
HEX-Programs with Existential Quantification?

Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,fink,tkren,redl}@kr.tuwien.ac.at

Abstract. HEX-programs extend ASP by external sources. In this paper, we
present domain-specific existential quantifiers on top of HEX-programs, i.e., ASP
programs with external access which may introduce new values that also show
up in the answer sets. Pure logical existential quantification corresponds to a
specific instance of our approach. Programs with existential quantifiers may have
infinite groundings in general, but for specific reasoning tasks a finite subset of the
grounding can suffice. We introduce a generalized grounding algorithm for such
problems, which exploits domain-specific termination criteria in order to generate
a finite grounding for bounded model generation. As an application we consider
query answering over existential rules. In contrast to other approaches, several
extensions can be naturally integrated into our approach. We further show how
terms with function symbols can be handled by HEX-programs, which in fact can
be seen as a specific form of existential quantification.

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which due
to expressive and efficient systems like SMODELS, DLV and CLASP, has been gaining
popularity for many applications [3]. Current trends in computing, such as context
awareness or distributed systems, raised the need for access to external sources in a
program, which, e.g., on the Web ranges from light-weight data access (e.g., XML, RDF,
or data bases) to knowledge-intensive formalisms (e.g., description logics).

To cater for this need, HEX-programs [7] extend ASP with so-called external atoms,
through which the user can couple any external data source with a logic program.
Roughly, such atoms pass information from the program, given by predicate extensions,
into an external source which returns output values of an (abstract) function that it
computes. This convenient extension has been exploited for many different applications,
including querying data and ontologies on the Web, multi-context reasoning, or e-
government, to mention a few; however, it can also be used to realize built-in functions.
The extension is highly expressive as also recursive data access is possible.

A particular feature of external atoms is value invention, i.e., that they introduce new
values that do not occur in the program. Such values may also occur in an answer set of
a HEX-program, e.g., if we have a rule like

lookup(X,Y)← p(X),&do hash[X](Y)

? This research has been supported by the Austrian Science Fund (FWF) project P20840, P20841,
P24090, and by the Vienna Science and Technology Fund (WWTF) project ICT08-020.

where intuitively, the external atom &do hash[X](Y) generates a hash key Y for the
input X and records it in the fact lookup(X,Y). Here, the variable Y can be seen
under existential quantification, i.e., as ∃Y , where the quantifier is externally evaluated,
by taking domain-specific information into account; in the example above, this would
be a procedure to calculate the hashkey. Such domain-specific quantification occurs
frequently in applications, be it e.g. for built-in functions (just think of arithmetic), the
successor of a current situation in situation calculus, retrieving the social security number
of a person etc. To handle such quantifiers in ordinary ASP is cumbersome; they amount
to interpreted functions and require proper encoding and/or special solvers.

HEX-programs however provide a uniform approach to represent such domain-
specific existentials. The external treatment allows to deal elegantly with datatypes (e.g.,
the social security number, or an IBAN of bank account, or strings and numbers like
reals), to respect parameters, and to realize partial or domain-restricted quantification
of the form ∃Y.φ(X) ⊃ p(X,Y) where φ(X) is a formula that specifies the domain of
elements X for which an existential value needs to exist; clearly, also range-restricted
quantification ∃Y.ψ(Y) ⊃ p(X,Y) that limits the value of Y to elements that satisfy ψ
can be conveniently realized.

In general, such value invention on an infinite domain (e.g.,for strings) leads to
infinite models, which cannot be finitely generated. Under suitable restrictions on a
program Π , this can be excluded, in particular if a finite portion of the grounding of Π
is equivalent to its full, infinite grounding. This is exploited by various notions of safety
of HEX-programs that generalize safety of logic programs.

In particular, liberal domain-expansion safety (de-safety) [6] is a recent notion based
on term-bounding functions, which makes it modular and flexible; various well-known
notions of safety are subsumed by it. For example, consider the program

Π = { s(a); t(Y)← s(X),&concat [X, a](Y); s(X)← t(X), d(X) }, (1)
where &concat [X, a](Y) is true iff Y is the string concatenation of X and a. Program
Π is safe (in the usual sense) but &concat [X, a](Y) could hold for infinitely many Y ,
if one disregards the semantics of concat ; however, if this is done by a term bounding
function in abstract form, then the program is found to be liberally de-safe and thus a
finite part of Π’s grounding is sufficient to evaluate it.

Building on a grounding algorithm for liberally de-safe programs [5], we can effec-
tively evaluate HEX-programs with domain-specific existentials that fall in this class.
Moreover, we in fact generalize this algorithm with domain specific termination, such
that for non-safe programs, a finitely bounded grounding is generated. Roughly speaking,
such a bounded grounding amounts to domain-restricted quantification ∃Y.φ(X) ⊃
p(X,Y) where the domain condition φ(X) is dynamically evaluated during the ground-
ing, and information about the grounding process may be also considered. Thus, domain-
specific termination leads to a partial (bounded) grounding of the program, Π ′, yielding
bounded models of the program Π; the idea is that the grounding is faithful in the sense
that every answer set of Π ′ can be extended to a (possibly infinite) answer set of Π ,
and considering bounded models is sufficient for an application. This may be fruitfully
exploited for applications like query answering over existential rules, reasoning about
actions, or to evaluate classes of logic programs with function symbols like FDNC
programs [8]. Furthermore, even if bounded models are not faithful (i.e., may not be

extendable to models of the full grounding), they might be convenient e.g. to provide
strings, arithmetic, recursive data structures like lists, trees etc, or action sequences of
bounded length resp. depth. The point is that the bound does not have to be “coded” in
the program (like maxint in DLV to bound the integer range), but can be provided via
termination criteria in the grounding, which gives greater flexibility. Considering domain
specific termination criteria and even non de-safe programs is beyond the previous
work [6, 5]. The resulting algorithm properly generalizes the previous work [5] and
applies to a wider range of applications.
Organization. After necessary preliminaries we proceed as follows.
• We introduce domain-specific existential quantification in HEX-programs and con-

sider its realization (Section 3). To this end, we introduce a generalized grounding
algorithm with hooks for termination criteria, which enables bounded grounding. No-
tably, its output for de-safe programs (using trivial criteria) is equivalent to the original
program, i.e., it has the same answer sets.
We illustrate some advantages of our approach, which cannot easily be integrated into
direct implementations of existential quantifiers.
• As an example, we consider the realization of null values (which are customary in

databases) as a domain-specific existential quantifier, leading to HEX∃-programs (Sec-
tion 4); they include existential rules of form ∀X∀Z∃Y.ψ(Z,Y)← φ(X,Y,Z) (also
known as tuple-generating dependencies), where ψ(Z,Y) is an atom1 and φ(X,Y,Z)
is a conjunction of atoms. Our framework can be thus exploited for bounded grounding,
and in combination with a HEX-solver for bounded model generation of such programs.
• As an immediate application, we consider query answering over existential rules

(Section 5), which reduces for prominent settings to query answering over a universal
model. Under de-safety, a finite such model can be generated using our framework; this
allows to cover a range of acyclic existential rules, including the very general notion of
model-faithful acyclicity [14]. For non-de safe programs, a bounded universal model
may be generated under suitable conditions; we illustrate this for Shy-programs - a class
of programs with existential rules for which query answering is decidable, cf. [17]. 2

• Furthermore, we show how terms with function symbols can be processed using an
encoding as a HEX-program (Section 6). To this end, we use dedicated external atoms
to construct and decompose functional terms; bounded grounding enables us here to
elegantly restrict the term depth, which is useful for applications such as reasoning with
actions in situation calculus under bounded horizon, or reasoning from FDNC programs.

We conclude with a discussion and an outlook on future work in Section 7. Our
prototype system is available at http://www.kr.tuwien.ac.at/research/systems/dlvhex. For
proofs of our formal results, while available, we refer to an extended version due to
space reasons.

2 Preliminaries

HEX-Program Syntax. HEX-programs generalize (disjunctive) logic programs under
the answer set semantics [13] with external source access; for details and background

1 In general, ψ(Z,Y) might be a conjunction of atoms but this may be normalized.
2 For space reasons we refer to [17] for the definition of Shy-programs.

see [7]. They are built over mutually disjoint sets P , X , C, and V of ordinary predicates,
external predicates, constants, and variables, respectively. Every p ∈ P has an arity
ar(p) ≥ 0, and every external predicate &g ∈ X has an input arity ar i(&g) ≥ 0 of
input parameters and an output arity aro(&g) ≥ 0 of output arguments.

An external atom is of the form &g [X](Y), where &g ∈ X , X = X1, . . . , X`

(` = ari(&g)) are input parameters with Xi ∈ P ∪ C ∪ V for all 1 ≤ i ≤ `, and
Y = Y1, . . . , Ym (m = aro(&g)) are output terms with Yi ∈ C ∪ V for all 1 ≤ i ≤ m;
we use lower case x = x1, . . . , x` resp. y = y1, . . . , ym if X resp. Y is variable-free.
We assume the input parameters of &g are typed by type(&g , i) ∈ {const, pred} for
1 ≤ i ≤ ar i(&g), and that Xi ∈ P if type(&g , i) = pred and Xi ∈ C ∪ V otherwise.

A HEX-program consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (2)

where each ai is an (ordinary) atom p(X1, . . . , X`) with Xi ∈ C ∪ V for all 1 ≤ i ≤ `,
each bj is either an ordinary atom or an external atom, and k + n > 0.

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For
a program Π (rule r), let A(Π) (A(r)) be the set of all ordinary atoms and EA(Π)
(EA(r)) be the set of all external atoms occurring in Π (in r).

HEX-Program Semantics. Following [11], a (signed) ground literal is a positive or
a negative formula Ta resp. Fa, where a is a ground ordinary atom. For a ground
literal σ=Ta or σ=Fa, let σ denote its opposite, i.e., Ta=Fa and Fa=Ta. An
assignment A is a consistent set of literals Ta or Fa, where Ta expresses that a is true
and Fa that a is false. We also identify a complete assignment A with its true atoms,
i.e., T(A) = {a | Ta ∈ A}. The semantics of a ground external atom &g [x](y) wrt.
a complete assignment A is given by a 1+k+l-ary Boolean-valued oracle function,
f&g(A,x,y). Parameter xi with type(&g , i) = pred is monotonic (antimonotonic), if
f&g(A,x,y) ≤ f&g(A

′,x,y) (f&g(A
′,x,y) ≤ f&g(A,x,y)) whenever A′ increases

A only by literals Ta, where a has predicate xi; otherwise, xi is called nonmonotonic.
Non-ground programs are handled by grounding as usual. The set of constants

appearing in a program Π is denoted CΠ . The grounding grndC(r) of a rule r wrt.
C ⊆ C is the set of all rules {σ(r) | σ : V 7→ C}, where σ is a grounding substitution,
and σ(r) results if each variableX in r is replaced by σ(X). The grounding of a program
Π wrt. C is defined as grndC(Π) =

⋃
r∈Π grndC(r).

Satisfaction of rules and programs [13] is extended to HEX-rules r and programsΠ in
the obvious way. The FLP-reduct is defined as fgrndC(Π)A = {r ∈ grndC(Π) | A |=
B(r)}. An answer set of a programΠ is a model of fgrndC(Π)A that is subset-minimal
in its positive part [9]. We denote by AS(Π) the set of all answer sets of Π .

Take as an example the programΠ = {str(N)← str(L),&head [L](N); str(N)←
str(L),&tail [L](N)}, where &head [L](N) (&tail [L](N)) is true iff string N is string
L without the last (first) character. For str(x), Π computes all substrings of string x.

Safety. In general, C has constants that do not occur in Π and can even be infinite (e.g.,
the set of all strings). Safety criteria guarantee that a finite portion Π ′ ⊆ grndC(Π)
(also called finite grounding of Π; usually by restricting to a finite C ⊆ C) has the same
answer sets as Π . Ordinary safety requires that every variable in a rule r occurs either

in an ordinary atom in B+(r), or in the output list Y of an external atom &g [X](Y) in
B+(r) where all variables in X are safe. However, this notion is not sufficient.

Example 1. Let Π = {s(a); t(Y)← s(X),&concat [X, a](Y); s(X)← t(X), d(X)},
where &concat [X, a](Y) is true iff Y is the string concatenation of X and a. Then Π is
safe but &concat [X, a](Y) can introduce infinitely many values.

The general notion of (liberal) domain-expansion safety (de-safety) subsumes a
range of other well-known notions and can be easily extended in a modular fashion [6].
It is based on term bounding functions (TBFs), which intuitively declare terms in rules
as bounded, if there are only finitely many substitutions for this term in a canonical
grounding CG(Π) of Π .3 The latter is infinite in general but finite for de-safe programs.

More specifically we consider attributes and ranges. For an ordinary predicate p∈P ,
let p�i be the i-th attribute of p for all 1 ≤ i ≤ ar(p). For an external predicate &g ∈ X
with input list X in rule r, let &g [X]r�T i with T ∈ {I, O} be the i-th input resp. output
attribute of &g [X] in r for all 1 ≤ i ≤ arT (&g). For a ground program Π , an attribute
range is, intuitively, the set of ground terms which occur in the position of the attribute.
Formally, for an attribute p�i we have range(p�i,Π) = {ti | p(t1, . . . , tar(p)) ∈
A(Π)}; for &g [X]r�T i it is range(&g [X]r�T i,Π) = {xTi | &g [xI](xO) ∈ EA(Π)},
where xs = xs1, . . . , x

s
ars(&g). Now term bounding functions are introduced as follows:

Definition 1 (Term Bounding Function (TBF)). A TBF b(Π, r, S,B) maps a program
Π , a rule r ∈ Π , a set S of already safe attributes, and a setB of already bounded terms
in r to an enlarged set b(Π, r, S,B) ⊇ B of bounded terms, s.t. every t ∈ b(Π, r, S,B)
has finitely many substitutions in CG(Π) if (i) the attributes S have a finite range in
CG(Π) and (ii) each term in terms(r) ∩B has finitely many substitutions in CG(Π).

Liberal domain-expansion safety of programs is then parameterized with a term
bounding function, such that concrete syntactic and/or semantic properties can be
plugged in; concrete term bounding functions are described in [6]. The concept is defined
in terms of domain-expansion safe attributes S∞(Π), which are stepwise identified as
Sn(Π) in mutual recursion with bounded terms Bn(r,Π, b) of rules r in Π .

Definition 2 ((Liberal) Domain-expansion Safety). Given a TBF b, the set of bounded
terms Bn(r,Π, b) in step n ≥ 1 in a rule r ∈ Π is Bn(r,Π, b) =

⋃
j≥0Bn,j(r,Π, b)

where Bn,0(r,Π, b) = ∅ and for j ≥ 0, Bn,j+1(r,Π, b) = b(Π, r, Sn−1(Π), Bn,j).
The set of domain-expansion safe attributes S∞(Π) =

⋃
i≥0 Si(Π) of a program

Π is iteratively constructed with S0(Π) = ∅ and for n ≥ 0:
– p�i∈Sn+1(Π) if for each r∈Π and atom p(t1, . . . , tar(p)) ∈ H(r), it holds that
ti ∈ Bn+1(r,Π, b), i.e., ti is bounded;

– &g [X]r�Ii∈Sn+1(Π) if each Xi is a bounded variable, or Xi is a predicate input
parameter p and p�1, . . . , p�ar(p) ∈ Sn(Π);

– &g [X]r�Oi∈Sn+1(Π) if and only if r contains an external atom &g [X](Y) such
that Yi is bounded, or &g [X]r�I1, . . . ,&g [X]r�Iar I(&g) ∈ Sn(Π).

A program Π is (liberally) de-safe, if it is safe and all its attributes are de-safe.

3 CG(Π) is the least fixed point G∞
Π (∅) of a monotone operator GΠ(Π ′) =

⋃
r∈Π{rθ | rθ ∈

grndC(r), ∃A ⊆ A(Π ′),A 6|= ⊥,A |= B+(rθ)} on programs Π ′ [6].

Example 2. The program Π from Example 1 is liberally de-safe using the TBF bsynsem

from [6] (see Appendix A) as the generation of infinitely many values is prevented by
d(X) in the last rule.

Every de-safe HEX-program has a finite grounding that preserves all answer sets [6].

3 HEX-Programs with Existential Quantification

In this section, we consider HEX-programs with domain-specific existential quantifiers.
This term refers to the introduction of new values in rule bodies which are propagated to
the head such that they may appear in the answer sets of a program. Logical existential
quantification is a special case of our approach (used in Section 4 to illustrate a specific
instance), where just the existence but not the structure of values is of interest. Instead,
in our work also the structure of introduced values may be relevant and can be controlled
by external atoms.

Instantiating, i.e., applying, our approach builds on an extension of the grounding
algorithm for HEX-programs in [5] by additional hooks. They support the insertion
of application-specific termination criteria, and thus can be exploited for computing a
finite subset of the grounding in case of non-de-safe HEX-programs. The latter may be
sufficient to consider a certain reasoning task, e.g., for bounded model building. For
instance, we discuss queries over (positive) programs with (logical) existential quantifiers
in Section 5, which can be answered by computing a finite part of a canonical model.
HEX-Program Grounding. For introducing our bounded grounding algorithm BGround-
HEX, we make use of so-called input auxiliary rules. We say that an external atom
&g [Y](X) joins an atom b, if some variable from Y occurs in b, where in case b is an
external atom the occurrence is in the output list of b.

Definition 3 (Input Auxiliary Rule). Let Π be a HEX-program. Then for each external
atom &g [Y](X) occurring in rule r ∈ Π , a rule r&g[Y](X)

inp is composed as follows:

– The head is H(r
&g[Y](X)
inp) = {ginp(Y)}, where ginp is a fresh predicate; and

– The bodyB(r
&g[Y](X)
inp) contains all b ∈ B+(r)\{&g [Y](X)}which join &g [Y](X).

Intuitively, input auxiliary rules are used to derive all ground input tuples y, under
which the external atom needs to be evaluated.

Our grounding approach is based on a grounder for ordinary ASP programs. Com-
pared to the naive grounding grndC(Π), we allow the ASP grounder GroundASP to
eliminate rules if their body is always false, and ordinary body literals from the ground-
ing that are always true, as long as this does not change the answer sets. More formally,
a rule r′ is an o-strengthening (ordinary-strengthening) of a rule r, if H(r′) = H(r),
B(r′) ⊆ B(r) and B(r) \B(r′) contains only ordinary literals, i.e., no external atom
replacements.

Definition 4. An algorithm GroundASP that takes as input a program Π and outputs a
ground program Π ′ is a faithful ASP grounder for a safe program Π , if:

– AS(Π ′) = AS(grndCΠ (Π));
– Π ′ consists of o-strengthenings of rules in grndCΠ (Π);

– if r ∈ grndCΠ (Π) has no o-strengthening inΠ ′, then every answer set of grndCΠ (Π)
falsifies some ordinary literal in B(r); and

– if r ∈ grndCΠ (Π) has some o-strengthening r′ ∈ Π ′, then every answer set of
grndCΠ (Π) satisfies B(r) \B(r′).

Intuitively, the bounded grounding algorithm BGroundHEX can be explained as
follows. Program Π is the non-ground input program. Program Πp is the non-ground
ordinary ASP prototype program, which is an iteratively updated variant of Π enriched
with additional rules. In each step, the preliminary ground program Πpg is produced by
grounding Πp using a standard ASP grounding algorithm. Program Πpg is intended to
converge against a fixpoint, i.e., a final ground HEX-program Πg. For this purpose, the
loop at (b) and the abortion check at (f) introduce two hooks (Repeat and Evaluate)
which allow for realizing application-specific termination criteria. They need to be
substituted by concrete program fragments depending on the reasoning task; for now we
assume that the loop at (f) runs exactly once and the check at (f) is always true (which is
sound and complete for model computation of de-safe programs, cf. Proposition 1).

The algorithm first introduces input auxiliary rules r&g[Y](X)
inp for every external

atom &g [Y](X) in a rule r in Π in Part (a). Then, all external atoms &g [Y](X) in
all rules r in Πp are replaced by ordinary replacement atoms er,&g[Y](X). This allows
the algorithm to use an ordinary ASP grounder GroundASP in the main loop at (b).
After the grounding step, it is checked whether the grounding contains all relevant
constants. For this, the algorithm checks, for all external atoms (d) and all relevant input
interpretations (e), potential output tuples at (f), if they contain any new value that was
not yet respected in the grounding. (Note that, Ym,Ya,Yn denote the sets of monotonic,
antimonotonic, and nonmonotonic predicate input parameters in Y, respectively.) It adds
the relevant constants in form of guessing rules at (g) to Πp (this may also be expressed
by unstratified negation). Then the main loop starts over again. Eventually, the algorithm
is intended to find a program respecting all relevant constants. Then at (h), auxiliary
input rules are removed and replacement atoms are translated to external atoms.

Let us illustrate the grounding algorithm with the following example.

Example 3. Let Π be the following program:
f : d(a). d(b). d(c). r1 : s(Y) ← d(X),&diff [d, n](Y), d(Y).

r2 : n(Y)← d(X),&diff [d, s](Y), d(Y).
r3 : c(Z) ← &count [s](Z).

Here, &diff [s1, s2](x) is true for all elements x, which are in the extension of s1 but
not in that of s2, and &count [s](i) is true for the integer i corresponding to the number
of elements in the extension of s. The program first partitions the domain (extension of
d) into two sets (extensions of s and n) and then computes the size of s. Program Πp

at the beginning of the first iteration is as follows, where e1(Y), e2(Y) and e3(Z) are
shorthands for er1,&diff [d,n](Y), er2,&diff [d,s](Y), and er3,&count[s](Z), respectively.

f : d(a). d(b). d(c). r1 : s(Y) ← d(X), e1(Y), d(Y).
r2 : n(Y)← d(X), e2(Y), d(Y).
r3 : c(Z) ← e3(Z).

Program Πpg contains no instances of r1, r2 and r3 because the optimizer rec-
ognizes that e1(Y), e2(Y) and e3(Z) occur in no rule head and no ground instance

Algorithm BGroundHEX
Input: A HEX-program Π
Output: A ground HEX-program Πg

(a) Πp = Π ∪ {r&g[Y](X)
inp | &g[Y](X) in r ∈ Π}

Replace all external atoms &g[Y](X) in all rules r in Πp by er,&g[Y](X)

i← 0
(b) while Repeat() do

i← i+ 1 // Remember already processed input tuples at iteration i
(c) Set NewInputTuples ← ∅ and PIT i ← ∅

repeat
Πpg ← GroundASP(Πp) // partial grounding

(d) for &g[Y](X) in a rule r ∈ Π do // evaluate all external atoms
(e) // do this under all relevant assignments

Ama = {Tp(c) | a(c) ∈ A(Πpg), p ∈ Ym} ∪ {Fp(c) | a(c) ∈ A(Πpg), p ∈ Ya}
for Anm ⊆ {Tp(c),Fp(c) | p(c) ∈ A(Πpg), p ∈ Yn} s.t. @a : Ta,Fa ∈ Anm do

A = (Ama ∪Anm ∪ {Ta | a←∈ Πpg}) \ {Fa | a←∈ Πpg}
(f) for y ∈ {c | r&g[Y](X)

inp (c) ∈ A(Πpg) s.t. Evaluate(r&g[Y](X)
inp (c)) = true do

(g) // add ground guessing rules and remember y-evaluation
Πp ← Πp ∪ {er,&g[y](x) ∨ ner,&g[y](x)← | f&g(A,y,x) = 1}
NewInputTuples ← NewInputTuples ∪ {r&g[Y](X)

inp (y)}

PIT i ← PIT i ∪ NewInputTuples

until Πpg did not change

(h) Remove input auxiliary rules and external atom guessing rules from Πpg

Replace all e&g[y](x) in Πpg by &g[y](x)
return Πpg

can be true in any answer set. Then the algorithm moves to the checking phase. It
evaluates the external atoms in r1 and r2 under A = {d(a), d(b), d(c)} (note that
&diff [s1, s2](x) is monotonic in s1 and antimonotonic in s2) and adds the rules {ei(Z)∨
nei(Z) ← | Z ∈ {a, b, c}, i ∈ {1, 2}} to Πp. Then it evaluates &count [s](Z) un-
der all A ⊆ {s(a), s(b), s(c)} because it is nonmonotonic in s, and adds the rules
{e3(Z) ∨ ne3(Z)← | Z ∈ {0, 1, 2, 3}}. It terminates after the second iteration. 2

The main difference to the algorithm from [5] is the addition of the two hooks at (c)
(Repeat) and at (f) (Evaluate), that need to be defined for a concrete instance of the
algorithm (which we do in the following). We assume that the hooks are substituted by
code fragments with access to all local variables. Moreover, the set PIT i contains the
input atoms for which the corresponding external atoms have been evaluated in iteration
i. Evaluate decides for a given input atom r

&g[Y](X)
inp (c) if the corresponding external

atom shall be evaluated under c. This allows for abortion of the grounding even if it
is incomplete, which can be exploited for reasoning tasks over programs with infinite
groundings where a finite subset of the grounding is sufficient. The second hook Repeat
allows for repeating the core algorithm multiple times such that Evaluate can distinguish
between input tuples processed in different iterations.

Naturally, soundness and completeness of the algorithm cannot be shown in general,
but depends on concrete instances for the hooks at (c) and (f) which in turn may vary
for different reasoning tasks. Instantiating the hooks does not follow a general pattern
but is strongly application dependent. However, we give some concrete examples in the
remaining part of the paper.

Domain-specific Existential Quantification in HEX-Programs. We can realize domain-
specific existential quantification naturally in HEX-programs by appropriate external
atoms that introduce new values to the program. The realization exploits value invention
as supported by HEX-programs, i.e., external atoms which return constants that do not
show up in the input program. Realizing existentials by external atoms also allows to
use constants different from Skolem terms, i.e., datatypes with a specific semantics. The
values introduced may depend on input parameters passed to the external atom.

Example 4. Consider the following rule:
iban(B, I)← country(B,C), bank(B ,N),&iban[C,B,N](I).

Suppose bank(b, n) models financial institutions b with their associated national number
n, and country(b, c) holds for an institution b and its home country c. Then one can use
&iban[C,B,N](I) to generate an IBAN (International Bank Account Number) I from
the country C, the bank name B and account number N .

Here, the structure of the introduced value is relevant, but an algorithm which
computes it can be hidden from the user. The introduction of new values may also be
subject to additional conditions which cannot easily be expressed in the program.

Example 5. Consider the following rule:
lifetime(M,L)← machine(M,C),&lifetime[M,C](L).

It expresses that each purchased machine m with cost c (machine(m, c)) higher than a
given limit has assigned an expected lifetime l (lifetime(m, l)) used for fiscal purposes,
whereas purchases below that limit are fully tax deductible in the year of acquirement.
Then testing for exceedance of the limit might involve real numbers and cannot easily be
done in the logic program. However, the external atom can easily be extended in such a
way that a value is only introduced if this side constraint holds.

Counting quantifiers may be realized in this way, i.e., expressing that there exist
exactly k or at least k elements, which is used e.g. in description logics.While a direct
implementation of existentials requires changes in the reasoner, a simulation using
external atoms is easily extendable.

4 HEX∃-Programs

We now realize the logical existential quantifier as a specific instance of our approach,
which can also be written in the usual syntax; a rewriting then simulates it by using
external atoms which return dedicated null values to represent a representative for the
unnamed values introduced by existential quantifiers. We start by introducing a language
for HEX-programs with logical existential quantifiers, called HEX∃-programs.

A HEX∃-program is a finite set of rules of form
∀X∃Y : p(X′,Y)← conj[X], (3)

where X and Y are disjoint sets of variables, X′ ⊆ X, p(X′,Y) is an atom, and
conj[X] is a conjunction of default literals or default external literals containing all and
only the variables X; without confusion, we also omit ∀X.

Intuitively speaking, whenever conj[X] holds for some vector of constants X,
then there should exist a vector Y of (unnamed) individuals such that p(X′,Y) holds.
Existential quantifiers are simulated by using new null values which represent the
introduced unnamed individuals. Formally, we assume that N ⊆ C is a set of dedicated
null values, denoted by ωi with i ∈ N, which do not appear in the program.

We transform HEX∃-programs to HEX-programs as follows. For a HEX∃-program Π ,
let T∃(Π) be the HEX-program with each rule r of form (3) replaced by

p(X′,Y)← conj[X],&exists |X
′|,|Y|[r,X′](Y),

where f&existsn,m(A, r,x,y) = 1 iff y = ω1, . . . , ωm is a vector of fresh and unique
null values for r,x, and f&existsn,m(A, r,x,y) = 0 otherwise.

Each existential quantifier is replaced by an external atom &exists |X
′|,|Y|[r,X′](Y)

of appropriate input and output arity which exploits value invention for simulating the
logical existential quantifier similar to the chase algorithm.

We call a HEX∃-program Π liberally de-safe iff T∃(Π) is liberally de-safe. Various
notions of cyclicity have been introduced, e.g., in [14]; here we use the one from [6].

Example 6. The following set of rules is a HEX∃-program Π:
employee(john). employee(joe).

r1 : ∃Y : office(X,Y)← employee(X). r2 : room(Y)← office(X,Y)

Then T∃(Π) is the following de-safe program:
employee(john). employee(joe).

r′1 : office(X,Y)← employee(X),&exists1 ,1 [r1, X](Y).
r2 : room(Y)← office(X,Y)

Intuitively, each employee X has some unnamed office Y of X , which is a room.
The unique answer set of T∃(Π) is {employee(john), employee(joe), office(john, ω1),
office(joe, ω2), room(ω1), room(ω2)}.

For grounding de-safe programs, we simply let Repeat test for i < 1 and Evaluate
return true . Explicit model computation is in general infeasible for non-de-safe programs.
However, the resulting algorithm GroundDESafeHEX always terminates for de-safe
programs. For non-de-safe programs, we can support bounded model generation by other
hook instantiations. This is exploited e.g. for query answering over cyclic programs
(described next). One can show that the algorithm computes all models of the program.

Proposition 1. For de-safe programs Π , AS(GroundDESafeHEX(Π)) ≡pos AS(Π),
where ≡pos denotes equivalence of the answer sets on positive atoms.

5 Query Answering over Positive HEX∃-Programs

The basic idea for query answering over programs with possibly infinite models is to
compute a ground program with a single answer set that can be used for answering the
query. Positive programs with existential variables are essentially grounded by simulating
the parsimonious chase procedure from [17], which uses null values for each existential
quantification. However, for termination of BGroundHEX we need to provide specific
instances of the hooks in the grounding algorithm.

We start by restricting the discussion to a fragment of HEX∃-programs, called
Datalog∃-programs [17]. A Datalog∃-program is a HEX∃-program where every rule
body conj[X] consists of positive ordinary atoms. Thus compared to HEX∃-programs,
default negation and external atoms are excluded.

As an example, the following set of rules is a Datalog∃-program:
person(john). person(joe).

r1 : ∃Y : father(X,Y)← person(X). r2 : person(Y)← father(X,Y).
(4)

Next, we recall homomorphisms as used for defining Datalog∃-semantics and query
answering over Datalog∃-programs. A homomorphism is a mapping h : N ∪V → C∪V .
For a homomorphism h, let h|S be its restriction to S ⊆ N ∪ V , i.e., h|S(X) = h(X)
if X ∈ S and is undefined otherwise. For any atom a, let h(a) be the atom where each
variable and null value V in a is replaced by h(V); this is likewise extended to h(S)
for sets S of atoms and/or vectors of terms. A homomorphism h is a substitution, if
h(N) = N for all N ∈ N . An atom a is homomorphic (substitutive) to atom b, if some
homomorphism (substitution) h exists such that h(a) = b. An isomorphism between
two atoms a and b is a bijective homomorphism h s.t. h(a) = b and h−1(b) = a.

A set M of atoms is a model of a Datalog∃-program Π , denoted M |= Π , if
h(B(r))⊆M for some substitution h and r∈Π of form (3) implies that h|X(H(r)) is
substitutive to some atom in M ; the set of all models of Π is denoted by mods(Π).

Next, we can introduce queries over Datalog∃-programs. A conjunctive query (CQ) q
is an expression of form ∃Y : ← conj[X∪Y], where Y and X (the free variables) are
disjoint sets of variables and conj[X∪Y] is a conjunction of ordinary atoms containing
all and only the variables X ∪Y.

The answer of a CQ q with free variables X wrt. a model M is defined as follows:
ans(q,M) = {h|X | h is a substitution and h(conj[X ∪Y]) ⊆M}.

Intuitively, this is the set of assignments to the free variables such that the query holds
wrt. the model. The answer of a CQ q wrt. a program Π is then defined as the set
ans(q,Π) =

⋂
M∈mods(Π) ans(q,M).

Query answering can be carried out over some universal model U of the program that
is embeddable into each of its models by applying a suitable homomorphism. Formally,
a model U of a program Π is called universal if, for each M ∈ mods(Π), there is a
homomorphism h s.t. h(U) ⊆M . Thus, a universal model may be obtained using null
values for unnamed individuals introduced by existential quantifiers. Moreover, it can be
used to answer any query according to the following proposition [10]:

Proposition 2 ([10]). Let U be a universal model of Datalog∃-program Π . Then, for
any CQ q, it holds that h ∈ ans(q,Π) iff h ∈ ans(q, U) and h : V → C \ N .

Intuitively, the set of all answers to q wrt. U which map all variables to non-null
constants is exactly the set of answers to q wrt. Π .

Example 7. Let Π be the program consisting of rules (4). The CQ ∃Y :← person(X),
father(X,Y) asks for all persons who have a father. The model U = {person(john),
person(joe), father(john, ω1), father(joe, ω2), person(ω1), person(ω2), . . .} is a uni-
versal model ofΠ . Hence, ans(q,Π) contains answers h1(X)= john and h2(X)= joe .

Thus, computing a universal model is a key issue for query answering. A common
approach for this step is the chase procedure. Intuitively, it starts from an empty inter-
pretation and iteratively adds the head atoms of all rules with satisfied bodies, where
existentially quantified variables are substituted by fresh nulls. However, in general this
procedure does not terminate. Thus, a restricted parsimonious chase procedure was
introduced in [17], which derives less atoms, and which is guaranteed to terminate for
the class of Shy-programs. The latter is a syntactic fragment of so-called parsimonious
programs that can be easily recognized but still significantly extends Datalog programs
and linear Datalog∃-programs. Moreover, the interpretation computed by the parsimo-
nious chase procedure is, although not a model of the program in general, still sound
and complete for query answering; and a bounded model in our view.

For query answering over Datalog∃-programs we reuse the translation in Section 4.

Example 8. Consider the Datalog∃-program Π and its HEX translation T∃(Π):
Π :

person(john). person(joe).
∃Y : father(X,Y)← person(X).

person(Y)← father(X,Y).

T∃(Π) :
person(john). person(joe).
father(X,Y)← person(X),

&exists1 ,1 [r1, X](Y).
person(Y)← father(X,Y).

Intuitively, each person X has some unnamed father Y of X which is also a person.

Note that T∃(Π) is not de-safe in general. However, with the hooks in Algo-
rithm BGroundHEX one can still guarantee termination. Let GroundDatalog∃(Π, k) =
BGroundHEX(T∃(Π)) where Repeat tests for i < k + 1 where k is the number of
existentially quantified variables in the query, and Evaluate(PIT i, x) = true iff atom x
is not homomorphic to any a ∈ PIT i. The produced program has a single answer set,
which essentially coincides with the result of pChase [17] that can be used for query
answering. The basic idea of pChase is to start with an empty assignment, and iteratively
“repair” it by adding the head atoms of the rules which have a satisfied body. Thus, query
answering over Shy-programs is reduced to grounding and solving of a HEX-program.

Proposition 3. For a Shy-program Π , GroundDatalog∃(Π, k) has a unique answer set
which is sound and complete for answering CQs with up to k existential variables.

The main difference to pChase in [17] is essentially due to the homomorphism
check. Actually, pChase instantiates existential variables in rules with satisfied body
to new null values only if the resulting head atom is not homomorphic to an already
derived atom. In contrast, our algorithm performs the homomorphism check for the input
to &existsn,m atoms. Thus, homomorphisms are detected when constants are cyclically
sent to the external atom. Consequently, our approach may need one iteration more than
pChase , but allows for a more elegant integration into our algorithm.

Example 9. For the program and query from Example 8, the algorithm computes a pro-
gram with answer set {person(john), person(joe), father(john, ω1), father(joe, ω2),
person(ω1), person(ω2)}. In contrast, pChase would stop already earlier with the in-
terpretation {person(john), person(joe), father(john, ω1), father(joe, ω2)} because
person(ω1), person(ω2) are homomorphic to person(john), person(joe).

More formally, one can show that GroundDatalog∃(Π, k) yields, for a Shy-program
Π , a program with a single answer set that is equivalent to pChase(Π, k + 1) in [17].
Lemma 4.9 in [17] implies that the resulting answer set can be used for answering
queries with k different existentially quantified variables, which proves Proposition 3.

While pChase intermingles grounding and computing a universal model, our algo-
rithm cleanly separates the two stages; modularized program evaluation by the solver
will however also effect such intermingling. We nevertheless expect the more clean
separation to be advantagagoues for extending Shy-programs to programs that involve
existential quantifiers and other external atoms, which we leave for future work.

6 HEX-Programs with Function Symbols

In this section we show how to process terms with function symbols by a rewriting to
de-safe HEX-programs. We will briefly discuss advantages of our approach compared to
a direct implementation of function symbols.

We consider HEX-programs, where the arguments Xi for 1 ≤ i ≤ ` of ordinary
atoms p(X1, . . . , X`), and the constant input arguments in X and the output Y of an
external atom &g [X](Y) are from a set of terms T , that is the least set T ⊇ V ∪ C such
that f ∈ C (constant symbols are also used as function symbols) and t1, . . . , tn ∈ T
imply f(t1, . . . , tn) ∈ T .

Following [4], we introduce for every k ≥ 0 two external predicates &compk and
&decompk with ar I(&compk) = 1+ k, ar O(&compk) = 1, ar I(&decompk) = 1, and
ar O(&decompk) = 1 + k. We define

f&compk(A, f,X1, . . . , Xk, T) = f&decompk(A, T, f,X1, . . . , Xk) = 1,

iff T = f(X1, . . . , Xk).
Composition and decomposition of function terms can be simulated using these

external predicates. Function terms are replaced by new variables and appropriate addi-
tional external atoms with predicate &compk or &decompk in rule bodies to compute
their values. More formally, we introduce the following rewriting.

For any HEX-program Π with function symbols, let Tf (Π) be the HEX-program
where each occurrence of a term t = f(t1, . . . , tn) in a rule r such that B(r) 6= ∅ is
recursively replaced by a new variable V , and if V occurs afterwards inH(r) or the input
list of an external atom in B(r), we add &compn [f, t1, . . . , tn](V) to B(r); otherwise
(i.e., V occurs afterwards in some ordinary body atom or the output list of an external
atom), we add &decompn [V](f, t1, . . . , tn) to B(r).

Intuitively, &compn is used to construct a nested term from a function symbol and
arguments, which might be nested terms themselves, and &decompn is used to extract
the function symbol and the arguments from a nested term. The translation can be
optimized wrt. evaluation efficiency, but we disregard this here for space reasons.

Example 10. Consider the HEX-program Π with function symbols and its translation:

Π : q(z). q(y).
p(f(f(X)))← q(X).

r(X)← p(X).
r(X)← r(f(X)).

Tf (Π) : q(z). q(y).
p(V) ← q(X),&comp1 [f,X](U),

&comp1 [f, U](V).
r(X) ← p(X).
r(X) ← r(V),&decomp1 [V](f,X).

Intuitively, Tf (Π) builds f(f(X)) for any X on which q holds using two atoms over
&comp1 , and it extracts terms X from derived r(f(X)) facts using a &decomp1 -atom.

Note that &decompn supports a well-ordering on term depth such that its output has
always a strictly smaller depth than its inputs. This is an important property for proving
finite groundability of a program by exploiting the TBFs introduced in [6].

Example 11. The program Π = {q(f(f(a))); q(X) ← q(f(X))} is translated to
Tf (Π) = {q(f(f(a))); q(X) ← q(V),&decomp1 [V](f,X)}. Since &decomp1 sup-
ports a well-ordering, the cycle is benign [6], i.e., it cannot introduce infinitely many
values because the nesting depth of terms is strictly decreasing with each iteration.

The realization of function symbols via external atoms (which can in fact also be
seen as domain-specific existential quantifiers) has the advantage that their processing
can be controlled. For instance, the introduction of new nested terms may be restricted by
additional conditions which can be integrated in the semantics of the external predicates
&compk and &decompk . A concrete example is data type checking, i.e., testing whether
the arguments of a function term are from a certain domain. In particular, values might
also be rejected, e.g., bounded generation up to a maximal term depth is possible.
Another example is to compute some of the term arguments automatically from others,
e.g., constructing the functional term num(7, vii) from 7, where the second argument is
the Roman representation of the first one.

Another advantage is that the use of external atoms for functional term processing
allows for exploiting de-safety of HEX-programs to guarantee finiteness of the grounding.
An expressive framework for handling domain-expansion safe programs [6] can be
reused without the need to enforce safety criteria specific for function terms.

7 Discussion and Conclusion

We presented model computation and query answering over HEX-programs with domain-
specific existential quantifiers, based on external atoms and a new grounding algorithm.
In contrast to usual handling of existential quantifiers, ours especially allows for an
easy integration of extensions such as additional constraints (even of non-logical nature)
or data types. This is useful e.g. for model building applications where particular data
is needed for existential values, and gives one the possibility to implement domain-
restricted quantifiers and introduce null values, as in databases. The new grounding
algorithm allows for controlled bounded grounding; this can be exploited for bounded
model generation, which might be sufficient (or convenient) for applications. Natural
candidates are configuration or, at an abstract level, generating finite models of general
first-order formulas as in [12], where an incremental computation of finite models
is provided by a translation into incremental ASP. There, grounding and solving is
interleaved by continously increasing the bound on the number of elements in the
domain. (Note that, although not designed for interleaved evaluation, our approach is
flexible enough to also mimic exactly this technique with suitable external atoms.) The
work in [1] aims at grounding first-order sentences with complex terms such as functions
and aggregates for model expansion tasks. Similar to ours, it is based on bottom-up

computation, but we do not restrict to finite structures and allow for potentially infinite
domains. As a show case, we considered purely logical existentials (null values), for
which our grounding algorithm amounts to a simulation of the one in [17] for Datalog∃-
programs. However, while [17] combine grounding and model building, our approach
clearly separates the two steps; this may ease possible extensions.

We then realized function symbol processing as in [4], by using external atoms to
manipulate nested terms. In contrast to other approaches, no extension of the reasoner is
needed for this. Furthermore, using external atoms has the advantage that nested terms
can be subject to (even non-logical) constraints given by the semantics of the external
atoms, and that finiteness of the grounding follows from de-safety of HEX-programs.

In model-building over HEX∃-programs, we can combine existentials with function
symbols, as HEX∃-programs can have external atoms in rule bodies. To allow this for
query answering over Datalog∃-programs remains to be considered. More generally, also
combining existentials with arbitrary external atoms and the use of default-negation in
presence of existentials is an interesting issue for future research. This leads to nonmono-
tonic existential rules, which most recently are considered in [18] and in [15], equipping
the Datalog±formalism, which is tailored to ontological knowledge representation and
tractable query answering, with well-founded negation. Another line for future research
is to allow disjunctive rules and existential quantification as in Datalog∃,∨ [2], leading
to a generalization of the class of Shy-programs. Continuing on the work on guardedness
conditions as in open answer set programming [16], Datalog∃, and Datalog± should
prove useful to find important techniques for constructing more expressive variants of
HEX-programs with domain-specific existential quantifiers. The separation of grounding
and solving in our approach should be an advantage for such enhancements.

References

1. Aavani, A., Wu, X.N., Ternovska, E., Mitchell, D.: Grounding formulas with complex terms.
In: Canadian AI. pp. 13–25. Springer (2011)

2. Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive datalog with existential quantifiers:
semantics, decidability, and complexity issues. TPLP 12(4-5), 701–718 (2012)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

4. Calimeri, F., Cozza, S., Ianni, G.: External Sources of Knowledge and Value Invention in
Logic Programming. Ann. Math. Artif. Intell. 50(3–4), 333–361 (2007)

5. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Grounding HEX-Programs with Expanding
Domains. In: Workshop on Grounding and Transformations for Theories with Variables
(GTTV’13), pp. 3–15. (2013)

6. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal safety for answer set programs with
external sources. In: AAAI’13, pp. 267–275. AAAI Press (2013)

7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: IJCAI, pp. 90–96. (2005)

8. Eiter, T., Simkus, M.: FDNC: Decidable nonmonotonic disjunctive logic programs with
function symbols. ACM Trans. Comput. Log. 11(2), 14:1–14:50 (2010)

9. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

10. Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data Exchange: Semantics and Query Answering.
Theor. Comput. Sci. 336(1), 89–124 (2005)

11. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187–188, 52–89 (2012)

12. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system
for finite model computation. AI Commun. 24(2), 195–212 (2011)

13. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generat. Comput. 9(3–4), 365–386 (1991)

14. Grau, B.C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.: Acyclicity
conditions and their application to query answering in description logics. In: KR’12, pp.
243–253. AAAI Press (2012)

15. Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-founded semantics for extended
datalog and ontological reasoning. In: PODS’13, pp. 225–236. ACM (2013)

16. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming with guarded
programs. ACM Trans. Comput. Logic 9(4), 26:1–26:53 (2008)

17. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable datalog∃ programs. In:
KR’12, pp. 13–23. AAAI Press (2012)

18. Magka, D., Krötzsch, M., Horrocks, I.: Computing Stable Models for Nonmonotonic Existen-
tial Rules. In: IJCAI’13, pp. 1031–1038. AAAI Press (2013)

A Appendix: Term Bounding Function bsynsem

The TBF bsynsem [6] builds on the positive attribute dependency graph GA(Π), whose
nodes are the attributes of Π and whose edges model the information flow between
them. E.g., if for rule r we have p(X)∈H(r) and q(Y)∈B+(r) such that Xi=Yj for
some Xi ∈X and Yj ∈Y, then we have a flow from q�j to p�i. A cycle K in GA(Π) is
benign wrt. a set of safe attributes S, if there exists a well-ordering ≤C of C, such that
for every &g [X]r�Oj 6∈ S in the cycle, f&g(A, x1, . . . , xm, t1, . . . tn) = 0 whenever

– some xi for 1≤ i≤m is a predicate parameter, &g [X]r�Ii 6∈S is in K, and we have
(s1, . . . , sar(xi))∈ ext(A, xi), and tj 6≤C sk for some 1 ≤ k ≤ ar(xi); or

– for some 1 ≤ i ≤ m, type(&g , i) = const, &g [X]r�Ii 6∈ S is in K, and tj 6≤C xi.
A cycle in GA(Π) is called malign wrt. S if it is not benign. Then bsynsem is as follows.

Definition 5 (Syntactic and Semantic Term Bounding Function). We define the TBF
bsynsem(Π, r, S,B) such that t ∈ bsynsem(Π, r, S,B) iff

(i) t is a constant in r; or
(ii) there is an ordinary atom q(s1, . . . , sar(q)) ∈ B+(r) such that t = sj , for some

1 ≤ j ≤ ar(q) and q�j ∈ S; or
(iii) for some external atom &g [X](Y) ∈ B+(r), we have that t = Yi for some Yi ∈ Y,

and for eachXi ∈ X,Xi ∈ B, if τ(&g , i) = const, andXi�1, . . . , Xi�ar(Xi) ∈
S if τ(&g , i) = pred; or

(iv) t is captured by some attribute α in B+(r) that is not reachable from malign cycles
in GA(Π) wrt. S, i.e., if α= p�i then t=ti for some p(t1, . . . , t`)∈B+(r), and if
α=&g [X]r�T i then t=XT

i for some &g [XI](XO) ∈B+(r) where the input and
output vectors are XT=XT

1 , . . . , X
T
ar (&g); or

(v) t=Yi for some &g [X](Y)∈B+(r), where {yi | x ∈ (P∪C)ar I(&g),y ∈ Car O(&g),
f&g(A,x,y)= 1} is finite for all assignments A.

(vi) t∈X for some &g [X](Y)∈B+(r), where U ∈B for every U ∈Y and {x |
x∈ (P∪C)ar I(&g), f&g(A,x,y) = 1} is finite for every A and y ∈ Car O(&g).

