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Motivation
HEX-Programs

Extend ASP by external sources

Scalability problems due to minimality checking

HEX-
program Reasoner

External
Source

Contribution

Exploit unfounded sets for minimality checking

Search for unfounded sets encoded as separate search problem

Much better scalability
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Introduction

HEX-Programs
HEX-programs extend ordinary ASP programs by external sources

Definition (HEX-programs)

A HEX-program consists of rules of form
a1 ∨ · · · ∨ an ← b1, . . . , bm, not bm+1, . . . , not bn,

with classical literals ai, and classical literals or an external atoms bj.

Definition (External Atoms)

An external atom is of the form
&p[q1, . . . , qk](t1, . . . , tl),

p . . . external predicate name
qi . . . predicate names or constants
tj . . . terms

Semantics:
1 + k + l-ary Boolean oracle function f&p:
&p[q1, . . . , qk](t1, . . . , tl) is true under assignment A
iff f&p(A, q1, . . . , qk, t1, . . . , tl) = 1.

HEX-
program Reasoner

Implementation
of &p
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Introduction

Examples
&rdf

The &rdf External Atom

Input: URL

Output: Set of triplets from RDF file

External knowledge base is a set of RDF files on the web:
addr(http:// . . . /data1.rdf).
addr(http:// . . . /data2.rdf).

bel(X,Y)← addr(U),&rdf [U](X,Y,Z).

&diff

&diff [p, q](X): all elements X, which are in the extension of p but not of q:

dom(X) ← #int(X).

nsel(X) ← dom(X),&diff [dom, sel](X).

sel(X) ← dom(X),&diff [dom, nsel](X).

← sel(X1), sel(X2), sel(X3),X1 6= X2,X1 6= X3,X2 6= X3.
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Introduction

Semantics of HEX-Programs
Definition (FLP-Reduct [Faber et al., 2004])
For an interpretation A over a program Π, the FLP-reduct f ΠA of Π wrt. A is the
set {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules whose body is satisfied under A.

Definition (Answer Set)

An interpretation A is an answer set of program Π iff it is a subset-minimal model
of the FLP reduct f ΠA.

Example

Program Π: dom(a).dom(b).

p(a) ← dom(a),&g[p](a).

p(b) ← dom(b),&g[p](b).
where &g implements the following mapping:

∅ 7→ {b}; {a} 7→ {a}; {b} 7→ ∅; {a, b} 7→ {a, b}

A = {Tdom(a),Tdom(b),Tp(a),Fp(b)} is a model but no subset-minimal model of
f ΠA = {dom(a); dom(b); p(a)← dom(a),&g[p](a)}
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Answer Set Computation

Answer Set Computation
2-Step Algorithm

1 Compute a compatible set (=answer set candidate) [Eiter et al., 2012]

2 Check minimality

The Naive Minimality Check

1 Let A be a compatible set

2 Compute f ΠA

3 Check if there is a smaller model than A

Problem: Reduct has usually many models
Note: In practice, smaller models are rarely found

Complexity

Minimality check is Co-NP-complete, lifting the overall answer set existence
problem to ΠP

2
(in presence of disjunctions and/or nonmonotonic external atoms)
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Answer Set Computation

Using Unfounded Sets [Faber, 2005]

Definition (Unfounded Set)

A set of atoms X is an unfounded set of Π wrt. (partial) assignment A,
iff for all a ∈ X and all r ∈ Π with a ∈ H(r) at least one of the following holds:

1 A 6|= B(r)

2 A
.
∪ ¬.X 6|= B(r)

3 A |= h for some h ∈ H(r) \ X

(where A
.
∪ ¬.X = {Ta ∈ A | a 6∈ X} ∪ {Fa ∈ A} ∪ {Fa | a ∈ X})

Definition (Unfounded-free Assignments)

An assignment A is unfounded-free wrt. program Π,
iff there is no unfounded set X of Π wrt. A such that Ta ∈ A for some a ∈ X.

Theorem
A model A of a program Π is is an answer set iff it is unfounded-free.
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Answer Set Computation

Using Unfounded Sets

Encode the search for unfounded sets as SAT instance

Unfounded Set Search Problem
Nogood Set ΓA

Π = NA
Π ∪ OA

Π over atoms A(Π̂) ∪ {hr, lr | r ∈ Π} consisting of a
necessary part NA

Π and an optimization part OA
Π

NA
Π = {{Fa | Ta ∈ A}} ∪

(⋃
r∈Π RA

r

)
Rr,A = Hr,A ∪ Cr,A, where

Hr,A = {{Thr} ∪ {Fh | h ∈ H(r)}} ∪ {{Fhr,Th} | h ∈ H(r)}

Cr,A =


{{Thr} ∪
{Fa | a ∈ B+

o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪
{Th | h ∈ H(r),A |= h}} if A |= B(r),

{} otherwise

Intuition: Solutions of ΓA
Π correspond to potential unfounded sets of Π wrt. A
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Answer Set Computation

Using Unfounded Sets

Each unfounded set corresponds to a solution of ΓA
Π

Definition (Induced Assignment of an Unfounded Set)

Let U be an unfounded set of a program Π wrt. assignment A.
The assignment induced by U, denoted I(U,ΓA

Π), is
I(U,ΓA

Π) = I′(U,ΓA
Π) ∪ {Fa | a ∈ A(ΓA

Π),Ta 6∈ I′(U,ΓA
Π)}, where

I′(U,ΓA
Π) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π,H(r) ∩ U 6= ∅} ∪

{Te&g[~p](~c) | e&g[~p](~c) ∈ A(Π̂),A
.
∪ ¬.U |= &g[~p](~c)}.

Proposition

Let U be an unfounded set of a program Π wrt. assignment A such that
AT ∩ U 6= ∅. Then I(U,ΓA

Π) is a solution to ΓA
Π.
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Answer Set Computation

Using Unfounded Sets
Not each solution of ΓA

Π corresponds to an unfounded set, but ...

Proposition

Let S be a solution to ΓA
Π such that

(a) Te&g[~p](~c) ∈ S and A 6|= &g[~p](~c) implies A
.
∪ ¬.U |= &g[~p](~c); and

(b) Fe&g[~p](~c) ∈ S and A |= &g[~p](~c) implies A
.
∪ ¬.U 6|= &g[~p](~c)

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

Our Approach

1 Compute a solution S of ΓA
Π

2 Check if truth value of external atom replacement e&g[~p](~c) in S is equal to
truth value of &g[~p](~c) under A

.
∪ ¬.U

3 If yes: S represents an unfounded set

4 If no: continue with next solution of ΓA
Π
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Optimization and Learning
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Optimization and Learning

Optimization and Learning

Optimization

Generate additional nogoods OA
Π to prune search space

Restrict search to atoms which are true in A
Try to avoid changes of truth values of external atoms

Learning

Nogood exchange: Search for models↔ UFS search

Learn nogoods from detected unfounded sets
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Implementation and Evaluation
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Implementation and Evaluation

Implementation

Implementation

Prototype implementation: DLVHEX

Written in C++

External sources loaded via plugin interface

Technology

Basis: Gringo and CLASP

CLASP serves also as SAT solver for UFS search

Alternatively: self-made grounder and solver built from scatch

Redl C. (TU Vienna) HEX-Programs September 27, 2012 17 / 23



Implementation and Evaluation

Benchmark Results

n 5 6 7 8 9 10 11 12 13 . . . 20

al
lA

S

explicit 10.9 94.3 — — — — — — — — —
+EBL 4.3 34.8 266.1 — — — — — — — —

UFS 0.2 0.3 0.8 1.8 4.5 11.9 32.4 92.1 273.9 — —
+EBL 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.8 1.2 . . . 11.1

fir
st

A
S explicit 0.7 4.3 26.1 163.1 — — — — — — —

+EBL 0.8 4.9 31.1 192.0 — — — — — — —
UFS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 . . . 0.5

+EBL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 . . . 0.3

Figure: Set Partitioning

#a
rg

s all answer sets first answer set
Explicit UFS Explicit UFS

5 1.47 1.13 0.70 0.62
6 4.57 2.90 1.52 1.27
7 19.99 10.50 3.64 2.77
8 80.63 39.01 9.46 6.94
9 142.95 80.66 30.12 20.97
10 240.46 122.81 107.14 63.50

Figure: Argumentation (plain)
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Implementation and Evaluation

Benchmark Results

#c
on

te
xt

s (no answer sets)
explicit check UFS check
plain +EBL plain +EBL +UFL

3 8.61 4.68 7.31 2.44 0.50
4 86.55 48.53 80.31 25.98 1.89
5 188.05 142.61 188.10 94.45 4.62
6 209.34 155.81 207.14 152.32 14.39
7 263.98 227.99 264.00 218.94 49.42
8 293.64 209.41 286.38 189.86 124.23
9 — 281.98 — 260.01 190.56

10 — 274.76 — 247.67 219.83

Figure: Consistent MCSs

#c
on

te
xt

s enumerating all answer sets finding first answer set
explicit check UFS check explicit check UFS check
plain +EBL plain +EBL +UFL plain +EBL plain +EBL +UFL

3 9.08 6.11 6.29 2.77 0.85 4.01 2.53 3.41 1.31 0.57
4 89.71 36.28 80.81 12.63 5.27 53.59 16.99 49.56 6.09 1.07
5 270.10 234.98 268.90 174.23 18.87 208.62 93.29 224.01 32.85 3.90
6 236.02 203.13 235.55 179.24 65.49 201.84 200.06 201.24 166.04 28.34
7 276.94 241.27 267.82 231.08 208.47 241.09 78.72 240.72 66.56 16.41
8 286.61 153.41 282.96 116.89 69.69 201.10 108.29 210.61 103.11 30.98
9 — 208.92 — 191.46 175.26 240.75 112.08 229.14 76.56 44.73

10 — — — 289.87 289.95 — 125.18 — 75.24 27.05

Figure: Inconsistent MCSs
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Implementation and Evaluation

Benchmark Results
Interesting Observations

Search space for UFS check potentially smaller than for explicit check
Even if they have the same size the UFS check is mostly faster:

Less overhead (SAT vs. ASP instance)
Easier for the solver to jump from one candidate to the next one

candidate smaller models

of the reduct 
candidate unfounded sets 
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Conclusion

Conclusion
Evaluating HEX-Programs

Compute a compatible set, then check if it is unfounded-free

Encoded as nogood set consisting of a necessary and optimization part

Unfounded sets allow for learning nogoods

Implementation and Evaluation

Prototype implementation based on Gringo and CLASP

Experiments show significant improvements by UFS-based minimality check

Further speedup by optimization part and learning

Future Work

Unfounded set check over partial interpretations

Decision criterion for necessity of UFS-check

Further restriction of search space to the relevant part
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