFS checking wrt. partial assignments, using a heuristics which
performs the UFS check periodically (periodic). The third column shows the runtimes if the UFS
check is always performed, if no other propagation technique can derive further truth values (max).

303

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

#a
rg

s all answer sets first answer set
Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)

+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

1 (30) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
2 (30) 0.07 (0) 0.06 (0) 0.07 (0) 0.06 (0) 0.07 (0) 0.07 (0)
3 (30) 0.09 (0) 0.09 (0) 0.10 (0) 0.08 (0) 0.08 (0) 0.09 (0)
4 (30) 0.13 (0) 0.14 (0) 0.16 (0) 0.12 (0) 0.12 (0) 0.14 (0)
5 (30) 0.19 (0) 0.20 (0) 0.22 (0) 0.17 (0) 0.16 (0) 0.18 (0)
6 (30) 0.36 (0) 0.36 (0) 0.39 (0) 0.29 (0) 0.29 (0) 0.31 (0)
7 (30) 0.56 (0) 0.56 (0) 0.59 (0) 0.40 (0) 0.40 (0) 0.42 (0)
8 (30) 1.15 (0) 1.15 (0) 1.19 (0) 0.94 (0) 0.94 (0) 0.96 (0)
9 (30) 1.95 (0) 1.94 (0) 2.01 (0) 1.34 (0) 1.35 (0) 1.39 (0)

10 (30) 4.79 (0) 4.80 (0) 4.96 (0) 3.68 (0) 3.67 (0) 3.75 (0)
11 (30) 9.48 (0) 9.49 (0) 9.71 (0) 4.69 (0) 4.71 (0) 4.74 (0)
12 (30) 12.39 (0) 12.42 (0) 12.79 (0) 6.13 (0) 6.11 (0) 6.23 (0)
13 (30) 24.44 (0) 24.45 (0) 25.32 (0) 16.50 (0) 16.46 (0) 16.80 (0)
14 (30) 51.98 (3) 52.03 (3) 52.57 (3) 41.76 (2) 41.80 (3) 41.98 (3)
15 (30) 78.19 (3) 78.14 (3) 79.81 (3) 41.62 (2) 41.53 (2) 42.02 (2)
16 (30) 77.95 (4) 77.99 (4) 79.52 (4) 40.84 (3) 40.79 (3) 41.04 (3)
17 (30) 76.85 (5) 76.86 (5) 77.82 (5) 35.57 (2) 35.53 (2) 35.58 (2)
18 (30) 125.91 (8) 126.17 (8) 128.83 (8) 75.10 (5) 75.32 (5) 75.37 (5)
19 (30) 147.62 (10) 147.51 (10) 149.62 (10) 67.04 (4) 66.88 (4) 67.59 (4)
20 (30) 166.07 (12) 165.96 (12) 168.53 (12) 82.45 (5) 82.27 (5) 82.90 (5)

Table 9: Argumentation with UFS Checking over Partial Assignments

It can be observed that UFS checking wrt. partial assignments does not lead to a further speedup
in any case. Quite the contrary, some instances have significantly higher runtimes with more fre-
quent unfounded set checks. This is best visible in the set partitioning benchmark (Table 6), when
computing all explanations for inconsistent MCSs with 5, 6 or 7 contexts (Table 9), and when com-
puting all answer sets in the conformant planning benchmark (Table 10). In the set partitioning
benchmark the effects are especially significant, which is as expected because every compatible set
is unfounded-free. Thus, additional UFS checks are always counterproductive. In the consistent
multi-context systems, reasoning is fast anyway, thus the frequency of UFS checking has no signif-
icant impact (Table 7). In the argumentation benchmark we can also observe a slight slowdown by
more frequent UFS checking, although it is less dramatic than in the other benchmarks because the
other propagation methods are applicable more frequently and thus fewer UFS checks are performed
even with setting max (Table 9).

On the other hand, for ASP solving (where no such extra costs incur), UFS checks over partial
interpretations may still be beneficial, as reported by Gebser et al. (2013). In conclusion, UFS
checks on partial assignments of HEX-programs will require tailored heuristics that not only take
the structure of the program, but also domain-specific knowledge into account, which remains for
future work.

8. Conclusion

HEX-programs are an expressive extension of non-monotonic logic programs with access to external
information via external atoms; supported by a plugin architecture they can be fruitfully deployed
for a range of applications. External atoms however make the efficient evaluation of HEX-programs
a challenging task, and in particular to compute answer sets of a HEX-program Π, which are the
models A of Π that are subset-minimal models of its FLP-reduct fΠA (which keeps all rules whose

304

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

#c
tx all answer sets first answer set

Ω Ω partial (periodic) Ω partial (max) Ω Ω partial (periodic) Ω partial (max)
+EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL +EBL+UFL

3×4 (10) 1 0.14 (0) 0.14 (0) 0.16 (0) 0.06 (0) 0.06 (0) 0.08 (0)
4×4 (10) 1 0.18 (0) 0.17 (0) 0.20 (0) 0.06 (0) 0.06 (0) 0.08 (0)
5×4 (10) 1 0.15 (0) 0.15 (0) 0.18 (0) 0.07 (0) 0.07 (0) 0.09 (0)
6×4 (10) 2 1.35 (0) 1.35 (0) 1.48 (0) 0.13 (0) 0.13 (0) 0.15 (0)
7×4 (10) 2 1.84 (0) 1.83 (0) 2.03 (0) 0.18 (0) 0.18 (0) 0.21 (0)
8×4 (10) 3 13.88 (0) 14.23 (0) 17.27 (0) 1.78 (0) 1.86 (0) 2.36 (0)
9×4 (10) 3 19.62 (0) 19.96 (0) 23.75 (0) 1.16 (0) 1.18 (0) 1.42 (0)

10×4 (10) 4 252.31 (5) 257.18 (5) 289.20 (7) 31.36 (0) 33.40 (0) 49.36 (0)
11×4 (10) 4 209.41 (3) 214.72 (3) 244.84 (5) 25.85 (0) 27.15 (0) 37.64 (0)
12×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 136.64 (4) 137.22 (4) 142.74 (4)
13×4 (10) 5 300.00 (10) 300.00 (10) 300.00 (10) 185.84 (4) 188.73 (4) 209.44 (4)
14×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 232.85 (6) 235.06 (7) 243.73 (7)
15×4 (10) 6 300.00 (10) 300.00 (10) 300.00 (10) 296.10 (9) 297.42 (9) 300.00 (10)
16×4 (10) 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

Table 10: Conformant Planning with UFS Checking over Partial Assignments

bodies are satisfied). To improve on this expensive test (which was customary in implementations
so far), we have presented an alternative test based on unfounded sets that we obtain by adapting the
notion of unfounded set for aggregates by Faber (2005) to external atoms. Also Alviano et al. (2011)
use a related notion of unfounded sets for programs with aggregates, but restrict the discussion to
monotonic and antimonotonic aggregates. We have realized unfounded set (UFS) checking by a
transformation to SAT solving, where the satisfying assignments of a constructed CNF generate
candidate unfounded sets, which in turn are subject to a (rather simple) postcheck that takes external
atom evaluation into account.

In particular, we have provided two SAT encodings for UFS checking: the conceptually simple
encoding ΓA

Π , which needs initialization for every UFS check, and the advanced encoding ΩΠ,
which can be reused for all UFS checks. To further boost performance, we have shown how to learn
from unfounded sets by deriving nogoods, i.e., constraints (possibly involving also external atoms)
which guide future search in model generation and help to avoid that unfounded sets are regenerated.
In further elaboration, we have refined the basic approach by suitable program splitting, such that the
UFS check can be carried out independently on program components, cutting down the complexity.
Furthermore, we have presented a syntactic criterion that allows us to decide efficiently whether the
UFS check can be safely skipped for a component or the whole program, exploiting that the answer
set candidates from the model search have only special unfounded sets that involve cyclic input to
external atoms; for HEX-programs in simple applications, this is usually not the case.

The experimental evaluation of our new approach, which considered different combinations
of the techniques and comprised problems from various domains including multi-context systems,
abstract argumentation, default reasoning over ontologies, and conformant planning, where HEX-
programs serve for easy-cut declarative problem solving, has shown that it is more efficient than
the traditional minimal model check; it can lead to exponential gains and yields often drastic per-
formance improvements, while it is not slower (except in very few cases by a marginal amount).
Furthermore, the reusable encoding ΩΠ turned out to be beneficial for programs that require many
unfounded set checks, which includes all programs that have many answer sets.

305

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

8.1 Future work

An issue for further improvement of the approach in this paper are other heuristics for UFS check-
ing over partial assignments. While the natural heuristics that we considered are counterproductive,
others might lead to additional speedup in some cases. However, this may require to incorporate
domain-specific knowledge about external atoms; currently this is only done in the learning algo-
rithms but not in the heuristics. In the same line, one might consider developing a heuristics for
dynamically choosing between the UFS search encodings that we presented, and to study heuristics
for guiding the unfounded set search, i.e., for variable selection by the SAT solver. Currently, our
implementation applies the same heuristics for the unfounded set search as in the model genera-
tion process. However, our experimental comparison with the explicit minimality check in terms
of the considered candidate sets suggests that there is room for improvement by employing suitable
choices. Developing appropriate heuristics and validating their effectiveness on candidate set enu-
meration remains to be explored. Finally, an obvious issue are other criteria that allow to skip the
UFS check or simplify it while they can be efficiently tested.

Acknowledgments

Preliminary results of this work have been presented at the 13th European Conference on Logics in
Artificial Intelligence (JELIA 2012), September 26-28, 2012, Toulouse, France (Eiter, Fink, Kren-
nwallner, Redl, & Schüller, 2012c), and the 5th Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2012), September 4, 2012, Budapest, Hungary (Eiter, Fink, Kren-
nwallner, Redl, & Schüller, 2012b). We are grateful to the anonymous reviewers for their helpful
and constructive comments. This work was supported by the Austrian Science Fund (FWF) via
the projects P20840, P20841, P24090, and by the Vienna Science and Technology Fund (WWTF)
project ICT08-020. Peter Schüller was supported by TUBITAK Fellowship 2216.

Appendix A. Benchmark Encodings

In this appendix, we give details to some of the benchmark encodings (those which are not de-
scribed in the references). We note that these encodings have not been developed and tuned for
good performance and serve merely for an experimental comparison of the various FLP check re-
alizations. Benchmark encodings and HEX-plugins are publicly available at https://github.com/
hexhex/benchmarks.

A.1 Abstract Argumentation

The Abstract Argumentation benchmark results in Section 6.1 were obtained using the following
encoding, which is derived from encodings for admissible and preferred set extensions of an argu-
mentation framework (A, att) described by Egly, Gaggl, and Woltran (2010).

Input instances of this benchmark are defined over a setA of arguments encoded as facts arg(a)
for each a ∈ A and a set att of attacks between arguments, encoded as facts att(a, b) for some
(a, b) ∈ A × A. The encoding consists of the following rules where x, y, z ∈ A; very similar
encodings are explained in detail by Egly et al. (2010) (but without the use of external atoms).

We define defeat from attacks.

defeat(x, y)← att(x, y).

306

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

We guess a set S ⊆ A using predicates inS and outS .

inS (x)← not outS (x), arg(x). outS (x)← not inS (x), arg(x).

We require that all arguments in S are conflict-free and defended from S.

← inS (x), inS (y), defeat(x, y).

defeated(x)← inS (y), defeat(y, x).

notDefended(x)← defeat(y, x),not defeated(y).

← inS (x),notDefended(x).

For saturation we define a linear order on arguments, including infimum and supremum.

lt(x, y)← arg(x), arg(y). (x < y)

nsucc(x, z)← lt(x, y), lt(y, z).

succ(x, y)← lt(x, y),not nsucc(x, y).

ninf (x)← lt(y, x). nsup(x)← lt(x, y).

inf (x)← not ninf (x), arg(x). sup(x)← not nsup(x), arg(x).

We perform a guess over a set T ⊆ A using a disjunction.

inT (x) ∨ outT (x)← arg(x).

We check each argument of T whether it is in S and spoil the answer set if S ⊆ T .

sInT upto(y)← inf (y), inS (y), inT (y).

sInT upto(y)← inf (y), outS (y).

sInT upto(y)← succ(z, y), inS (y), inT (y), sInT upto(z).

sInT upto(y)← succ(z, y), outS (y), sInT upto(z).

sInT ← sup(y), sInT upto(y).

spoil ← sInT .

We also spoil the answer set if T is not a preferred extension, determined by an external atom with
the semantic function f&argSemExt such that f&argSemExt(A, pref , arg , att , inT , unused , spoil) =
1 iff Fspoil ∈ A or the extension of predicate inT is a preferred set extension of the argumentation
framework specified by the extension of predicates arg and att . Internally, the external atom uses
another ASP program to compute the semantics. This check is performed using an ASP encoding
for preferred extensions from Egly et al. (2010).

tIsNotPref ← &argSemExt [pref , arg , att , inT , unused , spoil]().

spoil ← tIsNotPref .

Note that the parameters pref and unused support more general functionalities of f&argSemExt

which are not relevant for this benchmark. We create a unique answer set whenever spoil is true
and require that only spoiled answer sets are returned.

inT (x)← spoil , arg(x). outT (x)← spoil , arg(x).

sInT ← spoil . tIsNotPref ← spoil . ← not spoil .

Given an instance encoded as above, an answer set to the above program exists iff there exists
an ideal set extension of the given argumentation framework.

307

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

A.2 Conformant Planning

The Conformant Planning benchmark results in Section 6.1 were obtained using the following en-
coding.

Input instances of this benchmark are defined over a setR of robots, setsX and Y of valid x and
y coordinates of the environment, and a maximum plan length l; an instance contains for each robot
r ∈ R the initial position (x, y) as facts roboX(r, x, 0) and roboY (r, y, 0). The encoding consists
of the following rules where, unless stated otherwise, 0 ≤ t < l, r ∈ R, x ∈ X , y ∈ Y .

For each robot we generate four possible moves in the environment.

move(r, x, y + 1, t) ∨move(r, x, y + 1, t)← roboX(r, x, t), roboY (r, y, t). (y + 1 ∈ Y)

move(r, x, y − 1, t) ∨move(r, x, y − 1, t)← roboX(r, x, t), roboY (r, y, t). (y − 1 ∈ Y)

move(r, x+ 1, y, t) ∨move(r, x+ 1, y, t)← roboX(r, x, t), roboY (r, y, t). (x+ 1 ∈ X)

move(r, x− 1, y, t) ∨move(r, x− 1, y, t)← roboX(r, x, t), roboY (r, y, t). (x− 1 ∈ X)

We disallow moving to multiple locations and standing still (the latter is not strictly necessary but
we obtained experimental results that way).

← move(r, x1, y1, t),move(r, x1, y2, t). (x1, x2 ∈ X, x1 < x2, y1, y2 ∈ Y)

← move(r, x, y1, t),move(r, x, y2, t). (y1, y2 ∈ Y, y1 < y2)

move∃(r, t)← move(r, x, y, t).

← not move∃(r, t).

The effect of moving is a deterministic change of location.

roboX(r, x, t+ 1)← move(r, x, y, t). roboY (r, y, t+ 1)← move(r, x, y, t).

For saturation we guess the position of the object.

objX(x) ∨ objX(x)← . objX(y) ∨ obj Y (y)← .

We spoil the answer set if the object is at multiple locations.

spoil ← objX(x1), objX(x2). (x1, x2 ∈ X, x1 < x2)

spoil ← obj Y (y1), obj Y (y2). (y1, y2 ∈ Y, y1 < y2)

We spoil the answer set if the object is at no location.

objectHasNoXUpTo(1)← objX(1).

objectHasNoXUpTo(x)← objectHasNoXUpTo(x− 1), objX(x). (x− 1 ∈ X)

spoil ← objectHasNoXUpTo(xmax). (xmax = max(X))

objectHasNoYUpTo(1)← obj Y (1).

objectHasNoYUpTo(y)← objectHasNoYUpTo(y − 1), obj Y (y). (y − 1 ∈ Y)

spoil ← objectHasNoYUpTo(ymax). (ymax = max(Y))

We spoil the answer set if the object is sensed, which is determined by an external atom with the
semantic function f&sense such that f&sense(A, roboX , roboY , objX , obj Y , range, spoil) = 1 iff

308

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Tspoil ∈ A or the predicates roboX , roboY , objX , obj Y represent in A a state where the robot has
a distance less than range to the object, i.e., the robot can detect the object. The implementation
of this external atom was realized in C++ and consists of verifying range ≤

√
∆2

x + ∆2
y and

bookkeeping code to extract ∆x and ∆y from A.

spoil ← &sense[roboX , roboY , objX , obj Y , range, spoil]().

We create a unique answer set whenever spoil is true and require that only spoiled answer sets are
returned.

objX(x)← spoil . objX(x)← spoil .

obj Y (x)← spoil . obj Y (x)← spoil .

objectHasNoXUpTo(x)← spoil . objectHasNoYUpTo(y)← spoil .

← not spoil .

Given an instance encoded as above, an answer set to the above program exists iff there exists a
sequence of movements that ensures to detect the object no matter where it is located. Furthermore
the movements required to detect the object, i.e., the conformant plan, is encoded in the answer set
in the extension of the move predicate.

Appendix B. Proofs

Proof of Proposition 1. (⇒) Let A′ be an answer set of Check(Π,A) such that f&g(A′,p, c) = 1
iff Te&g[p](c) ∈ A′ for all external atoms &g [p](c) in Π.

Since Â is a compatible set of Π, f&g(A,p, c) = 1 iff Te&g[p](c) ∈ Â for all external atoms

&g [p](c) in Π. Thus, fΠ̂Â is the same as fΠA with replacement atoms in place of external atoms,
and with additional guessing rules for replacement atoms. Since A′ is a model of Check(Π,A) it
is also a model of fΠ̂Â. Let A′′ = {Ta ∈ A′ | a ∈ A(Π)} ∪ {Fa ∈ A′ | a ∈ A(Π)}. Since
f&g(A′,p, c) = 1 iff Te&g[p](c) ∈ A′ for all external atoms &g [p](c) in Π by assumption, A′′ is
a model of fΠA.

Since A′ is an answer set of Check(Π,A), and ← a ∈ Check(Π,A) for all a ∈ A(Π) with
Ta 6∈ Â (and thus Ta 6∈ A), {Ta ∈ A′′ | a ∈ A(Π)} ⊆ A. Finally, due to {← not smaller} ∪
{smaller ← not a | a ∈ A(Π), Ta ∈ Â} ∈ Check(Π,A), there is at least one a ∈ A(Π)
s.t. Ta ∈ Â (and thus also Ta ∈ A), but Fa ∈ A′ (and thus also Fa ∈ A′′). Therefore
{Ta ∈ A′′ | a ∈ A(Π)} (A is a model of Π, and thus A is not an answer set of Π.

(⇐) If A is not an answer set of Π, then there is a model A′′ of fΠA which is smaller in the
positive part, i.e., {Ta ∈ A′′} ({Ta ∈ A}. Let

A′ = κ(Π,A′′) ∪ {Ta′ | Ta ∈ Â,Fa ∈ A′′} ∪ {Fa′ | Ta ∈ Â,Ta ∈ A′′} ∪ {Tsmaller}.

We show that A′ is an answer set of Check(Π,A) such that f&g(A′,p, c) = 1 iff Te&g[p](c) ∈ A′

for all external atoms &g [p](c) in Π.
Since A has been extracted from a compatible set Â of Π, fΠ̂Â is the same as fΠA with

replacement atoms in place of external atoms, and with additional guessing rules for replacement
atoms. Since A′′ is a model of fΠA, and the truth values of all replacement atoms in A′ coincide

309

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

with the oracle functions by definition of κ(Π,A′′), and set exactly one of ea or nea for each
external atom a in Π to true (and thus satisfy the guessing rules for replacement atoms), A′ is a
model of fΠ̂Â. Since {Ta ∈ A′′} ({Ta ∈ A} and thus also {Ta ∈ A′ | a ∈ A(Π)} ({Ta ∈
A | a ∈ A(Π)}, the corresponding constraint← a in Check(Π,A) is not violated. Moreover, for
each a with Ta ∈ Â we have either Ta ∈ A′ or Ta′ ∈ A′, thus the corresponding rule a ∨ a′ ←
in Check(Π,A) is satisfied. Finally, since Tsmaller ∈ A′, the rules {smaller ← not a | a ∈
A(Π),Ta ∈ Â} are satisfied and the constraint← not smaller does not fire. Thus A′ is a model
of Check(Π,A).

We show now that A′ is also a subset-minimal model of fCheck(Π,A)A′
. Observe that

fCheck(Π,A)A′
= fΠ̂Â ∪ {a ∨ a′ ←| Ta ∈ Â}

∪ {smaller ← not a | a ∈ A(Π),Ta ∈ Â}.

However, if any atom a ∈ A(fCheck(Π,A)A′
) with Ta ∈ A′ is changed to false, then the inter-

pretation is not a model anymore because the corresponding rule a ∨ a′ ← is violated, as only one
of a and a′ is true in A′ by definition; thus no interpretation with smaller positive part than A′ can
be a model of fCheck(Π,A)A′

. Hence A′ is an answer set of Check(Π,A).
Finally, f&g(A′,p, c) = 1 iff Te&g[p](c) ∈ A′ for all external atoms &g [p](c) in Π by defini-

tion of κ(Π,A′′). 2

Proof of Proposition 2. The result follows from Proposition 1 and the fact that the programs
Check(Π,A) and CheckOptimized(Π,A) have the same answer sets. Indeed, by construction the
programs have the same models; consequently, every answer set A′ of Check(Π,A) (which is a
model of Check(Π,A)) is a model of fCheckOptimized(Π,A)A′

. As A′ is a minimal model
of fCheck(Π,A)A′

, due to the guessing rules a ∨ a′ ←, for Ta ∈ Â, and ea ∨ nea ←, for all
external atoms a in Check(Π,A), we have either {Ta,Fa′} ⊆ A′ or {Fa,Ta′} ⊆ A′ (but not
both) and either {Tea,Fnea} ⊆ A′ or {Fea,Tnea} ⊆ A′ (but not both); furthermore, due to
the constraints ← a for every a ∈ A(Π) such that Ta /∈ Â, we have Fa ∈ A′ for each such a.
As the same guessing rules and constraints are also in CheckOptimized(Π,A), in every model A′′

of CheckOptimized(Π,A)A′
such that A′′ ≤CheckOptimized(Π,A) A′ all atoms a, a′, ea, and nea

must thus have the same value as in A′; consequently, also smaller must have the same value as in
A′. It follows that A′ is a minimal model of fCheckOptimized(Π,A)A′

, i.e., A′ is an answer set
of CheckOptimized(Π,A). The argument that every answer set of CheckOptimized(Π,A) is an
answer set of Check(Π,A) is analogous. 2

Proof of Theorem 3. The argument that proves Corollary 3 by Faber (2005) can be used mutatis
mutandi to prove this statement, with external atoms in place of aggregates. 2

Proof of Proposition 4. We proceed by contraposition and show that if IΓ(U,ΓA
Π ,Π,A) is not a

solution to ΓA
Π , then U cannot be an unfounded set such that AT ∩ U 6= ∅.

First observe that the nogoods in Hr,A demand Thr to be true for a rule r ∈ Π in a solution
to ΓA

Π if and only if some head atom h ∈ H(r) of this rule is in U . As the truth values of hr
and all h ∈ H(r) are defined in IΓ(U,ΓA

Π ,Π,A) exactly to this criterion, no nogood from Hr,A

can be involved in a contradiction. Furthermore, the nogood {Fa | Ta ∈ A} ∈ NA
Γ,Π is violated

by IΓ(U,ΓA
Π ,Π,A) only if AT ∩ U = ∅; hence, if IΓ(U,ΓA

Π ,Π,A) is not a solution to ΓA
Π and

310

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

AT ∩ U 6= ∅, as OA
Γ,Π is conservative, then for some rule r ∈ Π the nogood in Cr,A must be

violated. That is, we know the following: Thr ∈ IΓ(U,ΓA
Π ,Π,A) (and therefore H(r) ∩ U 6= ∅),

Fa ∈ IΓ(U,ΓA
Π ,Π,A) for all a ∈ B+

o (r), ta ∈ IΓ(U,ΓA
Π ,Π,A) for all a ∈ Be(r̂), and Th ∈

IΓ(U,ΓA
Π ,Π,A) for all h ∈ H(r) with A |= h. Moreover, we have Cr,A 6= ∅. We now show that

this implies that none of the conditions (i)–(iii) of Definition 5 holds for r wrt. U and A, which
means that U is not an unfounded set.

Condition (i) does not hold for r because A |= B(r) (otherwise Cr,A = ∅).
Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be

some b ∈ B(r) s.t. A
.∪ ¬.U 6|= b. Because Cr,A 6= ∅, we know that A |= b. We make a case

distinction on the type of b:
• If b is a positive default literal from A(Π), then Fb ∈ IΓ(U,ΓA

Π ,Π,A) and therefore b 6∈ U .
Consequently A

.∪ ¬.U |= b. Contradiction.
• If b is a negative default literal overA(Π) , then A |= b implies A

.∪ ¬.U |= b. Contradiction.
• If b is a positive or default-negated replacement atom, then tb ∈ IΓ(U,ΓA

Π ,Π,A). But this
implies, by definition of IΓ(U,ΓA

Π ,Π,A), that A
.∪ ¬.U |= b. Contradiction.

Condition (iii) does not hold for r because Th ∈ IΓ(U,ΓA
Π ,Π,A) and thus, by definition of

IΓ(U,ΓA
Π ,Π,A), h ∈ U for all h ∈ H(r) with A |= h. Thus A 6|= a for all a ∈ H(r) \ U . 2

Proof of Theorem 6. Suppose U is not an unfounded set. Then there is an r ∈ Π s.t. H(r)∩U 6= ∅
and none of the conditions (i)–(iii) in Definition 5 is satisfied. We show now that S cannot be a
solution to ΓA

Π that satisfies conditions (a) and (b), which proves the result.
Because Condition (i) does not hold, there is a nogood of form

{{Thr} ∪ {Fa | a ∈ B+
o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪ {Th | h ∈ H(r),A |= h}}

in ΓA
Π .
We now show that S contains all signed literals of this nogood, i.e., the nogood is violated by

the assignment S.
Since H(r) ∩ U 6= ∅, Thr ∈ S (otherwise a nogood in HA

r is violated). As U is not an
unfounded set, Condition (ii) in Definition 5 does not hold. Consider any a ∈ B+

o (r) s.t. A |= a.
Then a 6∈ U , otherwise A

.∪ ¬.U 6|= a and we have a contradiction with the assumption that
Condition (ii) is unsatisfied. But then Fa ∈ S (because S is complete and would imply a ∈ U
otherwise).

Now consider any &g [p](c) ∈ EA(r). Then A
.∪ ¬.U |= &g [p](c) (as (ii) is violated). If

A 6|= &g [p](c), then Condition (i) would be satisfied, hence A |= &g [p](c). But then Te&g[p](c) ∈
S, otherwise A

.∪ ¬.U 6|= &g [p](c) by precondition (b) of this proposition. Next consider all
not &g [p](c) ∈ Be(r). Then A

.∪ ¬.U 6|= &g [p](c) (as (ii) is violated). If A |= &g [p](c),
then Condition (i) would be satisfied, hence A 6|= &g [p](c). But then Fe&g[p](c) ∈ S, otherwise
A

.∪ ¬.U |= &g [p](c) by precondition (a) of this proposition. Therefore, we have ta ∈ S for all
a ∈ Be(r̂).

Finally, because Condition (iii) in Definition 5 does not hold, h ∈ U and therefore also Th ∈ S
for all h ∈ H(r) with A |= a.

This concludes the proof that S cannot be a solution to ΓA
Π satisfying (a) and (b), if U is not an

unfounded set. 2

Proof of Proposition 7. Let S = IΓ(U,ΓA
Π ,Π,A). If for an external atom &g [y](x) in Π we

have Te&g[y](x) ∈ S, then by definition of IΓ(U,ΓA
Π ,Π,A) we have A

.∪ ¬.U |= &g [y](x)

311

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

(satisfying (a)). If for an external atom &g [y](x) in Π we have Fe&g[y](x) ∈ S, then by definition
of IΓ(U,ΓA

Π ,Π,A) we have A
.∪ ¬.U 6|= &g [y](x) (satisfying (b)). 2

Proof of Proposition 8. We proceed by contraposition and show that if IΩ(U,ΩΠ,Π,A) is not a
solution to ΩΠ with assumptions AA, then U cannot be an unfounded set such that AT ∩ U 6= ∅.

First observe that the nogoods in Hr demand Thr to be true for a rule r ∈ Π if and only if some
head atom h ∈ H(r) of this rule is in U . Moreover, the nogoods in Da for each a ∈ A(Π) force
aA

.
∪¬.U to true if and only if Ta ∈ A and a /∈ U , which is equivalent to Ta ∈ A

.∪ ¬.U ; aA∧U
to true if and only if Ta ∈ A and a ∈ U ; and aA∨U to true if and only if Fa ∈ A or a ∈ U .
As the truth values of hr for each r ∈ Π, and aA

.
∪¬.U and aA∧U and aA∨U for each a ∈ A(Π)

in IΩ(U,ΩΠ,Π,A) are defined exactly to these conditions, a contradiction must involve Cr for
some r ∈ Π. Furthermore, the nogood {Fa | a ∈ A(Π)} is violated by IΩ(U,ΩΠ,Π,A) only if
A(Π) ∩ U = ∅, and thus AT ∩ U 6= ∅; hence, if IΩ(U,ΩΠ,Π,A) is not a solution to ΩΠ such that
AT ∩ U 6= ∅, since OΩ,Π is conservative, for some rule r ∈ Π the nogood in Cr must be violated.
That is, we know the following:

(I) Thr ∈ IΩ(U,ΩΠ,Π,A) (and therefore H(r) ∩ U 6= ∅),

(II) TaA ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B+(r̂) and FaA ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B−(r̂),

(III) FaA∧U ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B+
o (r), ta ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ Be(r̂), and

(IV) ThA∨U ∈ IΩ(U,ΩΠ,Π,A) for all h ∈ H(r).

We now show that this implies that none of the conditions of Definition 5 holds for r wrt. U
and A, which means that U is not an unfounded set (hr is true in IΩ(U,ΩΠ,Π,A), which implies
H(r) ∩ U 6= ∅x).

Condition (i) does not hold for r because of (II), which by our assumptions AA implies A |=
B(r). Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be
some b ∈ B(r) s.t. A

.∪ ¬.U 6|= b. Since Condition (i) is already known to be violated, we can
assume that A |= b. We make a case distinction on the type of b:
• If b is a positive default literal from A(Π) , then b ∈ U (otherwise A

.∪ ¬.U |= b). But then
we have by definition of IΩ(U,ΩΠ,Π,A) that TbA∧U ∈ IΩ(U,ΩΠ,Π,A), which contradicts
(III).
• If b is a negative default literal overA(Π) , then A |= b implies A

.∪ ¬.U |= b. Contradiction.
• If b is a positive or default-negated replacement atom, then tb ∈ IΩ(U,ΩΠ,Π,A). But this

implies, by definition of IΩ(U,ΩΠ,Π,A), that A
.∪ ¬.U |= b. Contradiction.

Condition (iii) does not hold for r because ThA∨U ∈ IΩ(U,ΩΠ,Π,A) and thus, by definition
of IΩ(U,ΩΠ,Π,A), h ∈ U for all h ∈ H(r) with A |= h. Thus A 6|= a for all a ∈ H(r) \ U . 2

Proof of Theorem 10. Suppose U is not an unfounded set. Then some r ∈ Π exists such that
H(r) ∩ U 6= ∅ and none of the conditions (i)–(iii) in Definition 5 is satisfied. We show that then S,
assuming that AA is satisfied and (a) and (b) hold, cannot be a solution to ΩΠ.

Due to rule r, ΩΠ (more specifically, NΩ,Π) contains a nogood N of form
N = { {Thr}∪

{TaA | a ∈ B+(r̂)} ∪ {FaA | a ∈ B−(r̂)} ∪
{FaA∧U | a ∈ B+

o (r)} ∪ {ta | a ∈ Be(r̂)} ∪
{ThA∨U | h ∈ H(r)} }.

312

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

We show that S contains all signed literals of N , i.e., N is violated by S. As H(r) ∩ U 6= ∅,
Thr ∈ S (otherwise a nogood in Hr is violated). Furthermore, as U is not an unfounded set,
Condition (i) in Definition 5 does not hold for U wrt. A, and hence A |= B(r). The assumptions
AA thus enforce that TaA ∈ S for all a ∈ B+(r̂) and FaA ∈ S for all a ∈ B−(r̂).

Consider next an arbitrary a ∈ B+
o (r). As Condition (ii) in Definition 5 does not hold for U

wrt. A, we have A |= a and a 6∈ U ; the latter implies by definition of U that Fa ∈ S. From the
nogood {TaA∧U ,Fa} we conclude FaA∧U ∈ S.

We next show that for every a ∈ Be(r̂), it holds that ta ∈ S. Indeed, let &g [p](c) ∈ EA(r). We
have A

.∪ ¬.U |= &g [p](c) (as Condition (ii) is violated). Furthermore, A |= &g [p](c), as A 6|=
&g [p](c) would imply that Condition (i) is satisfied. Thus from Condition (b) of the hypothesis, it
follows that Te&g[p](c) ∈ S. Similarly, let not &g [p](c) ∈ Be(r). Then A

.∪ ¬.U 6|= &g [p](c) (as
Condition (ii) is violated) and A 6|= &g [p](c) as A |= &g [p](c) would satisfy Condition (i). Thus
from Condition (a) of the hypothesis, it follows that Fe&g[p](c) ∈ S. Thus we have ta ∈ S for all
a ∈ Be(r̂).

Finally, because Condition (iii) in Definition 5 does not hold for U wrt. A, we have h ∈ U and
therefore also Th ∈ S for all h ∈ H(r) with A |= a. That is, for each h ∈ H(r), either FhA ∈ S
or Th ∈ S. But by the nogoods {FhA∨U ,FhA}, {FhA∨U ,Th} ∈ Dh, in both cases we have
ThA∨U ∈ S.

Hence,N ⊆ S holds, i.e.,N is violated by S, and thus S is not a solution of ΩΠ. This completes
the proof of the result. 2

Proof of Proposition 11. Let S = IΩ(U,ΩΠ,Π,A). If for an external atom &g [y](x) in Π
we have Te&g[y](x) ∈ S, then by definition of IΩ(U,ΩΠ,Π,A) we have A

.∪ ¬.U |= &g [y](x)
(satisfying (a)). If for an external atom &g [y](x) in Π we have Fe&g[y](x) ∈ S, then by definition
of IΩ(U,ΩA

Π ,Π,A) we have A
.∪ ¬.U 6|= &g [y](x) (satisfying (b)). 2

Proof of Proposition 12. To show that U \ {a} is an unfounded set wrt. A, consider r ∈ Π such
that H(r) ∩ (U \ {a}) 6= ∅. We have to show that one of the conditions (i)–(iii) of Definition 5
holds for r. By hypothesis, U is an unfounded set of Π wrt. A, and H(r) ∩ (U \ {a}) 6= ∅ implies
H(r)∩U 6= ∅. If Condition (i) holds for U , it also holds wrt. U \{a} because this condition depends
only on r and A. Also if Condition (ii) holds for U , it also holds wrt. U \ {a} because A

.∪ ¬.U
is equivalent to A

.∪ ¬.(U \ {a}) since A 6|= a. Finally, if Condition (iii) holds for U , then some
atom b ∈ H(r) \ U exists such that A |= b. As A 6|= a, it follows a 6= b and hence condition (iii)
holds for U \ {a}. This proves the result. 2

Proof of Proposition 13. Suppose that changing the truth value of b in S turns the solution to
a counterexample Sb of ΓA

Π (resp. ΩΠ). That is, Sb must violate some nogood N ∈ ΓA
Π resp.

(N ∈ ΩΠ) containing b, i.e., either Tb ∈ N or Fb ∈ N .
For the encoding ΓA

Π , the nogood N corresponds to a rule with b ∈ B+(r̂) or b ∈ B−(r̂) and
A |= B(r), and N contains also the signed literals (1) Fa for all a ∈ B+

o with A |= a and (2) Ta
for all a ∈ H(r) with A |= a. By hypothesis, we have either (a) Ta ∈ S for some a ∈ B+

o (r)
with A |= a, or (b) Fa for some a ∈ H(r) with A |= a. But then the nogood cannot be violated,
because (a) contradicts one of (1) and (b) contradicts one of (2).

For the encoding ΩΠ, the nogood N corresponds to a rule r with b ∈ B+(r̂) or b ∈ B−(r̂). The
nogood contains also the signed literals (1) TaA for all a ∈ B+(r̂) and FaA for all a ∈ B−(r̂), (2)
FaA∧U for all a ∈ B+

o , and (3) ThĀ∨U for all h ∈ H(r). Because of (1) and since A is a solution

313

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

to AA, we have A |= B(r). By hypothesis, we have either (a) Ta ∈ S for some a ∈ B+
o (r)

with A |= a, or (b) Fa for some a ∈ H(r) with A |= a. But then the nogood N cannot be
violated, because (a) contradicts part (2) by definition ofAA and aA∧U , and (b) contradicts part (3)
by definition of AA and hĀ∨U . 2

Proof of Proposition 14. If TΓ(N,A) = ∅ then the proposition trivially holds. Otherwise
TΓ(N,A) = {C} and we know that Tti ∈ A for all 1 ≤ i ≤ n. Suppose C is violated by
IΓ(U,ΓA

Π ,Π,A). Then Fti ∈ IΓ(U,ΓA
Π ,Π,A) and therefore ti 6∈ U for all 1 ≤ i ≤ n, and

Tfi ∈ IΓ(U,ΓA
Π ,Π,A) for all 1 ≤ i ≤ m with A |= fi, and σe&g[p](c) ∈ IΓ(U,ΓA

Π ,Π,A).
But then A

.∪ ¬.U |= ti for all 1 ≤ i ≤ n and A
.∪ ¬.U 6|= fi for all 1 ≤ i ≤ m. Because the

nogood N is a valid input-output-relationship, this implies σ̄&g [p](c) ∈ A
.∪ ¬.U . By definition

of IΓ(U,ΓA
Π ,Π,A), we then have σ̄e&g[p](c) ∈ IΓ(U,ΓA

Π ,Π,A), which contradicts the assumption
that TΓ(N,A) is violated. 2

Proof of Proposition 15. We know TΩ(N) = {C}. Suppose IΩ(U,ΩΠ,Π,A) violates C. Then
TtiA ∈ IΩ(U,ΩΠ,Π,A) and therefore Tti ∈ A and Fti ∈ IΩ(U,ΩΠ,Π,A) for all 1 ≤ i ≤ n;
FfiA

.
∪¬.U ∈ IΩ(U,ΩΠ,Π,A) and therefore either Ffi ∈ A or fi ∈ U , for all 1 ≤ i ≤ m; and

σe&g[p](c) ∈ I(U,ΩΠ,A).
But then, by definition of IΩ(U,ΩΠ,Π,A), Tti ∈ A and ti 6∈ U for all 1 ≤ i ≤ n, hence

A
.∪ ¬.U |= ti for all 1 ≤ i ≤ n. Moreover, A

.∪ ¬.U 6|= fi for all 1 ≤ i ≤ m. Because
nogood N is a valid input-output-relationship, this implies σ̄&g [p](c) ∈ A

.∪ ¬.U . On the other
hand, by definition of IΩ(U,ΩΠ,Π,A), we have σ̄e&g[p](c) ∈ IΩ(U,ΩΠ,Π,A); this contradicts
the assumption that the nogood C is violated. 2

Proof of Proposition 16. Suppose some answer set A′ of Π exists which is not a solution to
L1(U,Π,A), i.e., it violates some nogood N = {σ0, σ1, . . . , σn} ∈ L1(U,Π,A). We show that
in this case U is an unfounded set of Π wrt. A′ such that U ∩ A′ 6= ∅; this means that A′ is
not-unfounded-free, which contradicts that A′ is an answer set of Π.

Let r ∈ Π be a rule such thatH(r)∩U 6= ∅. We have to show that one of the conditions (i)–(iii)
of Definition 5 holds.

If B+
o (r) ∩ U 6= ∅, then Condition (ii) holds. Hence we assume in the following that B+

o (r) ∩
U = ∅, which means that r is an external rule of Π wrt. U . But then for some σi ∈ N with
1 ≤ i ≤ n we have either (1) σi = Th for some h ∈ H(r) with h 6∈ U and A |= h, or (2) σi = Fb
for some b ∈ B+

o (r) with A 6|= b. Since A′ violatesN by assumption, we have σi ∈ A′. In Case (1)
the Condition (iii) is satisfied, while in Case (2) then Condition (i) is satisfied.

Moreover, by definition of L1 some a ∈ U exists such that Ta ∈ A′, i.e., A′ intersects with U .
This proves the result. 2

Proof of Proposition 17. Towards a contradiction, suppose some answer set A′ of Π is not a
solution to L2(U,Π,A). Let N = {Ta | a ∈ A

.∪ ¬.U} ∪ {σ0, σ1, . . . , σn} ∈ L2(U,Π,A) be a
violated nogood. Because σi ∈ A′ for all 1 ≤ i ≤ n, we know that A′ falsifies (at least) the bodies
of rules in Π that are falsified by A; consequently, fΠA′ ⊆ fΠA. From A |= Π and the hypothesis
that U is an unfounded set it follows that A

.∪ ¬.U |= fΠA; hence, also A
.∪ ¬.U |= fΠA′

.
Moreover, Ta ∈ A′ for all a ∈ A

.∪ ¬.U , and therefore A′T ⊇ (A
.∪ ¬.U)T. Because σ0 ∈ A′,

we conclude A′T) (A
.∪ ¬.U)T, i.e., A′ is not a subset-minimal model of ΠA′

. Consequently,
A′ is not an answer set of Π, which is a contradiction. 2

314

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Proof of Lemma 18. If Y = ∅, then the result holds trivially. Otherwise, let r ∈ Π with
H(r) ∩ Y 6= ∅. We show that one of the conditions (i)–(iii) in Definition 5 holds. Observe that
H(r) ∩ U 6= ∅ because U ⊇ Y . Since U is an unfounded set of Π wrt. A, either

(i) A 6|= b for some b ∈ B(r); or

(ii) A
.∪ ¬.U 6|= b for some b ∈ B(r); or

(iii) A |= h for some h ∈ H(r) \ U .

In Case (i), the condition also holds wrt. Y . In case (ii), let a ∈ H(r) such that a ∈ Y , and b ∈ B(r)
such that A

.∪ ¬.U 6|= b. We make a case distinction: either b is an ordinary literal or an external
one.

If b is an ordinary default-negated atom not c, then A
.∪ ¬.U 6|= b implies Tc ∈ A and c 6∈ U ,

and therefore also A
.∪ ¬.Y 6|= b. So assume b is an ordinary atom. If b 6∈ U then A 6|= b and

Case (i) applies, so assume b ∈ U . Because a ∈ H(r) and b ∈ B(r), we have a→ b and therefore
either a, b ∈ C or a, b ∈ Y (because there are no ordinary edges between C and Y). But by
assumption a ∈ Y , and therefore b ∈ Y , hence A

.∪ ¬.Y 6|= b.
If b is an external literal, then there is no q ∈ U with a→e q and q 6∈ Y . Otherwise, this would

imply q ∈ C and C would have an incoming e-edge, which contradicts the assumption that C is a
cut of GR

Π. Hence, for all q ∈ U with a →e q, also q ∈ Y , and therefore the truth value of b under
A

.∪ ¬.U and A
.∪ ¬.Y is the same. Hence A

.∪ ¬.Y 6|= b.
In Case (iii), also A |= h for some h ∈ H(r) \ Y because Y ⊆ U and therefore H(r) \ Y ⊇

H(r) \ U . 2

Proof of Lemma 19. If U = ∅, then the result holds trivially. Otherwise, suppose r̂ ∈ Π̂ and
a ∈ H(r̂) ∩ U . Observe that r̂ cannot be an external atom guessing rule because U contains only
ordinary atoms. We show that one of the conditions in Definition 5 holds for r̂ wrt. Â.

Because r̂ is no external atom guessing rule, there is a corresponding rule r ∈ Π containing
external atoms in place of replacement atoms. Because U is an unfounded set of Π and H(r) =
H(r̂), either:

(i) A 6|= b for some b ∈ B(r); or

(ii) A
.∪ ¬.U 6|= b for some b ∈ B(r); or

(iii) A |= h for some h ∈ H(r) \ U

In Case (i), let b ∈ B(r) such that A 6|= b and b̂ the corresponding literal in B(b̂) (which is the same
if b is ordinary and the corresponding replacement literal if b is external). Then also Â 6|= b̂ because
Â is compatible.

In Case (ii), we make a case distinction: either b is ordinary or external.
If b is ordinary, then b ∈ B(r̂) and Â

.∪ ¬.U 6|= b holds because A and Â are equivalent for
ordinary atoms.

If b is an external atom or default-negated external atom, then no atom p(c) ∈ U is input to
it, i.e., p is not a predicate input parameter of b; otherwise we had a →e p(c), contradicting our
assumption that U has no internal e-edges. But then A

.∪ ¬.U implies A 6|= b because the truth
value of b under A

.∪ ¬.U and A is the same. Therefore we can apply Case (i).

315

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

In Case (iii), also Â |= h for some h ∈ H(r̂) \U because H(r) = H(r̂) contains only ordinary
atoms and A is equivalent to Â for ordinary atoms. 2

Proof of Theorem 20. We define the reachable set R(a) from some atom a as

R(a) = {b | (a, b) ∈ {→ ∪ ←}∗},

i.e., the set of atoms b ∈ U reachable from a using edges from→ ∪ ← only but no e-edges.
We first assume that U contains at least one e-edge, i.e., there are x, y ∈ U such that x →e y.

Now we show that there is a u ∈ U with outgoing e-edge (i.e., u →e v for some v ∈ U), but
such that R(u) has no incoming e-edges from U (i.e., for all v ∈ R(u) and b ∈ U , b 6→e v holds).
Suppose to the contrary that for all a with outgoing e-edges, the reachable setR(a) has an incoming
e-edge from U . We now construct an e-cycle under →d, which contradicts our assumption. Start
with an arbitrary node c0 ∈ U that has an outgoing e-edge, let p0 be the (possibly empty) path
(under→ ∪ ←) from c0 to the node d0 ∈ R(c0) such that d0 has an incoming e-edge, i.e., there is
a c1 such that c1 →e d0; note that c1 6∈ R(c0).4 By assumption, also some node d1 in R(c1) has an
incoming e-edge (from some node c2 6∈ R(c1)). Let p1 be the path from c1 to d1, etc. By iteration
we can construct the concatenation of the paths p0, (d0, c1), p1, (d1, c2), p2, . . . , pi, (di, ci+1), . . .,
where the pi from ci to di are the paths within reachable sets, and the (di, ci+1) are the e-edges
between reachable sets. However, as U is finite some nodes on this path must be equal, i.e., a
subsequence of the constructed sequence represents an e-cycle (in reverse order).

This proves that u is a node with outgoing e-edge but such that R(u) has no incoming e-edges.
We next show that R(u) is a cut of GR

Π. Condition (i) is immediately satisfied by definition of u.
Condition (ii) is shown as follows. Let u′ ∈ R(u) and v′ ∈ U \R(u). We have to show that u′ 6→ v′

and v′ 6→ u′. Suppose, towards a contradiction, that u′ → v′. Because u′ ∈ R(u), there is a path
from u to u′ under → ∪ ←. But if u′ → v′, then there would also be a path from u to v′ under
→ ∪ ← and v′ would be in R(u), a contradiction. Analogously, v′ → u′ would also imply that
there is a path from u to v′ because there is a path from u to u′, again a contradiction.

Therefore,R(u) ⊆ U is a cut ofGR
Π, and by Lemma 18, it follows that U \R(u) is an unfounded

set. Observe that U \ R(u) contains one e-edge less than U because u has an outgoing e-edge and
that U \ R(u) 6= ∅; indeed, by assumption some w ∈ U exists such that u →e w, and clearly
w 6∈ R(u). By iterating this argument, the number of e-edges in the unfounded set can be reduced
to zero in a nonempty core. Eventually Lemma 19 applies, proving that the remaining set is an
unfounded set of Π̂. 2

Proof of Corollary 21. Towards a contradiction, suppose an unfounded set U of Π wrt. A exists.
Then U contains no e-cycle because there is no e-cycle under →d. By Theorem 20 there is an
unfounded set of Π̂ wrt. Â, which contradicts our assumption that Π̂ has no unfounded set wrt. A.
2

Proof of Theorem 22. If U contains no cyclic input atoms, then all cycles under→d containing
e-edges in the atom dependency graph of Π are broken, i.e., U does not contain an e-cycle under
→d. Then by Theorem 20 there exists a nonempty unfounded set of Π̂ wrt. Â. 2

4. Whenever x→e y for x, y ∈ U , then there is no path from x to y under→ ∪ ←, because otherwise we would have
an e-cycle under→d.

316

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Proof of Theorem 23. Let U be a nonempty unfounded set of Π wrt. A. Because C is a decompo-
sition of A(Π) into strongly connected components, the component dependency graph

〈C, {(C1, C2) | C1, C2 ∈ C,∃a1 ∈ C1, a2 ∈ C2 : (a1, a2) ∈→ ∪ →e}〉

is acyclic. Following the hierarchical component dependency graph from the nodes without prede-
cessor components downwards, we can find a “first” component which has a nonempty intersection
with U , i.e., there exists a component C ∈ C such that C ∩ U 6= ∅ but C ′ ∩ U = ∅ for all transitive
predecessor components C ′ of C.

We show that U ∩ C is an unfounded set of ΠC wrt. A. Let r ∈ ΠC be a rule such that
H(r) ∩ (U ∩ C) 6= ∅. We have to show that one of the conditions (i)-(iii) of Definition 5 holds for
r wrt. A and U ∩ C.

Because U is an unfounded set of Π wrt. A we know that one of the conditions (i)–(iii) holds
for r wrt. A and U . In case of Condition (i), then it trivially holds also wrt. A and U ∩ C be-
cause this condition depends only on the assignment A, but not on the unfounded set U ; in case of
Condition (iii), it clearly holds because H(r) \ U 6= ∅ is included in H(r) \ (U ∩ C).

In case of Condition (ii), we have that A
.∪ ¬.U 6|= b for some (ordinary or external) body literal

b ∈ B(r). We show next that the truth value of all literals in B(r) is the same under A
.∪ ¬.U and

A
.∪ ¬.(U ∩ C), which proves that Condition (ii) holds also wrt. A and U ∩ C.
If b = not a for some ordinary atom a, then Ta ∈ A and a 6∈ U and consequently a 6∈ U ∩ C,

hence A
.∪ ¬.(U∩C) 6|= b. If b is an ordinary atom, then either Fb ∈ A, which implies immediately

that A
.∪ ¬.(U ∩ C) 6|= b, or b ∈ U . But in the latter case b is either in a predecessor component

C ′ of C or in C itself (since h → b for all h ∈ H(r)). But since U ∩ C ′ = ∅ for all predecessor
components of C, we know b ∈ C and therefore b ∈ (U ∩C), which implies A

.∪ ¬.(U ∩C) 6|= b.
If b is a positive or default-negated external atom, then all input atoms a to b are either in a

predecessor component C ′ of C or in C itself (since h →e a for all h ∈ H(r)). We show with a
similar argument as before that the truth value of each input atom a is the same under A

.∪ ¬.U
and A

.∪ ¬.(U ∩ C): if A
.∪ ¬.U |= a, then Ta ∈ A and a 6∈ U , hence a 6∈ (U ∩ C) and

therefore A
.∪ ¬.(U ∩ C) |= a. If A

.∪ ¬.U 6|= a, then either Fa ∈ A, which immediately implies
A

.∪ ¬.(U ∩ C) 6|= a, or a ∈ U . But in the latter case a must be in C because U ∩ C ′ = ∅ for all
predecessor components C ′ of C. Therefore a ∈ (U ∩ C) and consequently A

.∪ ¬.(U ∩ C) 6|= a.
Because all input atoms a have the same truth value under A

.∪ ¬.U and A
.∪ ¬.(U ∩C), the same

holds also for the positive or default-negated external atom b itself. 2

Proof of Proposition 24. If U = ∅, then the result holds trivially. By definition of ΠC , we have
H(r) ∩ C = ∅ for all r ∈ Π \ ΠC . By hypothesis we have U ⊆ C. But then H(r) ∩ U = ∅ for all
r ∈ Π \ΠC and U is an unfounded set of Π wrt. A. 2

References

Alviano, M., Calimeri, F., Faber, W., Leone, N., & Perri, S. (2011). Unfounded Sets and Well-
Founded Semantics of Answer Set Programs with Aggregates. Journal of Artificial Intelli-
gence Research, 42, 487–527.

Baader, F., & Hollunder, B. (1995). Embedding Defaults into Terminological Knowledge Repre-
sentation Formalisms. Journal of Automated Reasoning, 14(1), 149–180.

317

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

Basol, S., Erdem, O., Fink, M., & Ianni, G. (2010). HEX Programs with Action Atoms. In
Hermenegildo, M., & Schaub, T. (Eds.), Technical Communications of the 26th International
Conference on Logic Programming (ICLP’10), Vol. 7 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 24–33, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

Brewka, G., & Eiter, T. (2007). Equilibria in Heterogeneous Nonmonotonic Multi-Context Sys-
tems. In Holte, R. C., & Howe, A. (Eds.), 22nd AAAI Conference on Artificial Intelligence
(AAAI’07), pp. 385–390. AAAI Press.

Brewka, G., Eiter, T., & Truszczyński, M. (2011). Answer set programming at a glance. Communi-
cations of the ACM, 54(12), 92–103.

Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., & Schaub, T. (2008).
Conflict-driven disjunctive answer set solving. In Brewka, G., & Lang, J. (Eds.), 11th In-
ternational Conference Principles of Knowledge Representation and Reasoning (KR 2008),
Sydney, Australia, September 16-19, 2008, pp. 422–432. AAAI Press.

Drescher, C., & Walsh, T. (2012). Answer set solving with lazy nogood generation. In Dovier,
A., & Costa, V. S. (Eds.), Technical Communications of the 28th International Conference on
Logic Programming (ICLP 2012), Vol. 17 of Leibniz International Proceedings in Informatics
(LIPIcs), pp. 188–200. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–357.

Dung, P., Mancarella, P., & Toni, F. (2007). Computing ideal sceptical argumentation. Artificial
Intelligence, 171, 642–674.

Dunne, P. E. (2009). The computational complexity of ideal semantics. Artificial Intelligence,
173(18), 1559–1591.

Egly, U., Gaggl, S. A., & Woltran, S. (2010). Answer-set programming encodings for argumentation
frameworks. Argument and Computation, 1(2), 147–177.

Eiter, T., Fink, M., Ianni, G., Krennwallner, T., & Schüller, P. (2011). Pushing Efficient Evaluation
of HEX Programs by Modular Decomposition. In Delgrande, J., & Faber, W. (Eds.), 11th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
Vol. 6645 of LNAI, pp. 93–106. Springer.

Eiter, T., Fink, M., Krennwallner, T., & Redl, C. (2012a). Conflict-driven ASP Solving with External
Sources. Theory and Practice of Logic Programming, 12(4-5), 659–679.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., & Schüller, P. (2012b). Eliminating Unfounded Set
Checking for HEX-Programs. In Fink, M., & Lierler, Y. (Eds.), 5th Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP 2012), September 4, 2012,
Budapest, Hungary, pp. 83–97.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., & Schüller, P. (2012c). Exploiting Unfounded Sets
for HEX-Program Evaluation. In del Cerro, L. F., Herzig, A., & Mengin, J. (Eds.), 13th
European Conference on Logics in Artificial Intelligence (JELIA 2012), September 26-28,
2012, Toulouse, France, Vol. 7519 of LNCS, pp. 160–175. Springer.

318

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Eiter, T., Fink, M., Schüller, P., & Weinzierl, A. (2012b). Finding explanations of inconsistency
in nonmonotonic multi-context systems. Tech. rep. INFSYS RR-1843-12-09, INFSYS RR-
1843-03-08, Inst. für Informationssysteme, TU Wien. Preliminary version in Proc. 12th Inter-
national Conference on Knowledge Representation and Reasoning (KR 2010), pp. 329–339,
AAAI Press, 2010.

Eiter, T., Ianni, G., Krennwallner, T., & Schindlauer, R. (2008a). Exploiting conjunctive queries
in description logic programs. Annals of Mathematics and Artificial Intelligence, 53(1–4),
115–152.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2008b). Combining answer set
programming with description logics for the semantic web. Artificial Intelligence, 172(12-
13), 1495–1539.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005). A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In Kaelbling, L. P., &
Saffiotti, A. (Eds.), 19th International Joint Conference on Artificial Intelligence (IJCAI’05),
pp. 90–96. Professional Book Center.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2006a). dlvhex: A Prover for Semantic-Web
Reasoning under the Answer-Set Semantics. In Proceedings of the ICLP’06 Workshop on
Applications of Logic Programming in the Semantic Web and Semantic Web Services (ALP-
SWS2006), pp. 33–39. CEUR WS.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2006). Effective Integration of Declarative Rules
with External Evaluations for Semantic-Web Reasoning. In Sure, Y., & Domingue, J. (Eds.),
3rd European Conference on Semantic Web (ESWC’06), Vol. 4011 of LNCS, pp. 273–287.
Springer.

Faber, W. (2005). Unfounded sets for disjunctive logic programs with arbitrary aggregates. In
Baral, C., Greco, G., Leone, N., & Terracina, G. (Eds.), 8th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), Vol. 3662, pp. 40–52. Springer.

Faber, W., Leone, N., & Pfeifer, G. (2011). Semantics and complexity of recursive aggregates in
answer set programming. Artificial Intelligence, 175(1), 278–298.

Gebser, M., Ostrowski, M., & Schaub, T. (2009). Constraint answer set solving. In Hill, P., & War-
ren, D. (Eds.), Proceedings of the Twenty-fifth International Conference on Logic Program-
ming (ICLP’09), Vol. 5649 of Lecture Notes in Computer Science, pp. 235–249. Springer-
Verlag.

Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence, 187–188, 52–89.

Gebser, M., Kaufmann, B., & Schaub, T. (2013). Advanced conflict-driven disjunctive answer
set solving. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, IJCAI’13, pp. 912–918. AAAI Press.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9(3–4), 365–386.

Ghidini, C., & Giunchiglia, F. (2001). Local models semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence, 127(2), 221–259.

319

EITER, FINK, KRENNWALLNER, REDL, & SCHÜLLER

Goldman, R., & Boddy, M. (1996). Expressive Planning and Explicit Knowledge. In Drabble, B.
(Ed.), 3rd International Conference on Artificial Intelligence Planning Systems (AIPS’96),
pp. 110–117. AAAI Press.

Hoehndorf, R., Loebe, F., Kelso, J., & Herre, H. (2007). Representing default knowledge in biomed-
ical ontologies: application to the integration of anatomy and phenotype ontologies. BMC
Bioinformatics, 8, 377.

Janhunen, T., Niemelä, I., Seipel, D., Simons, P., & You, J.-H. (2006). Unfolding partiality and
disjunctions in stable model semantics. ACM Trans. Comput. Log., 7(1), 1–37.

Koch, C., Leone, N., & Pfeifer, G. (2003). Enhancing disjunctive logic programming systems by
SAT checkers. Artificial Intelligence, 151(1–2), 177–212.

Lee, J. (2005). A model-theoretic counterpart of loop formulas. In Kaelbling, L. P., & Saffiotti,
A. (Eds.), 19th International Joint Conference on Artificial Intelligence (IJCAI’05), pp. 503–
508. Professional Book Center.

Lee, J., & Lifschitz, V. (2003). Loop Formulas for Disjunctive Logic Programs. In Palamidessi, C.
(Ed.), 19th International Conference on Logic Programming (ICLP’03), Vol. 2916 of LNCS,
pp. 451–465. Springer.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006). The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic, 7(3), 499–562.

Leone, N., Rullo, P., & Scarcello, F. (1997). Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics, and Computation. Information and Computation, 135(2), 69–112.

Lierler, Y. (2005). cmodels - SAT-Based Disjunctive Answer Set Solver. In Baral, C., Greco, G.,
Leone, N., & Terracina, G. (Eds.), 8th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2005), Vol. 3662 of Lecture Notes in Computer Science,
pp. 447–451. Springer.

Lifschitz, V., & Turner, H. (1994). Splitting a logic program. In Hentenryck, P. V. (Ed.), 11th
International Conference on Logic Programming (ICLP’94), pp. 23–37. MIT Press.

Lin, F., & Zhao, Y. (2004). ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1–2), 115–137.

Marano, M., Obermeier, P., & Polleres, A. (2010). Processing RIF and OWL2RL within DLVHEX.
In Hitzler, P., & Lukasiewicz, T. (Eds.), 4th International Conference on Web Reasoning and
Rule Systems (RR’10), Vol. 6333 of LNCS, pp. 244–250. Springer.

Nieuwenborgh, D. V., Cock, M. D., & Vermeir, D. (2007a). Computing fuzzy answer sets using
dlvhex. In Dahl, V., & Niemelä, I. (Eds.), 23rd International Conference on Logic Program-
ming (ICLP’07), Vol. 4670 of LNCS, pp. 449–450. Springer.

Nieuwenborgh, D. V., Eiter, T., & Vermeir, D. (2007b). Conditional planning with external func-
tions. In Baral, C., Brewka, G., & Schlipf, J. S. (Eds.), 9th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), Vol. 4483 of LNCS, pp. 214–227.
Springer.

Shen, Y.-D. (2011). Well-supported semantics for description logic programs. In Walsh, T. (Ed.),
22nd International Joint Conference on Artificial Intelligence (IJCAI’11), pp. 1081–1086.
AAAI Press.

320

EFFICIENT HEX-PROGRAM EVALUATION BASED ON UNFOUNDED SETS

Shen, Y.-D., & Wang, K. (2011). Extending logic programs with description logic expressions for
the semantic web. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N. F., & Blomqvist, E. (Eds.), 10th International Semantic Web Conference (ISWC’11), Vol.
7031 of LNCS, pp. 633–648. Springer.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2), 181–234.

Smith, D. E., & Weld, D. S. (1998). Conformant Graphplan. In Mostow, J., Rich, C., & Buchanan,
B. (Eds.), 15th National Conference on Artificial Intelligence (AAAI’98), pp. 889–896. AAAI
Press / The MIT Press.

Turner, H. (2002). Polynomial-length planning spans the polynomial hierarchy. In Flesca, S., Greco,
S., Leone, N., & Ianni, G. (Eds.), European Conference on Logics in Artificial Intelligence
(JELIA’02), Vol. 2424 of LNCS, pp. 111–124. Springer.

Van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The Well-Founded Semantics for General
Logic Programs. Journal of the ACM, 38(3), 619–649.

Zakraoui, J., & Zagler, W. L. (2011). A logical approach to web user interface adaptation. In
Holzinger, A., & Simonic, K.-M. (Eds.), 7th Conference of the Workgroup Human-Computer
Interaction and Usability Engineering of the Austrian Computer Society (USAB’11), Vol.
7058 of LNCS, pp. 645–656. Springer.

Zirtiloǧlu, H., & Yolum, P. (2008). Ranking semantic information for e-government: complaints
management. In 1st International Workshop on Ontology-supported Business Intelligence
(OBI’08), No. 5 in OBI’08, p. 7. ACM.

321

