
Grounding HEX-Programs with Expanding Domains?

Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,fink,tkren,redl}@kr.tuwien.ac.at

Abstract. Recently, liberally domain-expansion safe HEX-programs have been
presented as a generalization of strongly safe HEX-programs that enlarges the
scope of effective applicability. While such programs can be finitely grounded, a
concrete grounding algorithm that is practically useful remained open. In this paper,
we present such an algorithm and show how to integrate it into the model-building
framework for HEX-programs, which is extended for this purpose. While tradi-
tional HEX-evaluation relies on program decomposition for grounding, our new
algorithm can directly ground any liberally domain-expansion safe program with-
out decomposition. However, as splitting is still sometimes useful for performance
reasons, we develop a new decomposition heuristics that aims at maximizing
efficiency. An experimental evaluation confirms the practicability of our approach.

1 Introduction

HEX-programs [6] are declarative logic programs that enrich Answer Set Programming
(ASP) by so-called external atoms. They provide a means to couple any external compu-
tation or data source with a logic program: intuitively, information from the program,
given by predicate extensions, is passed to an external source which returns output
values of an (abstract) function that it computes. This extension has been motivated by
emerging needs such as accessing distributed information, context awareness, complex
or specific data structures, etc. Widening the application range of ASP with its systems
like SMODELS, DLV and CLASP, HEX programs and the DLVHEX solver have enabled
challenging applications such as querying data and ontologies on the Web, multi-context
reasoning, e-government, and more (cf. [3]). In that, external atoms proved to be a
valuable construct of high expressivity, which enables recursive data exchange between
the program and external sources and, via a modular software plugin architecture, is
convenient to realize customized data access, adding built-ins or to process specific
datatypes.

A characteristic feature of HEX-programs is that new values (not occurring in the
program) might arise by external source access. For example, an atom &concat [ab, c](Y)
that intuitively appends c to ab, returns in Y the string abc. However, admitting such a
behavior, so called value invention, poses severe challenges to grounding a respective
HEX-program prior to solving, as common in ASP systems. It is intuitively clear that in

? This research has been supported by the Austrian Science Fund (FWF) project P20840, P20841,
P24090, and by the Vienna Science and Technology Fund (WWTF) project ICT08-020.

general it is impossible to predetermine the “relevant” domain, like in the example above
when concat bears no meaning, and may be practically infeasible (even if it is finite).
Imposing strong safety [7] amounts to disallowing value invention, which prevents the
natural usage of even simple external atoms (like concat above). On the other hand, to
adopt standard safety conditions and to either perform a pre-evaluation of external atoms
(as, e.g., for lua [9]), or to request the user to provide domain predicates, is likewise an
unsatisfactory treatment of value invention.

To remedy the situation, strong safety has been recently relaxed [5] to yield liberally
domain-expansion safe HEX-programs, which are still finitely groundable and more
general than various other safety notions in the literature, e.g., VI-programs [1] and
ω-restricted programs [14]. However, two important issues remained unresolved. First,
to provide a concrete grounding algorithm for liberally domain-expansion safe HEX-
programs that can efficiently produce an (equivalent) finite ground program. Second, to
suitably integrate this algorithm into the existing HEX evaluation framework, in which a
program is decomposed (exploiting a generalized splitting theorem [3]) into evaluation
units that are grounded and solved separately; this needs to be respected by the grounder.

In this work we tackle these issues providing the following contributions:
• We introduce a grounding algorithm for the recently defined class of (liberally)

domain-expansion safe (de-safe) HEX-programs [5]. Roughly speaking, the algorithm is
based on (optimized) iterative grounding using a guess-and-check approach, which first
computes a partial grounding and then checks its sufficiency for answer set computation.
• We integrate the new grounding algorithm into the existing evaluation framework

for HEX-programs. To this end, we generalize the modular decomposition underlying the
model-building process to arbitrary liberally de-safe HEX programs as evaluation units.
• A new evaluation heuristics for the framework aims at dealing with the opposing

goals of, on the one hand, larger units to exploit learning during evaluation (cf. [4]),
and on the other hand, splitting units for more efficient grounding. It greedily merges
evaluation units unless efficient grounding requires a split, in preference of learning.
• We present an experimental evaluation of an implementation our algorithm on

synthetic and application-driven benchmarks, which witnesses significant improvements.
An extended version of the paper, which includes proofs, is available at http://www.kr.

tuwien.ac.at/staff/redl/grounding/groundingext.pdf.

2 Preliminaries

HEX-programs are built over mutually disjoint sets P of ordinary predicates, X of
external predicates, C of constants, and V of variables. In accordance with [10, 4], a
(signed) ground literal is a positive or a negative formula Ta resp. Fa, where a is a
ground atom of form p(c1, . . . , c`), with predicate p ∈ P and constants c1, . . . , c` ∈ C,
abbreviated p(c). For a ground literal σ=Ta or σ=Fa, let σ denote its opposite, i.e.,
Ta=Fa and Fa=Ta. An assignment A is a consistent set of literals Ta or Fa, where
Ta expresses that a is true and Fa that a is false. An interpretation is a complete
(maximal) assignment A, also identified by the set of true atoms TA= {a | Ta∈A}.
HEX-Program Syntax. HEX-programs are a generalization of (disjunctive) logic pro-
grams under the answer set semantics [11]; for details and background see [6].

An external atom is of the form &g [Y](X), where Y = Y1, . . . , Y` are input
parameters with Yi ∈ P ∪ C ∪ V for all 1 ≤ i ≤ `, and X = X1, . . . , Xm are output
terms withXi ∈ C∪V for all 1 ≤ i ≤ m. Moreover, we assume that the input parameters
of every external predicate &g ∈ X are typed such that type(&g , i) ∈ {const,pred}
for every 1 ≤ i ≤ `. We make also the restriction that Yi ∈ P if type(&g , i) = pred
and Xi ∈ C ∪V otherwise. For an ordinary predicate p ∈ P , let ar(p) denote the arity of
p and for an external predicate &g ∈ X , let iar(&g) denote the input arity and oar(&g)
the output arity of &g .

A HEX-program consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where each ai is an (ordinary) atom p(X1, . . . , X`) with Xi ∈ C ∪ V for all 1 ≤ i ≤ `,
each bj is either an ordinary atom or an external atom, and k + n > 0.

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For
a program Π (a rule r), let A(Π) (A(r)) be the set of all ordinary atoms and EA(Π)
(EA(r)) be the set of all external atoms occurring in Π (in r).

HEX-Program Semantics. The semantics of a ground external atom &g [p](c) wrt. an in-
terpretation, i.e., a complete assignment, A is given by the value of a 1+k+l-ary Boolean-
valued oracle function, denoted by f&g , that is defined for all possible values of A, p and
c. We make the restriction that for given A, p, set {x | f&g(A,p,x) = 1} is computable.
An input predicate p of an external predicate with input list &g [p] is monotonic (anti-
monotonic), iff f&g(A,p, c) = 1 implies f&g(A

′,p, c) = 1 (f&g(A,p, c) = 0 implies
f&g(A

′,p, c) = 0) for all A′ s.t. ext(p,A′) ⊇ ext(p,A) and ext(q,A′) = ext(q,A)
for q ∈ p and q 6= p. It is nonmonotonic iff it is neither monotonic nor antimonotonic.
We denote this by Ym, Ya, Yn the predicates from Y which are monotonic, antimono-
tonic and nonmonotonic, respectively. Satisfaction of ground ordinary rules and ASP
programs [11] is then extended to HEX-rules and programs in the obvious way.

Non-ground programs are handled by grounding as usual. The grounding grndC(r)
of a rule r wrt. C ⊆ C is the set of all rules {σ(r) | σ : V 7→ C}, where σ is a grounding
substitution mapping each variable to a constant, and σ(r) denotes the rule which results
if each variable X in r is replaced by σ(X). The grounding of a program Π wrt. C
(respectively C if not mentioned explicitly) is defined as grndC(Π) =

⋃
r∈Π grndC(r).

The set of constants appearing in a program Π is denoted CΠ .
An answer set of a program Π is a model A of the FLP-reduct [8] fgrndC(Π)A =

{r ∈ grndC(Π) | A |= B(r)} such that TA is subset-minimal, i.e., no A′ with
TA′ (TA is a model. We denote the set of all answer sets of a program Π byAS(Π),
and write Π ≡Π ′ if {TA | A∈AS(Π)}= {TA | A∈AS(Π ′)}.

Example 1. Consider program Π = {p ← &id [p]()}, where &id [p]() is true iff p
is true. Π has the unique answer set A1 = ∅, which is a subset-minimal model
of fgrndC(Π)A1 = ∅.

Safety. In general, the set C contains constants that do not occur in the program Π and
C can even be infinite (e.g., the set of all strings). Therefore, safety criteria are adopted
which guarantee the existence of a finite portion Π ′ ⊆ grndC(Π) (also called finite

grounding of Π; usually by restricting to a finite C ⊆ C) that has the same answer sets
as Π . A program is safe, if all rules r are safe, i.e., every variable in r is safe in the sense
that it occurs either in an ordinary atom in B+(r), or in the output list X of an external
atom &g [Y](X) in B+(r) where all variables in Y are safe. However, this notion is
not sufficient, as the following example shows.

Example 2. LetΠ = {s(a); t(Y)← s(X),&concat [X, a](Y); s(X)← t(X), d(X)},
where &concat [X, a](Y) is true iff Y is the string concatenation of X and a. Then Π is
safe but &concat [X, a](Y) can introduce infinitely many constants. 2

Therefore, strong safety was introduced in [7], which ensures that the output of cyclic
external atoms is limited. This notion was recently relaxed to (liberal) domain-expansion
safety (de-safety) [5], on which we focus here. It is based on term bounding functions,
which intuitively declare terms in rules as bounded, if there are only finitely many
substitutions for this term in a canonical grounding CG(Π) of Π .1 This grounding is
infinite in general and serves to define liberal de-safe HEX-programs; for such programs,
however, CG(Π) is finite. In this paper, we present an algorithm for efficient construction
of a concrete finite ground program that is equivalent to CG(Π) (and thus to Π).

Definition 1 (Term Bounding Function (TBF)). A TBF b(Π, r, S,B) maps a program
Π , a rule r ∈ Π , a set S of already safe attributes, and a setB of already bounded terms
in r to an enlarged set b(Π, r, S,B) ⊇ B of bounded terms, s.t. every t ∈ b(Π, r, S,B)
has finitely many substitutions in CG(Π) if (i) the attributes S have a finite range in
CG(Π) and (ii) each term in terms(r) ∩B has finitely many substitutions in CG(Π).

Liberal domain-expansion safety of programs is then parameterized with a term
bounding function, such that concrete syntactic and/or semantic properties can be
plugged in; concrete term bounding functions are described in [5]. The concept is
defined in terms of domain-expansion safe attributes S∞(Π), which are stepwise identi-
fied as Sn(Π) in mutual recursion with bounded terms Bn(r,Π, b) of rules r in Π .

Definition 2 ((Liberal) Domain-expansion Safety). Given a TBF b, the set of bounded
terms Bn(r,Π, b) in step n ≥ 1 in a rule r ∈ Π is Bn(r,Π, b) =

⋃
j≥0Bn,j(r,Π, b)

where Bn,0(r,Π, b) = ∅ and for j ≥ 0, Bn,j+1(r,Π, b) = b(Π, r, Sn−1(Π), Bn,j).
The set of domain-expansion safe attributes S∞(Π) =

⋃
n≥0 Sn(Π) of a program

Π is iteratively constructed with S0(Π) = ∅ and for n ≥ 0:

– p�i∈Sn+1(Π) if for each r∈Π and atom p(t1, . . . , tar(p)) ∈ H(r), it holds that
ti ∈ Bn+1(r,Π, b), i.e., ti is bounded;

– &g [Y]r�Ii∈Sn+1(Π) if each Yi is a bounded variable, or Yi is a predicate input
parameter p and p�1, . . . , p�ar(p) ∈ Sn(Π);

– &g [Y]r�Oi∈Sn+1(Π) if and only if r contains an external atom &g Y such
that Yi is bounded, or &g [Y]r�I1, . . . ,&g [Y]r�Iar I(&g) ∈ Sn(Π).

A program Π is (liberally) de-safe, if it is safe and all its attributes are de-safe.
1 CG(Π) is least fixed point G∞

Π (∅) of a monotone operator GΠ(Π ′) =
⋃
r∈Π{r

′ | r′ ∈
grndC(r), ∃A ⊆ A(Π ′),A 6|= ⊥,A |= B+(r′)} on programs Π ′ [5], where A(Π ′) denotes
the set of all atoms in Π ′.

Example 3. The program Π from Example 2 is liberally de-safe as infinitely many
constants are prevented by domain predicate d(X) in the last rule. 2

As shown in [5], every de-safe HEX-program has a finite grounding with the same
answer sets as the original program. This result holds for every TBF, because the
preconditions of a TBF force it to be sufficiently strong.

For further explanation and discussion of liberal de-safety, and for an analysis
showing that the concept subsumes a number of other notions of safety we refer to [5].

3 Grounding Liberally Domain-expansion Safe HEX-Programs

In this section we present a grounding algorithm for liberally domain-expansion safe
HEX-programs as introduced in [5]. It is based on the following idea. Iteratively ground
the input program and then check if the grounding contains all relevant ground rules. The
check works by evaluating external sources under relevant interpretations and testing
if they introduce any new values which were not respected in the grounding. If this is
the case, then the set of constants is expanded and the program is grounded again. If the
check does not identify additional constants which must be respected in the grounding,
then it is guaranteed that the unrespected constants from C are irrelevant in order to
ensure that the grounding has the same answer sets as the original program. For liberally
domain-expansion safe programs, this procedure will eventually reach a fixpoint, i.e., all
relevant constants are respected in the grounding.

We start with some basic concepts which are all demonstrated in Example 4. We
assume that rules are standardized apart (i.e., have no variables in common). Let R
be a set of external atoms and let r be a rule. By r|R we denote the rule obtained by
removing external atoms not in R, i.e., such that H(r|R) = H(r) and Bs(r|R) =
((Bs(r) ∩ A(r)) ∪ (Bs(r) ∩ R)) for s ∈ {+,−}. Similarly, Π|R =

⋃
r∈Π r|R, for a

program Π . Furthermore, let var(r) be the set of variables from V appearing in a rule r.

Definition 3 (Liberal Domain-expansion Safety Relevance). A setR of external atoms
is relevant for liberal de-safety of a program Π , if Π|R is liberally de-safe and var(r) =
var(r|R), for all r ∈ Π .

Intuitively, if an external atom is not relevant, then it cannot introduce new constants.
Note that for a program, the set of de-safe relevant external atoms is not necessarily
unique, leaving room for heuristics. In the following definitions we choose a specific set.

We further need the concepts of input auxiliary and external atom guessing rules.
We say that an external atom &g [Y](X) joins an atom b, if some variable from Y occurs
in b, where in case b is an external atom the occurrence is in the output list of b.

Definition 4 (Input Auxiliary Rule). Let Π be a HEX-program, and let &g [Y](X) be
some external atom with input list Y occurring in a rule r ∈ Π . Then, for each such
atom, a rule r&g[Y](X)

inp is composed as follows:

– The head is H(r
&g[Y](X)
inp) = {ginp(Y)}, where ginp is a fresh predicate; and

– The bodyB(r
&g[Y](X)
inp) contains each b ∈ B+(r)\{&g [Y](X)} such that &g [Y](X)

joins b, and b is de-safety-relevant if it is an external atom.

Intuitively, input auxiliary rules are used to derive all ground tuples y under which
the external atom needs to be evaluated. Next, we need external atom guessing rules.

Definition 5 (External Atom Guessing Rule). Let Π be a HEX-program, and let
&g [Y](X) be some external atom. Then a rule r&g[Y](X)

guess is composed as follows:

– The head is H(r
&g[Y](X)
guess) = {er,&g[Y](X),ner,&g[Y](X)}

– The body B(r
&g[Y](X)
guess) contains

(i) each b ∈ B+(r) \ {&g [Y](X)} such that &g [Y](X) joins b and b is de-safety-
relevant if it is an external atom; and

(ii) ginp(Y).

Intuitively, they guess the truth value of external atoms using a choice between the
external replacement atom er,&g[Y](X), and fresh atom ner,&g[Y](X).

Our approach is based on a grounder for ordinary ASP programs. Compared to
the naive grounding grndC(Π), which substitutes all constants for all variables in all
possible ways, we allow the ASP grounder GroundASP to optimize rules such that,
intuitively, rules may be eliminated if their body is always false, and ordinary body
literals may be removed from the grounding if they are always true, as long as this does
not change the answer sets.

Definition 6. We call rule r′ an o-strengthening of r, if H(r′) = H(r), B(r′) ⊆ B(r)
and B(r) \B(r′) contains only ordinary literals, i.e., no external atom replacements.

Definition 7. An algorithm GroundASP is a faithful ASP grounder for a safe ordinary
program Π , if it outputs an equivalent ground program Π ′ such that

– Π ′ consists of o-strengthenings of rules in grndCΠ (Π);
– if r ∈ grndCΠ (Π) has no o-strengthening inΠ ′, then every answer set of grndCΠ (Π)

falsifies some ordinary literal in B(r); and
– if r ∈ grndCΠ (Π) has some o-strengthening r′ ∈ Π ′, then every answer set of

grndCΠ (Π) satisfies B(r) \B(r′).

The formalization of the algorithm is shown in Algorithm GroundHEX. Our naming
convention is as follows. Program Π is the non-ground input program. Program Πp

is the non-ground ordinary ASP prototype program, which is an iteratively updated
extension of Π with additional rules. In each step, the preliminary ground program Πpg

is produced by grounding Πp using a standard ASP grounding algorithm. Program Πpg

converges against a fixpoint from which the final ground HEX-program Πg is extracted.
The algorithm first chooses a set of de-safety relevant external atoms, e.g., all

external atoms as a naive and conservative approach or following a greedy approach
as in our implementation, and then introduces input auxiliary rules r&g[Y](X)

inp for every
external atom &g [Y](X) in a rule r in Π in Part (a). For all non-relevant external atoms,
we introduce external atom guessing rules which ensure that the ground instances of
these external atoms are introduced in the grounding, even if we do not explicitly add
them. Then, all external atoms &g [Y](X) in all rules r in Πp are replaced by ordinary
replacement atoms er,&g[Y](X). This allows the algorithm to use a faithful ASP grounder
GroundASP in the main loop at (b). After the grounding step, the algorithm checks

Algorithm GroundHEX
Input: A liberally de-safe HEX-program Π
Output: A ground HEX-program Πg s.t. Πg ≡Π

(a) Choose a set R of de-safety-relevant external atoms in Π

Πp := Π ∪ {r&g[Y](X)
inp | &g[Y](X) in r ∈ Π} ∪ {r&g[Y](X)

guess | &g[Y](X) 6∈ R}
Replace all external atoms &g[Y](X) in all rules r in Πp by er,&g[Y](X)

(b) repeat
Πpg := GroundASP(Πp) /* partial grounding */
/* evaluate all de-safety-relevant external atoms */

(c) for &g[Y](X) ∈ R in a rule r ∈ Π do
Ama := {Tp(c) | a(c) ∈ A(Πpg), p ∈ Ym} ∪ {Fp(c) | a(c) ∈ A(Πpg), p ∈ Ya}
/* do this under all relevant assignments */

(d) for Anm ⊆ {Tp(c),Fp(c) | p(c) ∈ A(Πpg), p ∈ Yn} s.t. @a : Ta,Fa ∈ Anm do
A := (Ama ∪Anm ∪ {Ta | a←∈ Πpg}) \ {Fa | a←∈ Πpg}

(e) for y ∈ {c | r&g[Y](X)
inp (c) ∈ A(Πpg)} do

(f) Let O = {x | f&g(A,y,x) = 1}
/* add the respective ground guessing rules */
Πp := Πp ∪ {er,&g[y](x) ∨ ner,&g[y](x)←| x ∈ O}

until Πpg did not change
(g) Remove input auxiliary rules and external atom guessing rules from Πpg

Replace all e&g[y](x) in Π by &g[y](x)
return Πpg

if the grounding is large enough, i.e., if it contains all relevant constants. For this, it
traverses all relevant external atoms at (c) and all relevant input tuples at (d) and at (e).
Then, constants returned by external sources are added to Πp at (f); if the constants were
already respected, then this will have no effect. Thereafter the main loop starts over
again. The algorithm will find a program which respects all relevant constants. It then
removes auxiliary input rules and translates replacement atoms to external atoms at (g).

We illustrate our grounding algorithm with the following example.

Example 4. Let Π be the following program:
f1 : d(a). f2 : d(b). f3 : d(c). r1 : s(Y) ← &diff [d, n](Y), d(Y).

r2 : n(Y)← &diff [d, s](Y), d(Y).
r3 : c(Z) ← &count [s](Z).

Here, &diff [s1, s2](x) is true for all elements x, which are in the extension of s1 but
not in that of s2, and &count [s](i) is true for the integer i corresponding to the number
of elements in s. The program partitions the domain (extension of d) into two sets (ex-
tensions of s and n) and computes the size of s. The external atoms &diff [d, n](Y) and
&diff [d, s](Y) are not relevant for de-safety. Πp at the beginning of the first iteration is
as follows (neglecting input auxiliary rules, which are facts). Let e1(Y), e2(Y) and e3(Z)
be shorthands for er1,&diff [d,n](Y), er2,&diff [d,s](Y). and er3,&count[s](Z), respectively.

f1 : d(a). f2 : d(b). f3 : d(c). r1 : s(Y) ← e1(Y), d(Y).
g1 : e1(Y) ∨ ne1(Y)← d(Y). r2 : n(Y)← e2(Y), d(Y).
g2 : e2(Y) ∨ ne2(Y)← d(Y). r3 : c(Z) ← e3(Z).

The ground program Πpg contains no instances of r3 because the optimizer rec-
ognizes that er3,&count[s](Z) occurs in no rule head and no ground instance can be
true in any answer set. Then the algorithm comes to the checking phase. It does
not evaluate the external atoms in r1 and r2, because they are not relevant for de-

safety because of the domain predicate d(Y). But it evaluates &count [s](Z) under
all A ⊆ {s(a), s(b), s(c)} because the external atom is nonmonotonic in s. Then the
algorithm adds rules {e3(Z) ∨ ne3(Z) ← | Z ∈ {0, 1, 2, 3}} to Πp. After the second
iteration, the algorithm terminates. 2

One can show that this algorithm is sound and complete:

Proposition 1. If Π is a liberally de-safe HEX-program, then GroundHEX(Π)≡Π .

4 Integrating the Algorithm into the Model-building Framework

The answer sets of a HEX-program Π are determined using a modular decomposition
based on the concept of an evaluation graph E(V,E), whose nodes V are evaluation
units, i.e. subsets of Π , that are acyclically connected by edges E =→m ∪ →n that
are inherited from an underlying dependency graph G = 〈Π,→m ∪ →n〉, where→m

captures monotonic and→n nonmonotonic dependencies of the units resp. rules [3].
The evaluation proceeds then unit by unit along the structure of the evaluation graph

bottom up. For a unit u, each union of answer sets of predecessor units of u, called
an input model of u, is added as facts to the program at u. This extended program is
grounded and solved; the resulting set of output models of u is sent to the successor
units of u in the same way. The properties of evaluation graphs guarantee that the output
models of a dedicated final unit correspond to the answer sets of the whole program.

In order to ground the units before evaluation using a grounding algorithm for
ordinary ASP, each unit in the evaluation graph must be from the class of extended pre-
groundable HEX-programs, which is a proper subset of all strongly safe HEX programs. It
was shown in [13] that every strongly safe HEX-program possesses at least one evaluation
graph, i.e., the program can be decomposed into extended pre-groundable HEX-programs.

The motivation for the evaluation framework in [3] was mainly performance en-
hancement. However, as not every strongly safe program is extended pre-groundable,
program decomposition is in some cases indispensable for program evaluation. This is in
contrast to the grounding algorithm introduced in this paper, which can directly ground
any liberally de-safe, and thus strongly safe, program.

Example 5. Program Π from Example 4 cannot be grounded by the traditional HEX
algorithms as it is not extended pre-groundable. Instead, it needs to be partitioned into
two units u1 = {f1, f2, f3, r1, r2} and u2 = {r3} with u1 →n u2. Now u1 and u2 are
extended pre-groundable HEX-programs. Then the answer sets of u1 must be computed
before u2 can be grounded. Our algorithm can ground the whole program immediately.2

Therefore, in contrast to the previous algorithms one can keep the whole program as
a single unit, but also still apply decomposition with liberally de-safe programs as units.
To this end, we define a generalized evaluation graph like an evaluation graph in [3],
but with de-safe instead of extended pre-groundable programs as nodes. We can then
show that the algorithm BUILDANSWERSETS in [3] remains sound and complete for
generalized evaluation graphs, if the grounding algorithm from above is applied:

Proposition 2. For a generalized evaluation graph E = (V,E) of a de-safe HEX-
program Π , BUILDANSWERSETS with GroundHEX for grounding returns AS(Π).

Algorithm GreedyGEG
Input: A liberally de-safe HEX-program Π
Output: A generalized evaluation graph E = 〈V,E〉 for Π
Let V be the set of (subset-maximal) strongly connected components of G = 〈Π,→m ∪ →n〉
Update E
while V was modified do

for u1, u2 ∈ V such that u1 6= u2 do
(a) if there is no indirect path from u1 to u2 (via some u′ 6= u1, u2) or vice versa then
(b) if no de-relevant &g[y](x) in some u2 has a nonmonotonic predicate input from u1 then

V := (V \ {u1, u2}) ∪ {u1 ∪ u2}
Update E

return E = 〈V,E〉

While program decomposition led to performance increase for the solving algorithms
from [3], it is counterproductive for new learning-based algorithms [4] because learned
knowledge cannot be effectively reused. In guess-and-check ASP programs, existing
heuristics for evaluation graph generation frequently even split the guessing from the
checking part, which is derogatory to the learning. Thus, from this perspective is advanta-
geous to have few units. However, for the grounding algorithm a worst case is that a unit
contains an external atom that is relevant for de-safety and receives nonmonotonic input
from the same unit. In this case it needs to consider exponentially many assignments.

Example 6. Reconsider program Π from Example 4. Then the algorithm evaluates
&count [s](Z) under all A ⊆ {s(a), s(b), s(c)} because it is nonmonotonic and de-
safety-relevant. Now assume that the program contains the additional constraint

c1 : ← s(X), s(Y), s(Z), X 6= Y,X 6= Z, Y 6= Z ,

i.e., no more than two elements can be in set s. Then the algorithm would still check
all A ⊆ {s(a), s(b), s(c)}, but it is clear that the subset with three elements, which
introduces the constant 3, is irrelevant because this interpretation will never occur in an
answer set. If the program is split into units u1 = {f, r1, r2, c1} and u2 = {r3} with
u2 →n u1, then {s(a), s(b), s(c)} does not occur as an answer set of u1. Thus, u2 never
receives this interpretation as input and never is evaluated under this interpretation. 2

Algorithm GroundHEX evaluates the external sources under all interpretations such
that the set of observed constants is maximized. While monotonic and antimonotonic
input atoms are not problematic (the algorithm can simply set all to true resp. false), non-
monotonic parameters require an exponential number of evaluations. Thus, in such cases
program decomposition is still useful as it restricts grounding to those interpretations
which are actually relevant in some answer set. Program decomposition can be seen as a
hybrid between traditional and lazy grounding [12], as program parts are instantiated
which are larger than single rules but smaller than the whole program.

We thus introduce a heuristics in Algorithm GreedyGEG for generating a good
generalized evaluation graph, which iteratively merges units. Condition (a) maintains
acyclicity, while the condition at (b) deals with two opposing goals: (1) minimizing the
number of units, and (2) splitting the program whenever a de-relevant nonmonotonic
external atom would receive input from the same unit. It greedily gives preference to (1).

We illustrate the heuristics with an example.

Example 7. Reconsider program Π from Examples 4 and 6. Algorithm GreedyGEG
creates a generalized evaluation graph with the two units u1 = {f1, f2, f3, r1, r2, c1}
and u2 = {r3} with u2 →n u1, which is as desired. 2

It is not difficult to show that the heuristics yields a sound result.

Proposition 3. For a liberally de-safe program Π , Algorithm GreedyGEG returns a
suitable generalized evaluation graph of Π .

5 Implementation and Evaluation

For implementing our technique, we integrated GRINGO as grounder GroundASP and
CLASP into our prototype system DLVHEX2. We evaluated the implementation on a
Linux server with two 12-core AMD 6176 SE CPUs with 128GB RAM. For this we
use five benchmarks and present the total wall clock runtime (wt), the grounding time
(gt) and the solving time (st). We possibly have wt 6= gt + st because wt includes
also computations other than grounding and solving (e.g., passing models through the
evaluation graph). For determining de-safety relevant external atoms, our implementation
follows a greedy strategy and tries to identify as many external atoms as irrelevant as
possible. Detailed benchmark results are available at http://www.kr.tuwien.ac.at/staff/redl/
grounding/benchmarks.ods.

Reachability. We consider reachability, where the edge relation is provided as an
external atom &out [X](Y) delivering all nodes Y that are directly reached from a node
X . The traditional implementation imports all nodes into the program and then uses
domain predicates. An alternative is to query outgoing edges of nodes on-the-fly, which
needs no domain predicates. This benchmark is motivated by route planning applications,
where importing the full map might be infeasible due to the amount of data.

The results are shown in Table 1a. We use random graphs with a node count from
5 to 70 and an edge probability of 0.25. For each count, we average over 10 instances.
Here we can observe that the encoding without domain predicates is more efficient in all
cases because only a small part of the map is active in the logic program, which does not
only lead to a smaller grounding, but also to a smaller search space during solving.

Set Partitioning. In this benchmark we consider a program similar to Example 4,
which implements for each domain element x a choice from sel(x) and nsel(x) by an
external atom, i.e., a partitioning of the domain into two subsets.

The domain predicate domain is not necessary with de-safety because &diff does
not introduce new constants. The effect of removing it is presented in Table 1b. Since
&diff is monotonic in the first parameter and antimonotonic in the second, the measured
overhead is small in the grounding step. Although the ground programs of the strongly
safe and the liberally safe variants of the program are identical, the solving step is slower
in the latter case; we explain this with caching effects. Grounding liberally de-safe
programs needs more memory than grounding strongly safe programs, which might have
negative effects on the later solving step. However, the total slowdown is moderate.

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex

Table 1: Benchmark Results (in secs; “—” means timeout, set to 300 secs)
(a) Reachability

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

15 0.59 0.28 0.08 0.49 0.23 0.06
25 5.78 4.67 0.33 2.94 1.90 0.35
35 36.99 33.99 1.00 14.02 11.30 0.95
45 161.91 155.40 2.18 53.09 47.19 2.22
55 — — n/a 171.46 158.58 5.74
65 — — n/a — — n/a

(b) Set Partitioning

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

10 0.49 0.01 0.39 0.52 0.02 0.41
20 3.90 0.05 3.62 4.67 0.10 4.23
30 16.12 0.18 15.32 19.59 0.36 18.32
40 48.47 0.48 46.71 51.55 0.90 48.74
50 115.56 1.00 112.14 119.40 1.79 114.11
60 254.66 1.84 248.88 257.78 3.35 248.51

(c) Bird-penguin

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

5 0.06 <0.005 0.01 0.08 0.02 0.01
10 0.14 <0.005 0.08 1.32 1.12 0.10
11 0.27 <0.005 0.19 2.85 2.43 0.27
12 0.32 <0.005 0.23 6.05 5.53 0.26
13 0.69 0.01 0.60 12.70 11.76 0.61
14 0.66 <0.005 0.57 28.17 26.70 0.73
15 1.66 0.01 1.49 59.73 57.14 1.46
16 1.69 0.01 1.53 139.47 131.87 1.92
17 3.83 0.01 3.57 — — n/a
18 4.34 0.01 4.08 — — n/a
19 10.07 0.01 9.56 — — n/a
20 11.36 0.01 10.87 — — n/a
24 95.60 0.01 93.35 — — n/a
25 — 0.01 — — — n/a

(d) Merge Sort

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

5 0.22 0.04 0.10 0.10 0.01 0.04
6 1.11 0.33 0.54 0.10 0.01 0.04
7 9.84 4.02 4.42 0.11 0.01 0.05
8 115.69 61.97 42.30 0.12 0.01 0.05
9 — — n/a 0.14 0.01 0.07
10 — — n/a 0.15 0.08 0.01
15 — — n/a 0.23 0.14 0.01
20 — — n/a 0.47 0.35 0.02
25 — — n/a 1.90 1.58 0.06
30 — — n/a 4.11 3.50 0.12
35 — — n/a 20.98 18.45 0.51
40 — — n/a 61.94 54.62 1.46
45 — — n/a 144.22 133.99 2.26
50 — — n/a — — n/a

(e) Argumentation

monolithic greedy # monolithic greedy
wall clock ground solve wall clock ground solve wall clock ground solve wall clock ground solve

4 0.57 0.11 0.38 0.25 0.01 0.18 10 — — n/a 15.92 0.02 15.81
5 2.12 0.67 1.26 0.44 0.01 0.37 11 — — n/a 31.19 0.02 31.05
6 18.93 7.45 10.86 0.88 0.01 0.80 12 — — n/a 63.16 0.02 62.95
7 237.09 170.12 65.12 1.65 0.01 1.57 13 — — n/a 172.75 0.03 172.38
8 — — n/a 3.13 0.01 3.05 14 — — n/a 256.60 0.01 256.44
9 — — n/a 7.41 0.02 7.31 15 — — n/a 290.01 <0.005 290.00

Bird-Penguin. We consider now a scenario using the DL-plugin for DLVHEX, which
integrates description logics (DL) knowledge bases and nonmonotonic logic programs.
The DL-plugin allows to access an ontology. We consider the ontology on the right,
which encodes that penguins are birds and do not fly, and the logic program on the left
which implements the rule that birds fly unless the contrary is derivable.
DL-Program: Ontology:

birds(X)← DL[Bird](X). Flier v ¬NonFlier

flies(X)← birds(X),notneg flies(X). Penguin v Bird

neg flies(X)← birds(X),DL[Flier] flies;¬Flier](X). Penguin v NonFlier

Intuitively, DL[Flier] flies;¬Flier] requests all individuals in ¬Flier under the as-
sumption that Flier is extended by the elements in the extension of flies .

The third rule uses the domain predicate birds(X), which is necessary under strong
safety conditions, but with liberal de-safety, we might drop it because finiteness is
guaranteed by finiteness of the ontology. The results are shown in Table 1c. The DL-

atom in the third rule is nonmonotonic and appears in a cycle, which is the worst case
which cannot be avoided by the greedy heuristics. The results show a slowdown for
the encoding without domain predicates. It is mainly caused by the grounding, but also
solving becomes slightly slower without domain predicates due to caching effects.
Recursive Processing of Data Structures. This benchmark shows how data structures
can be recursively processed. As an example we implement the merge sort algorithm
using external atoms for splitting a list in half and merging two sorted lists, where lists
are encoded as constants consisting of elements and delimiters. However, this is only a
showcase and performance cannot be compared to native merge sort implementations.

In order to implement the application with strong safety, one must manually add a
domain predicate with the set of all instances of the data structures at hand as extension,
e.g., the set of all permutations of the input list. This number is factorial in the input size
and thus already unmanagable for very small instances. The problems are both due to
grounding and solving. Similar problems arise with other recursive data structures when
strong safety is required (e.g., trees, for the pushdown automaton from [5], where the
domain is the set of all strings up to a certain length). However, only a small part of the
domain will ever be relevant during computation, hence the new grounding algorithm
for liberally de-safe programs performs quite well, as shown in Table 1d.
Argumentation. This benchmark demonstrates the advantage of our new greedy heuris-
tics, which is compared to the evaluation without splitting (monolithic). We compute
ideal set extensions for randomized instances of abstract argumentation frameworks [2]
of different sizes. External atoms are used for checking candidate extensions. Addi-
tionally, we perform a processing of the arguments in each extension, e.g., by using an
external atom for generating LATEX code for the visualization of the framework and its
extensions. Without program decomposition, this is the worst case for our grounding
algorithm because the code generating atom is nonmonotonic and receives input from
the same component. But then our grounding algorithm calls it for exponentially many
extensions, although only few of them are actually extensions of the framework.

We use random instances with an argument count from 1 to 20, and an edge probabil-
ity from {0.30, 0.45, 0.60}; we use 10 instances for each combination. We can observe
that grounding the whole program in a single pass causes large programs wrt. grounding
time and size. Since the grounding is larger, also the solving step takes much more time
than with our new decomposition heuristics, which avoids the worst case, cf. Table 1e.
Summary. Our new grounding algorithm allows for grounding liberally de-safe pro-
grams. Instances that can be grounded by the traditional algorithm as well, usually
require domain predicates to be manually added (often cumbersome and infeasible
in practice, as for recursive data structures). Our algorithm does not only relieve the
user from writing domain predicates, but in many cases also has a significantly better
performance. Nonmonotonic external atoms might be problematic for our new algorithm.
However, the worst case can mostly be avoided by our new decomposition heuristics.

6 Conclusion

In this paper we presented a new grounding algorithm for the recent class of liberally
domain-expansion safe HEX-programs [5]. In contrast to previous grounding techniques

for HEX-programs, it can handle all such programs directly and does not rely on a
program decomposition. This is an advantage, as splitting has negative effects for
learning techniques introduced in [4]. However, in the worst case the new algorithm
requires exponentially many calls to external sources to determine the relevant constants
for grounding. We thus developed a novel heuristics for program evaluation that aims at
avoiding this worst case while retaining the positive features of the new algorithm, and
we have extended the current HEX evaluation framework for its use. An experimental
evaluation of our implementation on synthetic and real applications shows a clear benefit.

Future work includes refinements of our algorithm and the heuristics. In particular, we
plan to exploit meta-information about external sources to identify classes of programs
that allow for a better grounding, and in particular reduce worst case inputs for our
algorithm. Furthermore, ongoing work investigates logic programs with existentially
quantified variables in rule heads, which might be realized by a variant of our algorithm.

References

1. Calimeri, F., Cozza, S., Ianni, G.: External Sources of Knowledge and Value Invention in
Logic Programming. Ann. Math. Artif. Intell. 50(3–4), 333–361 (2007)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

3. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing efficient evaluation of
HEX programs by modular decomposition. In: LPNMR’11. pp. 93–106. Springer (2011)

4. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-driven ASP solving with external
sources. Theor. Pract. Log. Prog. 12(4-5), 659-679 (2012)

5. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal Safety Criteria for HEX-
Programs. In: AAAI’13. AAAI Press (2013), http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/
aaai2013-liberalsafety.pdf, to appear

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI’05. pp. 90–96.
Professional Book Center (2005)

7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic-Web Reasoning. In: ESWC’06. pp. 273–287. Springer
(2006)

8. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan
& Claypool Publishers (2012)

10. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187–188, 52–89 (2012)

11. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generat. Comput. 9(3–4), 365–386 (1991)

12. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Gasp: Answer set programming with lazy
grounding. Fund. Inform. 96(3), 297–322 (2009)

13. Schüller, P.: Inconsistency in Multi-Context Systems: Analysis and Efficient Evaluation.
Dissertation, Vienna University of Technology, Vienna, Austria (August 2012)

14. Syrjänen, T.: Omega-restricted logic programs. In: LPNMR’01. pp. 267–279 (2001)

