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Abstract

Answer Set Programming (ASP) is a well-known problem solving approach based on nonmonotonic
logic programs and efficient solvers. To enable access to external information, HEX-programs extend
programs with external atoms, which allow for a bidirectional communication between the logic
program and external sources of computation (e.g., description logic reasoners and Web resources).
Current solvers evaluate HEX-programs by a translation to ASP itself, in which values of external
atoms are guessed and verified after the ordinary answer set computation. This elegant approach does
not scale with the number of external accesses in general, in particular in presence of nondeterminism
(which is instrumental for ASP). In this paper, we present a novel, native algorithm for evaluating
HEX-programs which uses learning techniques. In particular, we extend conflict-driven ASP solving
techniques, which prevent the solver from running into the same conflict again, from ordinary to
HEX-programs. We show how to gain additional knowledge from external source evaluations and
how to use it in a conflict-driven algorithm. We first target the uninformed case, i.e., when we have
no extra information on external sources, and then extend our approach to the case where additional
meta-information is available. Experiments show that learning from external sources can significantly
decrease both the runtime and the number of considered candidate compatible sets.

KEYWORDS: Answer Set Programming, Nonmonotonic Reasoning, Conflict-Driven Clause Learning

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach (Niemelä 1999;
Marek and Truszczyński 1999; Lifschitz 2002), in which solutions to a problem correspond
to answer sets (Gelfond and Lifschitz 1991) of a logic program, which are computed using
an ASP solver. While this approach has turned out, thanks to expressive and efficient systems
like SMODELS (Simons et al. 2002), DLV (Leone et al. 2006), ASSAT (Lin and Zhao 2004),
cmodels (Giunchiglia et al. 2006), and CLASP (Gebser et al. 2012; Gebser et al. 2011), to
be fruitful for a range of applications, cf. (Brewka et al. 2011), current trends in distributed
systems and the World Wide Web, for instance, revealed the need for access to external
sources in a program, ranging from light-weight data access (e.g., XML, RDF, or data bases)
to knowledge-intensive formalisms (e.g., description logics).

To cater for this need, HEX-programs (Eiter et al. 2005) extend ASP with so called
external atoms, through which the user can couple any external data source with a logic
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program. Roughly, such atoms pass information from the program, given by predicates
and constants, to an external source which returns output values of an (abstract) function
that it computes. This extension is convenient and has been exploited for applications in
different areas, cf. (Eiter et al. 2011), and it is also very expressive since recursive data
exchange between the logic program and external sources is possible. Advanced reasoning
applications like default reasoning over description logic ontologies (Eiter et al. 2008;
Dao-Tran et al. 2009) or reasoning over Nonmonotonic Multi-Context Systems (Brewka
and Eiter 2007; Eiter et al. 2010) take advantage of it.

Current algorithms for evaluating HEX-programs use a translation approach and rewrite
them to ordinary ASP programs. The idea is to guess the truth values of external atoms
(i.e., whether a particular fact is in the “output” of the external source access) in a modified
program; after computing answer sets, a compatibility test checks whether the guesses
coincide with the actual source behavior. While elegant, this approach is a bottleneck in
advanced applications including those mentioned above. It does not scale, as blind guessing
leads to an explosion of candidate answer sets, many of which might fail the compatibility
test. Furthermore, a blackbox view of external sources disables any pruning of the search
space in the ASP translation, and even if properties would be known, it is sheer impossible
to make use of them in ordinary ASP evaluation on-the-fly using standard solvers.

To overcome this bottleneck, a new evaluation method is needed. In this paper, we thus
present a novel algorithm for evaluating HEX-programs, described in Section 3, which
avoids the simple ASP translation approach. It has three key features.
• First, it natively builds model candidates from first principles and accesses external
sources already during the model search, which allows to prune candidates early.
• Second, it considers external sources no longer as black boxes, but exploits meta-
knowledge about their internals.
• And third, it takes up modern SAT and ASP solving techniques based on clause learn-
ing (Biere et al. 2009), which led to very efficient conflict-driven algorithms for answer-set
computation (Gebser et al. 2012; Drescher et al. 2008), and extends them to external sources,
which is a major contribution of this work. To this end, we introduce external behavior
learning (EBL), which generates conflict clauses (nogoods) after external source evaluation
(Section 3). We do this in Section 4, first in the uninformed case (Section 4.1), where no
meta-information about the external source is available, except that a certain input generates
a certain output. We then exploit meta-information1 about external sources (properties such
as monotonicity and functionality) to learn even more effective nogoods which restrict the
search space further (Section 4.2).

We have implemented the new algorithm and incorporated it into the DLVHEX prototype
system.2 It is designed in an extensible fashion, such that the provider of external sources
can specify refined learning functions which exploit specific knowledge about the source.
Our theoretical work is confirmed by experiments that we conducted with our prototype on
synthetic benchmarks and programs motivated by real-world applications (Section 5). In
several cases, significant performance improvements compared to the previous algorithm
are obtained, which shows the suitability and potential of the new approach.

1 Not to be confused with semantically annotated data, which is not considered here.
2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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2 Preliminaries

In this section, we introduce syntax and semantics of HEX-programs and, following (Drescher
et al. 2008), conflict-driven SAT and answer set solving. We start with basic definitions.

A (signed) literal is a positive or a negated ground atom Ta or Fa, where ground atom a

is of form p(c1, . . . , c`), with predicate p and function-symbol free ground terms c1, . . . , c`,
abbreviated as p(c). For a literal σ = Ta or σ = Fa, let σ denote its negation, i.e. Ta = Fa

and Fa = Ta. An assignment A over a (finite) set of atoms A is a consistent set of signed
literals Ta or Fa, where Ta expresses that a ∈ A is true and Fa that it is false.

We write AT to refer to the set of elements AT = {a | Ta ∈ A} and AF to refer
to AF = {a | Fa ∈ A}. The extension of a predicate symbol q wrt. an assignment A
is defined as ext(q,A) = {c | Tq(c) ∈ A}. Let further A|q be the set of all signed
literals over atoms of form q(c) in A. For a list q = q1, . . . , qk of predicates, we let
A|q = A|q1 ∪ · · · ∪A|qk .

A nogood {L1, . . . , Ln} is a set of (signed) literals Li, 1 ≤ i ≤ n. An assignment A is a
solution to a nogood δ resp. a set of nogoods ∆, iff δ 6⊆ A resp. δ 6⊆ A for all δ ∈ ∆.

2.1 HEX-Programs

We briefly recall HEX-programs, which have been introduced in Eiter et al. (2005) as a gener-
alization of (disjunctive) extended logic programs under the answer set semantics (Gelfond
and Lifschitz 1991); for more details and background, we refer to Eiter et al. (2005).

Syntax. HEX-programs extend ordinary ASP programs by external atoms, which enable a
bidirectional interaction between a program and external sources of computation. External
atoms have a list of input parameters (constants or predicate names) and a list of output
parameters. Informally, to evaluate an external atom, the reasoner passes the constants and
extensions of the predicates in the input tuple to the external source associated with the
external atom, which is plugged into the reasoner. The external source computes an output
tuple, which is matched with the output list. More formally, a ground external atom is of
the form &g [p](c), where p = p1, . . . , pk are constant input parameters (predicate names
or object constants), and c = c1, . . . , cl are constant output terms.

Ground HEX-programs are then defined similar to ground ordinary ASP programs.

Definition 1 (Ground HEX-programs) A ground HEX-program consists of rules of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn ,

where each ai for 1 ≤ i ≤ k is a ground atom p(c1, . . . , c`) with constants cj , 1 ≤ j ≤ `,
and each bi for 1 ≤ i ≤ n is either a classical ground atom or a ground external atom.3

The head of a rule r is H(r) = {a1, . . . , ak} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal; B+(r) =

{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body.
In Sections 4 and 5 we will also make use of non-ground programs. However, we restrict

our theoretical investigation to ground programs as suitable safety conditions allow for
application of grounding procedure (Eiter et al. 2006).

3 For simplicity, we do not formally introduce strong negation but see classical literals of form ¬a as new atoms
together with a constraint which disallows that a and ¬a are simultaneously true.
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Semantics and Evaluation. The semantics of a ground external atom &g [p](c) wrt. an
assignment A is given by the value of a 1+k+l-ary Boolean oracle function f&g that is
defined for all possible values of A, p and c. Thus, &g [p](c) is true relative to A if and only
if it holds that f&g(A,p, c) = 1. Satisfaction of ordinary rules and ASP programs (Gelfond
and Lifschitz 1991) is then extended to HEX-rules and programs in the obvious way, and
the notion of extension ext(·,A) for external predicates &g with input lists p is naturally
defined by ext(&g [p],A) = {c | f&g(A,p, c) = 1}.

The answer sets of a HEX-program Π are determined by the DLVHEX solver using a
transformation to ordinary ASP programs as follows. Each external atom &g [p](c) in Π

is replaced by an ordinary ground replacement atom e&g[p](c) and a rule e&g[p](c) ∨
ne&g[p](c)← is added to the program. The answer sets of the resulting guessing program Π̂

are determined by an ordinary ASP solver and projected to non-replacement atoms. However,
the resulting assignments are not necessarily models of Π, as the value of &g [p] under f&g

can be different from the one of e&g[p](c). Each answer set of Π̂ is thus a candidate
compatible set (or model candidate) which must be checked against the external sources. If
no discrepancy is found, the model candidate is a compatible set of Π. More precisely,

Definition 2 (Compatible Set) A compatible set of a program Π is an assignment A
(i) which is an answer set (Gelfond and Lifschitz 1991) of the guessing program Π̂, and

(ii) f&g(A,p, c) = 1 iff Te&g[p](c) ∈ A for all external atoms &g [p](c) in Π, i.e. the
guessed values coincide with the actual output under the input from A.

The compatible sets of Π computed by DLVHEX include (modulo A(Π)) all answer sets
of Π as defined in Eiter et al. (2005) using the FLP reduct (Faber et al. 2011), which we
refer to as FLP-answer sets; with an additional test on candidate answer sets A (which is
easily formulated as compatible set existence for a variant of Π), the FLP-answer sets can
be obtained. By default, DLVHEX computes compatible sets with smallest true part on the
original atoms; this leads to answer sets as follows.

Definition 3 (Answer Set) An (DLVHEX) answer set of Π is any set S ⊆ {Ta | a ∈
A(Π)} such that (i) S = {Ta | a ∈ A(Π)} ∩ A for some compatible set A of Π and
(ii) {Ta | a ∈ A(Π)} ∩A 6⊂ S for every compatible set A of Π.

The answer sets in Definition 3 include all FLP-answer sets, and in fact often coincide
with them (as in all examples we consider). Computing the (minimal) compatible sets is
thus a key problem for HEX-programs on which we focus here.

2.2 Conflict-driven Clause Learning and Nonchronological Backtracking

Recall that DPLL-style SAT solvers rely on an alternation of drawing deterministic con-
sequences and guessing the truth value of an atom towards a complete interpretation.
Deterministic consequences are drawn by the basic operation of unit propagation, i.e.,
whenever all but one signed literals of a nogood are satisfied, the last one must be false. The
solver stores an integer decision level dl , written @dl as postfix to the signed literal. An
atom which is set by unit propagation gets the highest decision level of all already assigned
atoms, whereas guessing increments the current decision level.

Most modern SAT solver are conflict-driven, i.e., they learn additional nogoods when
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current assignment violates a nogood. This prevents the solver from running into the same
conflict again. The learned nogood is determined by initially setting the conflict nogood to
the violated one. As long as it contains multiple literals from the same decision level, it is
resolved with the reason of one of these literals, i.e., the nogood which implied it.

Example 1 Consider the nogoods
{Ta,Tb}, {Ta,Tc}, {Fa,Tx,Ty}, {Fa,Tx,Fy}, {Fa,Fx,Ty}, {Fa,Fx,Fy}

and suppose the assignment is A = {Fa@1,Tb@2,Tc@3,Tx@4}. Then the third nogood
is unit and implies Fy@4, which violates the fourth nogood {Fa,Tx,Fy}. As it contains
multiple literals (x and y) which were set at decision level 4, it is resolved with the reason for
setting y to false, which is the nogood {Fa,Tx,Ty}. This results in the nogood {Fa,Tx},
which contains the single literal x set at decision level 4, and thus is the learned nogood.

In standard clause notation, the nogood set corresponds to
(¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (a ∨ ¬x ∨ ¬y) ∧ (a ∨ ¬x ∨ y) ∧ (a ∨ x ∨ ¬y) ∧ (a ∨ x ∨ y)

and the violated clause is (a ∨ ¬x ∨ y). It is resolved with (a ∨ ¬x ∨ ¬y) and results in the
learned clause (a ∨ ¬x). 2

State-of-the-art SAT and ASP solvers backtrack then to the second-highest decision level
in the learned nogood. In Example 1, this is decision level 1. All assignments after decision
level 1 are undone (Tb@2, Tc@3, Tx@4). Only variable Fa@1 remains assigned. This
makes the new nogood {Fa,Tx} unit and derives Fx at decision level 1.

2.3 Conflict-driven ASP Solving

In this subsection we summarize conflict-driven (disjunctive) answer-set solving (Gebser
et al. 2012; Drescher et al. 2008). It corresponds to Algorithm HEX-CDNL without Part (c),
(cf. Section 3, where we also discuss Part (c)). Subsequently, we provide a summary of the
base algorithm; for details we refer to Gebser et al. (2012) and Drescher et al. (2008).

To employ conflict-driven techniques from SAT solving in ASP, programs are represented
as sets of nogoods. For a program Π, let A(Π) be the set of all atoms occurring in Π, and
let BA(Π) = {B(r) | r ∈ Π} be the set of all rule bodies of Π, viewed as fresh atoms.

We first define the set γ(C) = {{FC} ∪ {t` | ` ∈ C}} ∪ {{TC, f`} | ` ∈ C} of
nogoods to encode that a set C of default literals must be assigned T or F in terms of the
conjunction of its elements, where t not a = Fa, ta = Ta, f not a = Ta, and fa = Fa.
That is, the conjunction is true iff each literal is true. Clark’s completion ∆Π of a program Π

over atoms A(Π) ∪ BA(Π) is the set of nogoods

∆Π =
⋃

r∈Π
(γ(B(r)) ∪ {{TB(r)} ∪ {Fa | a ∈ H(r)}}) .

The body of a rule is true iff each literal is true, and if the body is true, a head literal must
also be true. Unless a program is tight (Fages 1994), Clark’s completion does not fully
capture the semantics of a program; unfounded sets may occur, i.e., sets of atoms which only
cyclically support each other, called a loop. Avoidance of unfounded sets requires additional
loop nogoods, but as there are exponentially many, they are only introduced on-the-fly.

Disjunctive programs require additional concepts. Neglecting details, it is common to use
additional nogoods Θsh(Π) derived from the shifted program sh(Π), which encode the loop
formulas of singleton loops; a comprehensive study is available in Drescher et al. (2008).
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With these concepts we are ready to describe the basic algorithm for answer set compu-
tation shown in HEX-CDNL. The algorithm keeps a set ∆Π ∪Θsh(Π) of “static” nogoods
(from Clark’s completion and from singular loops), and a set ∇ of “dynamic” nogoods
which are learned from conflicts and unfounded sets during execution. While constructing
the assignment A, the algorithm stores for each atom a ∈ A(Π) a decision level dl . The
decision level is initially 0 and incremented for each choice. Deterministic consequences of
a set of assigned values have the same decision level as the highest decision level in this set.

The main loop iteratively derives deterministic consequences using Propagation trying to
complete the assignment. This includes both unit propagation and unfounded set propagation.
Unit propagation derives d if δ \ {d} ⊆ A for some nogood δ, i.e. all but one literal of a
nogood are satisfied, therefore the last one needs to be falsified. Unfounded set propagation
detects atoms which only cyclically support each other and falsifies them.

Part (a) checks if there is a conflict, i.e. a violated nogood δ ⊆ A. If this is the case
we need to backtrack. For this purpose we use Analysis to compute a learned nogood ε
and a backtrack decision level k. The learned nogood is added to the set of dynamic
nogoods, and assignments above decision level k are undone. Otherwise, Part (b) checks
if the assignment is complete. In this case, a final unfounded set check is necessary due
to disjunctive heads. If the candidate is founded, it is an answer set. Otherwise we select
a violated loop nogood δ from the set λΠ̂(U) of all loop nogoods for an unfounded set U
(for the definition see Drescher et al. 2008), we do conflict analysis and backtrack. If no
more deterministic consequences can be derived and the assignment is still incomplete, we
need to guess in Part (d) and increment the decision level. The function Select implements
a variable selection heuristic. In the simplest case it chooses an arbitrary yet unassigned
variable, but state-of-the-art heuristics are more sophisticated. E.g., Goldberg and Novikov
(2007) prefer variables which are involved in recent conflicts.

3 Algorithms for Conflict-driven HEX-Program Solving

We present now our new, genuine algorithms for HEX-program evaluation. They are based
on Drescher et al. (2008), but integrate additional novel learning techniques to capture
the semantics of external atoms. The term learning refers to the process of adding further
nogoods to the nogood set as the search space is explored. They are classically derived from
conflict situations to avoid similar conflicts during further search, as described above.

We add a second type of learning which captures the behavior of external sources, called
external behavior learning (EBL). Whenever an external atom is evaluated, the algorithm
might learn from the call. If we have no further information about the internals of a source,
we may learn only very general input-output-relationships, if we have more information
we can learn more effective nogoods. In general, we can associate a learning-function with
each external source. For the sake of introducing the evaluation algorithms, however, in
this section we abstractly consider a set of nogoods learned from the evaluation of some
external predicate with input list &g [p], if evaluated under an assignment A, denoted
by Λ(&g [p],A). The next section will provide definitions of particular nogoods that can
be learned for various types of external sources, i.e., to instantiate Λ(·, ·). The crucial
requirement for learned nogoods is correctness, which intuitively holds if the nogood can
be added without eliminating compatible sets.
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Algorithm HEX-Eval
Input: A HEX-program Π
Output: All answer sets of Π

Π̂← Π with ext. atoms &g[p](c) replaced by e&g[p](c)

Add guessing rules for all replacement atoms to Π̂
∇ ← ∅ // set of dynamic nogoods
Γ← ∅ // set of all compatible sets

(a)while C 6= ⊥ do
C← ⊥
inconsistent ← false

(b)while C = ⊥ and inconsistent = false do
(c)A←HEX-CDNL(Π,Π̂,∇)

if A = ⊥ then inconsistent ← true
else

compatible ← true
(d)for all external atoms &g[p] in Π do

Evaluate &g[p] under A
(e)∇ ← ∇∪ Λ(&g[p],A)

Let A&g[p](c) = 1⇔ Te&g[p](c) ∈ A

if ∃c : f&g(A,p, c) 6= A&g[p](c) then
Add A to∇
compatible ← false

if compatible then C← A

if inconsistent = false then
// C is a compatible set of Π

∇ ← ∇∪ {C} and Γ← Γ ∪ {C}

return⊆-minimal {{Ta ∈ A | a ∈ A(Π)} | A ∈ Γ}

Algorithm HEX-CDNL
Input: A program Π, its guessing program Π̂, a set of correct

nogoods∇ofΠ
Output: An answer set of Π̂ (candidate for a compatible set

of Π) which is a solution to all nogoods d ∈ ∇, or⊥
if none exists

A← ∅ // over A(Π̂)∪BA(Π̂)∪BA(sh(Π̂))
dl ← 0 // decision level
while true do
(A,∇)← Propagation(Π̂,∇,A)

(a)if δ ⊆ A for some δ ∈ ∆Π̂ ∪Θsh(Π̂) ∪ ∇ then
if dl = 0 then return⊥
(ε, k)← Analysis(δ, Π̂,∇,A)
∇ ← ∇∪ {ε} and dl ← k
A← A \ {σ ∈ A | k < dl(σ)}

(b)else if AT∪AF=A(Π̂)∪BA(Π̂)∪BA(sh(Π̂)) then
U ← UnfoundedSet(Π̂,A)
if U 6= ∅ then

let δ ∈ λΠ̂(U) such that δ ⊆ A
if {σ ∈ δ | 0 < dl(σ)} = ∅ then return⊥
(ε, k)← Analysis(δ, Π̂,∇,A)
∇ ← ∇∪ {ε} and dl ← k
A← A \ {σ ∈ A | k < dl(σ)}

else return AT ∩ A(Π̂)

(c)else if Heuristic decides to evaluate &g[p] then
Evaluate &g[p] under A and set
∇ ← ∇∪ Λ(&g[p],A)

(d)else
σ ← Select(Π̂,∇,A) and dl ← dl + 1
A← A ◦ (σ)

Definition 4 (Correct Nogoods) A nogood δ is correct wrt. a program Π, if all compatible
sets of Π are solutions to δ.

In our subsequent exposition we assume that the program Π is clear from the context. The
overall approach consists of two parts. First, HEX-CDNL computes model candidates; it is
essentially an ordinary ASP solver, but includes calls to external sources in order to learn
additional nogoods. The external calls in this algorithm are not required for correctness
of the algorithm, but may influence performance dramatically as discussed in Section 5.
Second, Algorithm HEX-Eval uses Algorithm HEX-CDNL to produce model candidates and
checks each of them against the external sources (followed by a minimality check). Here,
the external calls are crucial for correctness of the algorithm.

For computing a model candidate, HEX-CDNL basically employs the conflict-driven
approach presented in Drescher et al. (2008) as summarized in Section 2, where the main
difference is the addition of Part (c). Our extension is driven by the following idea: whenever
(unit and unfounded set) propagation does not derive any further atoms and the assignment
is still incomplete, the algorithm possibly evaluates external atoms (driven by a heuristic)
instead of simply guessing truth values. This might lead to the addition of new nogoods,
which can in turn cause the propagation procedure to derive further atoms. Guessing of
truth values only becomes necessary if no deterministic conclusions can be drawn and the
evaluation of external atoms does not yield further nogoods; guessing also occurs if the
heuristic does not decide to evaluate.

For a more formal treatment, let E be the set of all external predicates with input list that
occur in Π, and let D be the set of all signed literals over atoms in A(Π) ∪A(Π̂) ∪ BA(Π̂).
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Then, a learning function for Π is a mapping Λ : E × 2D 7→ 22D . We extend our notion of
correct nogoods to correct learning functions Λ(·, ·), as follows:

Definition 5 A learning function Λ is correct for a program Π, iff all d ∈ Λ(&g [p],A) are
correct for Π, for all &g [p] in E and A ∈ 2D.

Restricting to learning functions that are correct for Π, the following results hold.

Proposition 1 If for input Π, Π̂ and∇, HEX-CDNL returns (i) an interpretation A, then A

is an answer set of Π̂ and a solution to ∇; (ii) ⊥, then Π has no compatible set that is a
solution to∇.

Proof (Sketch). (i) The proof mainly follows (Drescher et al. 2008). In our algorithm we
have potentially more nogoods, which can never produce further answer sets but only
eliminate them. Hence, each produced interpretation A is an answer set of Π̂. (ii) By
completeness of Drescher et al. (2008) we only need to justify that adding Λ(&g [p],A)

after evaluation of &g [p] does not eliminate compatible sets of Π. For this purpose we need
to show that when one of the added nogoods fires, the interpretation is incompatible with
the external sources anyway. But this follows from the correctness of Λ(·, ·) and (for derived
nogoods) from the completeness of Drescher et al. (2008). 2

The basic idea of HEX-Eval is to compute all compatible sets of Π by the loop at (a) and
checking subset-minimality afterwards. For computing compatible sets, the loop at (b) uses
HEX-CDNL to compute answer sets of Π̂ in (c), i.e., candidate compatible sets of Π, and
subsequently checks compatibility for each external atom in (d). Here the external calls are
crucial for correctness. However, different from the translation approach, the external source
evaluation serves not only for compatibility checking, but also for generating additional
dynamic nogoods Λ(&g [p],A) in Part (e). We have the following result.

Proposition 2 HEX-Eval computes all answer sets of Π.

Proof (Sketch). We first show that the loop at (b) yields after termination a compatible
set C of Π that is a solution of ∇ at the stage of entering the loop iff such a compatible set
does exist, and yields C = ⊥ iff no such compatible set exists.

Suppose that C 6= ⊥ after the loop. Then C was assigned A 6= ⊥, which was returned by
HEX-CDNL(Π, Π̂, ∇). From Proposition 1 (ii) it follows that C is an answer set of Π̂ and a
solution to∇. Thus (i) of Definition 2 holds. As compatible = true , the for loop guarantees
the compatibility with the external sources in (ii) of Definition 2: if some source output
on input from C is not compatible with the guess, C is rejected (and added as nogood).
Otherwise C coincides with the behavior of the external sources, i.e., it satisfies (ii) of
Definition 2. Thus, C is a compatible set of Π wrt. ∇ at call time. As only correct nogoods
are added to ∇, it is also a compatible set of Π wrt. the initial set∇.

Otherwise, after the loop C = ⊥. Then inconsistent = true , which means that the call
HEX-CDNL(Π, Π̂,∇) returned ⊥. By Proposition 1 (ii) there is no answer set of Π̂ which is
a solution to ∇. As only correct nogoods were added to ∇, there exists also no answer set
of Π̂ which is a solution to the original set∇. Thus the loop at (b) operates as desired.

The loop at (a) then enumerates one by one all compatible sets and terminates: the update
of ∇ with C prevents recomputing C, and thus the number of compatible sets decreases.
As by Definition 3 the answer sets of Π are the compatible sets with subset-minimal true
part of original literals, the overall algorithm correctly outputs all answer sets of Π. 2
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Example 2 Let &empty be an external atom with one (nonmonotonic) predicate input p,
such that its output is c0 if the extension of p is empty and c1 otherwise. Consider the
program Πe consisting of the rules

p(c0). dom(c0). dom(c1). dom(c2). p(X)← dom(X),&empty [p](X)

Algorithm HEX-Eval transforms Πe into the guessing program Π̂e:
p(c0). dom(c0). dom(c1). dom(c2). p(X)← dom(X), e&empty[p](X).

e&empty[p](X) ∨ ne&empty[p](X)← dom(X).

The traditional evaluation strategy without learning will then produce 23 model candi-
dates in HEX-CDNL, which are subsequently checked in HEX-Eval. For instance, the
guess

{
Tne&empty[p](c0),Te&empty[p](c1),Tne&empty[p](c2)

}
leads to the model can-

didate
{
Tne&empty[p](c0),Te&empty[p](c1),Tne&empty[p](c2),Tp(c1)

}
(neglecting false

atoms and facts). This is also the only model candiate which passes the compatibility
check: p(c0) is always true, and therefore e&empty[p](c1) must also be true due to definition
of the external atom. This allows for deriving p(c1) by the first rule of the program. All
other atoms are false due to minimality of answer sets. 2

The effects of the additionally learned nogoods will be discussed in Section 4 after having
formally specified concrete Λ(&g [p],A) for various types of external sources.

4 Nogoods for External Behavior Learning

We now discuss nogoods generated for external behavior learning (EBL) in detail. EBL is
triggered by external source evaluations instead of conflicts. The basic idea is to integrate
knowledge about the external source behavior into the program to guide the search. The
program evaluation then starts with an empty set of learned nogoods and the preprocessor
generates a guessing rule for each ground external atom, as discussed in Section 2. Further
nogoods are added during the evaluation as more information about external sources
becomes available. This is in contrast to traditional evaluation, where external atoms are
assigned arbitrary truth values which are checked only after the assignment was completed.

We will first show how to construct useful learned nogoods after evaluating external
atoms, if we have no further information about the internals of external sources, called
uninformed learning. In this case we can only learn simple input/output relationships.
Subsequently we consider informed learning, where additional information about properties
of external sources is available. This allows for using more elaborated learning strategies.

4.1 Uninformed Learning

We first assume that we do not have information about the internals and consider external
sources as black boxes. Hence, we can just apply very general rules for learning: whenever an
external predicate with input list &g [p] is evaluated under an assignment A, we learn that the
input A|p for p = p1, . . . , pn to the external atom &g produces the output ext(&g [p],A).
This can be formalized as the following set of nogoods.

Definition 6 The learning function for a general external predicate with input list &g [p] in
program Π under assignment A is defined as

Λg(&g [p],A) =
{
A|p ∪ {Fe&g[p](c)} | c ∈ ext(&g [p],A)

}
.
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Table 1: Learned Nogoods of Example 3

Guess Learned Nogood{
Te&empty[p](c0),Tne&empty[p](c1),
Tne&empty[p](c2)

}
{Tp(c0),Fp(c1),Fp(c2),Fe&empty[p](c1)}{

Te&empty[p](c0),Tne&empty[p](c1),
Te&empty[p](c2), p(c2)

}
{Tp(c0),Fp(c1),Tp(c2),Fe&empty[p](c1)}{

Te&empty[p](c0),Te&empty[p](c1),
Tne&empty[p](c2), p(c1)

}
{Tp(c0),Tp(c1),Fp(c2),Fe&empty[p](c1)}{

Te&empty[p](c0),Te&empty[p](c1),
Te&empty[p](c2), p(c1), p(c2)

}
{Tp(c0),Tp(c1),Tp(c2),Fe&empty[p](c1)}

In the simplest case, an external atom has no input and the learned nogoods are unary,
i.e., of the form {Fe&g[](c)}. Thus, it is learned that certain tuples are in the output of the
external source, i.e. they must not be false. For external sources with input predicates, the
added rules encode the relationship between the output tuples and the provided input.

Example 3 (ctd.) Recall Πe from Example 2. Without learning, the algorithms produce 23

model candidates and check them subsequently. It turns out that EBL allows for falsification
of some of the guesses without actually evaluating the external atoms. Suppose the reasoner
first tries the guesses containing literal Te&empty[p](c0). While they are checked against the
external sources, the described learning function allows for adding the externally learned
nogoods shown in Table 1. Observe that the combination Tp(c0),Fp(c1),Fp(c2) will be
reconstructed also for different choices of the guessing variables. As p(c0) is a fact, it is
true independent of the choice between e&empty[p](c0) and ne&empty[p](c0). E.g., the guess
Fe&empty[p](c0), Fe&empty[p](c1), Fe&empty[p](c2) leads to the same extension of p. This
allows for reusing the nogood, which is immediately invalidated without evaluating the
external atoms. Different guesses with the same input to an external source allow for reusing
learned nogoods, at the latest when the candidate is complete, but before the external source
is called for validation. However, very often learning allows for discarding guesses even
earlier. For instance, we can derive {Tp(c0),Fe&empty[p](c1)} from the nogoods above in 3
resolution steps. Such derived nogoods will be learned after running into a couple of conflicts.
We can derive Te&empty[p](c1) from p(c0) even before the truth value of Fe&empty[p](c1)

is set, i.e., external learning guides the search while the traditional evaluation algorithm
considers the behavior of external sources only during postprocessing. 2

For the next result, let Π be a program which contains an external atom of form &g [p](·).

Lemma 1 For all assignments A, the nogoods Λg(&g [p],A) (Def. 6) are correct wrt. Π.

Proof (Sketch). The added nogood for an output tuple c ∈ ext(&g [p],A) contains A|p
and the negated replacement atom Fe&g[p](c). If the nogood fires, then the guess was wrong
as the replacement atom is guessed false but the tuple (c) is in the output. Hence, the
interpretation is not compatible and cannot be an answer set anyway. 2
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4.2 Informed Learning

The learned nogoods of the above form can become quite large as they include the whole
input to the external source. However, known properties of external sources can be exploited
in order to learn smaller and more general nogoods. For example, if one of the input
parameters of an external source is monotonic, it is not necessary to include information
about false atoms in its extension, as the output will not shrink given larger input.

Properties for informed learning can be stated on the level of either predicates or individ-
ual external atoms. The former means that all usages of the predicate have the property. To
understand this, consider predicate &union which takes two predicate inputs p and q and
computes the set of all elements which are in at least one of the extensions of p or q. It will
be always monotonic in both parameters, independently of its usage in a program. While an
external source may lack a property in general, it may hold for particular usages.

Example 4 Consider an external atom &db[r1, . . . , rn, query ](X) as an interface to an
SQL query processor, which evaluates a given query (given as string) over tables (relations)
provided by predicates r1, . . . , rn. In general, the atom will be nonmonotonic, but for
special queries (e.g., simple selection of all tuples), it will be monotonic. 2

Next, we discuss two particular cases of informed learning which customize the default
learning function for generic external sources by exploiting properties of external sources,
and finally present examples where the learning of user-defined nogoods might be useful.

Monotonic Atoms. A parameter pi of an external atom &g is called monotonic, if
f&g(A,p, c) = 1 implies f&g(A

′,p, c) = 1 for all A′ with A′|pi ⊇ A|pi and A′|p′ =

A|p′ for all other p′ 6= pi. The learned nogoods Λ(&g [p],A) after evaluating &g [p] are
not required to include Fpi(t1, . . . , t`) for monotonic pi ∈ p. That is, for an external pred-
icate with input list &g [p] with monotonic input parameters pm ⊆ p and nonmonotonic
parameters pn = p \ pm, the set of learned nogoods can be restricted as follows.

Definition 7 The learning function for an external predicate &g with input list p in pro-
gram Π under assignment A, such that &g is monotonic in pm ⊆ p, is defined as

Λm(&g [p],A) =
{
{Ta ∈ A|pm} ∪A|pn ∪ {Fe&g[p](c)} | c ∈ ext(&g [p],A)

}
.

Example 5 Consider the external atom &diff [p, q](X) which computes the set of all ele-
ments X that are in the extension of p, but not in the extension of q. Suppose it is evaluated
under A, s.t. ext(p,A) = {Tp(a),Tp(b),Fp(c)} and ext(q,A) = {Fq(a),Tq(b),Fq(c)}.
Then the output of the atom is ext(&diff [p, q],A) = {a} and the (only) naively learned
nogood is {Tp(a),Tp(b),Fp(c),Fq(a),Tq(b),Fq(c),Fe&diff [p,q](a)}. However, due to
monotonicity of &diff [p, q] in p, it is not necessary to include Fp(c) in the nogood; the
output of the external source will not shrink even if p(c) becomes true. Therefore the
(more general) nogood {Tp(a),Tp(b),Fq(a),Tq(b),Fq(c),Fe&diff [p,q](a)} suffices to
correctly describe the input-output behavior. 2

Functional Atoms. When evaluating &g [p] with some functional &g under assignment A,
only one output tuple can be contained in ext(&g [p],A), formally: for all assignments A
and all c, if f&g(A,p, c) = 1 then f&g(A,p, c

′) = 0 for all c′ 6= c. Therefore the
following nogoods may be added right from the beginning.
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Definition 8 The learning function for a functional external predicate &g with input list p
in program Π under assignment A is defined as

Λf (&g [p],A) =
{
{Te&g[p](c),Te&g[p](c

′)} | c 6= c′
}
.

However, our implementation of this learning rule does not generate all pairs of output
tuples beforehand. Instead, it memorizes all generated output tuples ci, 1 ≤ i ≤ k during
evaluation of external sources. Whenever a new output tuple c′ is added, it also adds all
nogoods which force previously derived output tuples ci to be false.

Example 6 Consider the rules
out(X)← &concat [A, x](X), strings(A), dom(X)

strings(X)← dom(X),not out(X)

where &concat [a, b](c) is true iff string c is the concatenation of strings a and b, and
observe that the external atom is involved in a cycle through negation. As the extension
of the domain dom can be large, many ground instances of the external atom are gener-
ated. The old evaluation algorithm guesses their truth values completely uninformed. E.g.,
e&concat(x, x, xx) (the replacement atom of &concat [A, x](X) with A = x and X = xx,
where dom(x) and dom(xx) are supposed to be facts) is in each guess set randomly to true
or to false, independent of previous guesses. In contrast, with learning over external sources,
the algorithm learns after the first evaluation that e&concat(x, x, xx) must be true. Knowing
that &concat is functional, all atoms e&concat(x, x,O) with O 6=xx must also be false. 2

For the next result, let Π be a program which contains an external atom of form &g [p](·).

Lemma 2 For all assignments A, (i) the nogoods Λm(&g [p],A) (Def. 7) are correct wrt. Π,
and (ii) if &g is functional, the nogoods Λf (&g [p],A) (Def. 8) are correct wrt. Π.

Proof (Sketch). For monotonic external sources we must show that negative input literals
over monotonic parameters can be removed from the learned nogoods without affecting
correctness. For uninformed learning, we argued that for output tuple c ∈ ext(&g [p],A),
the replacement atom e&g[p](c) must not be be guessed false if the input to &g [p](c) is A|p
under assignment A. However, as the output of &g grows monotonically with the extension
of a monotonic parameter p ∈ pm, the same applies for any A′ which is “larger” in p, i.e.,
{Ta ∈ A′|p} ⊇ {Ta ∈ A|p} and consequently {Fa ∈ A′|p} ⊆ {Fa ∈ A|p}. Hence, the
negative literals are not relevant wrt. output tuple c and can be removed from the nogood.

For functional &g , we must show that the nogoods
{
{Te&g[p](c),Te&g[p](c

′)} | c 6= c′
}

are correct. Due to functionality, the external source cannot return more than one output
tuple for the same input. Therefore no such guess can be an answer set as it is not compatible.
Hence, the nogoods do not eliminate possible answer sets. 2

User-defined Learning. In many cases the developer of an external atom has more infor-
mation about the internal behavior. This allows for defining more effective nogoods. It is
therefore beneficial to give the user the possibility to customize learning functions. Currently,
user-defined functions need to directly specify the learned nogoods. The development of a
user-friendly language for writing learning functions is subject to future work.

Example 7 Consider the program
r(X,Y ) ∨ nr(X,Y )← d(X), d(Y )

r(V,W )← &tc[r](V,W ), d(V ), d(W )
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It guesses, for some set of nodes d(X), all subgraphs of the complete graph. Suppose &tc[r]

checks if the edge selection r(X,Y ) is transitively closed; if this is the case, the output is
empty, otherwise the set of missing transitive edges is returned. For instance, if the extension
of r is {(a, b), (b, c)}, then the output of &tc will be {(a, c)}, as this edge is missing in
order to make the graph transitively closed. The second rule eliminates all subgraphs which
are not transitively closed. Note that &tc is nonmonotonic. The guessing program is

r(X,Y ) ∨ nr(X,Y )← d(X), d(Y )

r(V,W )← e&tc[r](V,W ), d(V ), d(W )

e&tc[r](V,W ) ∨ ne&tc[r](V,W )← d(V ), d(W )

The naive implementation guesses for n nodes all 2
n(n−1)

2 subgraphs and checks the transi-
tive closure for each of them, which is costly. Consider the domain D = {a, b, c, d, e, f}.
After checking one selection with r(a, b), r(b, c),nr(a, c), we know that no selection con-
taining these three literals will be transitively closed. This can be formalized as a user-defined
learning function. Suppose we have just checked our first guess r(a, b), r(b, c), and nr(x, y)

for all other (x, y) ∈ D×D. Compared to the nogood learned by the general learning func-
tion, the nogood {Tr(a, b),Tr(b, c),Fr(a, c),Fe&tc[r](a, c)} is a more general description
of the conflict reason, containing only relevant edges. It is immediately violated and future
guesses containing {Tr(a, b),Tr(b, c),Fr(a, c)} are avoided. 2

Example 8 (Linearity) A useful learning function for &diff [p, q](X) is the following:
whenever an element is in p but not in q, it belongs to the output of the external atom. This
user-defined function works elementwise and produces nogoods with three literals each.
We call this property linearity. In contrast, the naive learning function from the Section 4.1
includes the complete extensions of p and q in the nogoods, which are less general. 2

For user-defined learning, correctness of the learning function must be asserted.

5 Implementation and Evaluation

We have integrated CLASP into our reasoner DLVHEX; previous versions of DLVHEX used
just DLV. In order to learn nogoods from external sources we exploit CLASP’s SMT inter-
face, which was previously used for the special case of constraint answer set solving and
implemented in the CLINGCON system (Gebser et al. 2009; Ostrowski and Schaub 2012).
We compare three configurations: DLVHEX with DLV backend, DLVHEX with (conflict-
driven) CLASP backend but without EBL, and DLVHEX with CLASP backend and EBL.

For our experiments we used variants of the above examples, the DLVHEX test suite,
and default reasoning over ontologies. It appeared that learning has high potential to
reduce the number of candidate models. Also the number of total variable assignments and
backtracks during search decreased drastically in many cases. This suggests that candidate
rejection often needs only parts of interpretations and is possible early in the evaluation. All
benchmarks were carried out on a machine with two 12-core AMD Opteron 6176 SE CPUs
and 128 GB RAM, running Linux and using CLASP 2.0.5 and DLV Dec 21 2011 as solver
backends. For each benchmark instance, the average of three runs was calculated, having a
timeout of 300 seconds, and a memout of 2 GB for each run. We report runtime in seconds;
gains and speedups are given as a factor.
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Set Partitioning. The following program partitions a set S into two subsets S1, S2 ⊆ S

such that |S1| ≤ 2. The partitioning criterion is expressed by two rules for S1 = S \ S2

and S2 = S \ S1. The implementation is by the use of external atom &diff (cf. Example 5):
dom(c1). · · · dom(cn).

nsel(X)← dom(X),&diff [dom, sel ](X).

sel(X)← dom(X),&diff [dom,nsel ](X).

← sel(X), sel(Y ), sel(Z), X 6= Y,X 6= Z, Y 6= Z.

The results in Table 2a compare the run of the reasoner with different configurations for
computing (i) all models resp. (ii) the first model. In both cases, using the conflict-driven
CLASP reasoner instead of DLV as backend already improves efficiency. Adding EBL
leads to a further improvement: in case (ii), the formerly exponentially growing runtime
becomes almost constant. When computing all answer sets, the runtime is still exponential
as exponentially many subset choices must be considered (due to the encoding); however,
also in this case many of them can be pruned early by learning, which makes the runtime
appear linear for the shown range of instance sizes. Moreover, our experiments show that
the delay between the models decreases over time when EBL is used (not shown in the
table), while it is constant without EBL due to the generation of additional nogoods.

Default Reasoning over Description Logic Ontologies. We consider now a more realistic
scenario using the DL-plugin (Eiter et al. 2008) for DLVHEX, which integrates description
logics (DL) knowledge bases and nonmonotonic logic programs. The DL-Plugin allows
to access an ontology using the description logic reasoner RacerPro 1.9.0 (http://www.
racer-systems.com/). For our first experiment, consider the program (shown left) and the
terminological part of a DL knowledge base on the right:

birds(X)← DL[Bird ](X). Flier v ¬NonFlier

flies(X)← birds(X),not neg flies(X). Penguin v Bird

neg flies(X)← birds(X),DL[Flier ] flies;¬Flier ](X). Penguin v NonFlier

This encoding realizes the classic Tweety bird example using DL-atoms (which is an
alternative syntax for external atoms in this example and allows to express queries over
description logics in a more accessible way). The ontology states that Flier is disjoint
with NonFlier , and that penguins are birds and do not fly; the rules express that birds fly by
default, i.e., unless the contrary is derived. The program amounts to the Ω-transformation
of default logic over ontologies to dl-programs (Dao-Tran et al. 2009), where the last
rule ensures consistency of the guess with the DL ontology. If the assertional part of
the DL knowledge base contains Penguin(tweety), then flies(tweety) is inconsistent
with the given DL-program (neg flies(tweety) is derived by monotonicity of DL atoms
and flies(tweety) loses its support). Note that defaults cannot be encoded in standard
(monotonic) description logics, which is achieved here by the cyclic interaction of DL-rules
and the DL knowledge base.

As all individuals appear in the extension of the predicate flier , all of them are considered
simultaneously. This requires a guess on the ability to fly for each individual and a subse-
quent check, leading to a combinatorial explosion. Intuitively, however, the property can be
determined for each individual independently. Hence, a query may be split into independent
subqueries, which is achieved by our learning function for linear sources in Example 8. The
learned nogoods are smaller and more candidate models are eliminated. Table 2b shows the
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Table 2: Benchmark Results (runtime in seconds, timeout 300s)

(a) Set Partitioning

# elements all models first model
DLV CLASP CLASP DLV CLASP CLASP

w/o EBL w EBL w/o EBL w EBL

1 0.07 0.08 0.07 0.08 0.07 0.07
5 0.20 0.16 0.10 0.08 0.08 0.07

10 12.98 9.56 0.17 0.56 0.28 0.07
11 38.51 21.73 0.19 0.93 0.63 0.08
12 89.46 49.51 0.19 1.69 1.13 0.08
13 218.49 111.37 0.20 3.53 2.31 0.10
14 — 262.67 0.28 8.76 3.69 0.10
... — —

...
...

...
...

18 — — 0.45 128.79 62.58 0.12
19 — — 0.42 — 95.39 0.10
20 — — 0.54 — 91.16 0.11

(b) Bird-Penguin

# individuals
DLV CLASP CLASP

w/o EBL w EBL

1 0.50 0.15 0.14
5 1.90 1.98 0.59
6 4.02 4.28 0.25
7 8.32 7.95 0.60
8 16.11 16.39 0.29
9 33.29 34.35 0.35

10 83.75 94.62 0.42
11 229.20 230.75 4.45
12 — — 1.10
... — —

...
20 — — 2.70

(c) Wine Ontology

Instance concept completion gain
CLASP CLASP max avg

w/o EBL w EBL

wine 0 25 31 33.02 6.93
wine 1 16 25 16.05 5.78
wine 2 14 22 11.82 4.27
wine 3 4 17 10.09 4.02
wine 4 4 17 6.83 2.87
wine 5 4 16 5.22 2.34
wine 6 4 13 2.83 1.52
wine 7 4 12 1.81 1.14
wine 8 4 4 1.88 1.08

(d) MCS

# contexts
DLV CLASP CLASP

w/o EBL w EBL

3 0.07 0.05 0.04
4 1.04 0.68 0.14
5 0.23 0.15 0.05
6 2.63 1.44 0.12
7 8.71 4.39 0.17

runtime for different numbers of individuals and evaluation with and without EBL. The runs
with EBL exhibit a significant speedup, as they exclude many model candidates, whereas
the performance of the DLV and the CLASP backend without EBL is almost identical (unlike
in the first example); here, most of the time is spent calling the description logic reasoner
and not for the evaluation of the logic program.

The findings carry over to large ontologies (DL knowledge bases) used in real-world
applications. We did similar experiments with a scaled version of the wine ontology (http://
kaon2.semanticweb.org/download/test ontologies.zip). The instances differ in the size of the
ABox (ranging from 247 individuals in wine 0 to 20007 in wine 8) and in several other
parameters (e.g., on the number of concept inclusions and concept equivalences; Motik
and Sattler (2006) describe the particular instances wine i). We implemented a number of
default rules using an analogous encoding as above: e.g., wines not derivable to be dry are
not dry, wines which are not sweet are assumed to be dry, wines are white by default unless
they are known to be red. Here, we discuss the results of the latter scenario. The experiments
classified the wines in the 34 main concepts of the ontology (the immediate subconcepts
of the concept Wine , e.g., DessertWine and ItalianWine), which have varying numbers
of known concept memberships (e.g., ranging from 0 to 43, and 8 on average, in wine 0)
and percentiles of red wines among them (from 0% to 100%, and 47% on average). The
results are summarized in Table 2c. There, entries for concept completion state the number
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of classified concepts. Again, there is almost no difference between the DLV and the CLASP

backend without EBL, but EBL leads to a significant improvement for most concepts and
ontology sizes. E.g., there is a gain for 16 out of the 34 concepts of the wine 0 runs, as
EBL can exploit linearity. Furthermore, we observed that 6 additional instances can be
solved within the 300 seconds time limit. If a concept could be classified both with and
without EBL, we could observe a gain of up to 33.02 (on average 6.93). As expected, larger
categories profit more from EBL as we can reuse learned nogoods in these instances.

Besides Ω, Dao-Tran et al. (2009) describe other transformations of default rules over
description logics. Experiments with this transformations revealed that the structure of the
resulting HEX-programs prohibits an effective reuse of learned nogoods. Hence, the overall
picture does not show a significant gain with EBL for these encodings, we could however
still observe a small improvement for some runs.

Multi-Context Systems (MCS). MCS (Brewka and Eiter 2007) is a formalism for in-
terlinking multiple knowledge-based systems (the contexts). Eiter et al. (2010) define
inconsistency explanations (IE) for MCS, and present a system for finding such explana-
tions on top of DLVHEX. In our benchmarks we computed explanations for inconsistent
multi-context systems with 3 up to 7 contexts. For each number we computed the average
runtime over several instances with different topologies (tree, zigzag, diamond), which were
randomly created with an available benchmark generator, and report the results in Table 2d.

Unlike in the previous benchmark we could already observe a speedup of up to 1.98

when using CLASP instead of the DLV backend. This is because of two reasons: first, CLASP

is more efficient than DLV for the given problem, and second, CLASP was tightly integrated
into DLVHEX, whereas using DLV requires interprocess communication. However, the most
important aspect is again EBL, which leads to a further significant speedup with a factor of
up to 25.82 compared to CLASP without EBL.

Logic Puzzles. Another experiment concerns logic puzzles. We encoded Sudoku as a
HEX-program, such that the logic program makes a guess of assignments to the fields and
an external atom is used for verifying the answer. In case of a negative verification result,
the external atom indicates by user-defined learning rules the reason of the inconsistency,
encoded a pair of assignments to fields which contradict one of the uniqueness rules.

As expected, all instances times out without EBL, because the logic program has no
information about the rules of the puzzle and blindly guesses all assignments, which are
subsequently checked by the external atom. But with EBL, the Sudoku instances could be
solved in several seconds.

More details on the experiments and links to benchmarks and benchmark generators can
be found at http://www.kr.tuwien.ac.at/research/systems/dlvhex/experiments.html.

6 Discussion and Conclusion

The basic idea of our algorithm is related to constraint ASP solving presented in Gebser
et al. (2009), and Ostrowski and Schaub (2012), which is realized in the CLINGCON system.
External atom evaluation in our algorithm can superficially be regarded as constraint
propagation. However, while both,Gebser et al. (2009) and Ostrowski and Schaub (2012),
consider a particular application, we deal with a more abstract interface to external sources.
An important difference between CLINGCON and EBL is that the constraint solver is seen
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as a black box, whereas we exploit known properties of external sources. Moreover, we
support user-defined learning, i.e., customization of the default construction of conflict
clauses to incorporate knowledge about the sources, as discussed in Section 4. Another
difference is the construction of conflict clauses. ASP with CP has special constraint atoms,
which may be contradictory, e.g., T(X > 10) and T(X = 5). The learned clauses are sets
of constraint literals, which are kept as small as possible. In our algorithm we have usually
no conflicts between ground external atoms as output atoms are mostly independent of each
other (excepting e.g. functional sources). Instead, we have a strong relationship between the
input and the output. This is reflected by conflict clauses which usually consist of (relevant)
input atoms and the negation of one output atom. As in constraint ASP solving, the key for
efficiency is keeping conflict clauses small.

We have extended conflict-driven ASP solving techniques from ordinary ASP to HEX-
programs, which allow for using external atoms to access external sources. Our approach
uses two types of learning. The classical type is conflict-driven clause learning, which
derives conflict nogoods from conflict situations while the search tree is traversed. Adding
such nogoods prevents the algorithm from running into similar conflicts again.

Our main contribution is a second type of learning which we call external behavior
learning (EBL). Whenever external atoms are evaluated, further nogoods may be added
which capture parts of the external source behavior. In the simplest case these nogoods
encode that a certain input to the source leads to a certain output. This default learning
function can be customized to learn shorter or more general nogoods. Customization is
either done explicitly by the user, or learning functions are derived automatically from
known properties of external atoms, which can be stated either on the level of external
predicates or on the level of atoms. Currently we exploit monotonicity and functionality.

Future work includes the identification of further properties which allow for automatic
derivation of learning functions. We further plan the development of a user-friendly lan-
guage for writing user-defined learning functions. Currently, they require to specify the
learned nogoods by hand. It may be more convenient to write rules that a certain input
to an external source leads to a certain output, in (a restricted variant of) ASP or a more
convenient language. The challenge is that evaluation of learning rules introduces additional
overhead, hence there is another tradeoff between costs and benefit of EBL. Finally, also the
development of heuristics for lazy evaluation of external sources is subject to future work.
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