
Constraint Answer Set Programming
Based on HEX-Programs?

Alessandro F. De Rosis1, Thomas Eiter2, Christoph Redl2, and Francesco Ricca1

1 Department of Mathematics and Computer Science, Università della Calabria
Via P. Bucci Cubo 31B, 87036 Rende (CS), Italy alessandrof.derosis@gmail.com

ricca@mat.unical.it
2 Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,redl}@kr.tuwien.ac.at

Abstract. Constraint Answer Set Programming (CASP) is a convenient integra-
tion of the Answer Set Programming (ASP) paradigm with constraint programming
(CP), which was exploited for a range of applications. HEX-programs are another
extension of ASP towards integration of arbitrary external sources through so-
called external atoms. In this work, we integrate HEX-programs with CP, which
results in a strict generalization of CASP, called constraint HEX-programs. We
then present a translation of constraint HEX-programs to (standard) HEX-programs
using special external sources for constraint solving. In contrast to native CASP
solvers, this not only allows for reusing existing algorithms, but also for combining
constraints with other external sources. We further show how to integrate advanced
techniques used in CASP solving algorithms; while dedicated solvers are currently
faster as not all such techniques have been integrated yet, our experiments show
that this significantly improves efficiency and promises that further optimization
integrated in future work will yield an efficient yet more general system.

Keywords: Answer Set Programming, Constraint Programming, External Sources

1 Introduction

In recent years, Answer Set Programming (ASP) has emerged as a popular approach
to declarative problem solving for a range of applications [3], thanks to expressive and
efficient systems like SMODELS [18], DLV [13], cmodels [12], and CLASP [10]. HEX-
programs [7] extend ASP with external atoms, through which the user can couple any
external data source with a logic program. Roughly, such atoms pass information from
the program, given by predicate extensions, into an external source which returns output
values of an (abstract) function. This extension has been utilized for applications such
as multi-context reasoning, and reasoning about actions and planning (cf. [5]). Notably,
recursive data exchange between the rules and the external sources is supported.

Another declarative formalism is constraint programming (CP) [1]. Intuitively, a
constraint satisfaction problem (CSP) consists of a set of variables from given domains
? This research was supported by the Austrian Science Fund (FWF) projects P24090 and P27730

and restrictions of their value combinations. Solutions to CSPs are assignments of values
to the variables such that the given restrictions are respected.

The combination of ASP with CP is called Constraint Answer Set Programming
(CASP), see [15, 14], as implemented e.g. in the CLINGCON system [17], which inte-
grates GRINGO, CLASP and the constraint solver GECODE. While constraints might be
encoded in plain ASP thanks to builtin predicates, this easily produces groundings of
unmanageable sizes. Hence, a direct support of constraints within ASP is useful for
avoiding this bottleneck. This is because instances of constraint variables can be hidden
in the constraint solver without their explicit representation in the (ground) program. In
addition to the SMT-like [2] approach for CASP solving as adopted e.g. by CLINGCON,
there are also translation approaches (e.g. to SAT) [4]; however, as our host formalism
of HEX-programs handles external sources similar to SMT, we stick with this former
approach also for constraint handling.

Dedicated CASP solvers, however, do not allow for integration with background
theories other than constraints. This motivates our work on integrating CASP with
HEX-programs by translating the input programs into a native HEX-program. This allows
for easy combination with arbitrary background theories without the need for adopting
the reasoning algorithms, and results in a strict generalization of CASP, which we call
constraint HEX-programs.

In more detail, after introducing the preliminaries in the Section 2, the further
organization of the paper and our main contributions are as follows:
• We define an integration of HEX-programs with constraint programming and a transla-
tion to (standard) HEX-programs (Section 3). To this end, we develop an encoding based
on a dedicated external atom which serves as an interface to a constraint solver. The
truth values of the constraint atoms are guessed by disjunctive rules and passed as input
parameters to the external atom, which checks the consistency wrt. the constraints.
• As this approach comes at the price of a large search space which undercuts efficient
evaluation, we provide means for search space pruning by conflict-driven learning
(Section 4). Whenever the constraint solver identifies an inconsistency, a reason for this
conflict in terms of a small set of constraints is identified. This reason is added to the
internal representation of the HEX-program to avoid invalid guesses in the further search.
• Extending a preliminary contribution [19], we provide means for theory propagation
(Section 5). That is, reasons for conflicts are not only identified after inconsistencies
occurred, but already guide the ASP solver before the interpretation is inconsistent.
• We present our implementation and consider some benchmarks (Section 6). Although
it can currently not compete with native solvers (dedicated CASP algorithms are not
yet fully integrated), the improvements can increase the efficiency significantly. We also
discuss an application that uses other external sources and does not fit existing solvers.

In conclusion, the results of our ongoing work let us expect that by integrating and
advancing CASP techniques into our system the gap to dedicated systems can be sensibly
reduced (but not closed), at the gain of increased problem solving capacity.

2 Preliminaries

We start with basic definitions, syntax and semantics of HEX-programs and constraint
programming. Our vocabulary consists of sets C ⊇ N, V ,P andX of constants, variables,

predicates and external predicates, respectively, where N denotes the natural numbers.
Constants C are also used as function symbols. The set of terms T is the least set T ⊇ C
s.t. whenever f ∈ C and t1, . . . , t` ∈ T , then f(t1, . . . , t`) ∈ T . Predicates p ∈ P may
occur with multiple arities ar(p) ⊆ N in a program. While constants in our examples are
usually strings which start with lower case letters, we formally allow them to consist of
any characters except comma, parentheses and←, as this is sufficient for unambiguous
reading (e.g. c, but also 6). We let predicates be alphanumeric strings starting with lower
case letters (e.g. a, p), and variables be alphanumeric strings starting with upper case
letters (e.g. Z). External predicates start with lower case letters preceded by character &
in order to distinguish them from ordinary predicates (e.g. &ext).

For a list x = (x1, . . . , xk), we write x ∈ x iff xi = x for some 1 ≤ i ≤ k; the
empty list is denoted ε. We drop the parentheses whenever this does not cause confusion.
Moreover, for a list x we let xi implicitly denote the i-th element even if the elements of
x are not explicitly listed. We further use lists as sets when appropriate.

A (signed) literal is a positive or a negative formula Ta resp. Fa, where a is a ground
atom of form p(x), with predicate p and terms x = x1, . . . , x`. For a literal σ=Ta
or σ=Fa, let σ denote its opposite, i.e., Ta=Fa and Fa=Ta. An assignment is a
consistent set of literals Ta or Fa, where a expresses that a is true and Fa that a is
false; an assignment A is called complete for a program (or interpretation), if Ta ∈ A
or Fa ∈ A for all atoms a in the program.

A nogood is a set {L1, . . . , Ln} of literals Li, 1 ≤ i ≤ n. An interpretation A is a
solution to a nogood δ (resp. a set ∆ of nogoods), iff δ 6⊆ A (resp. δ 6⊆ A for all δ ∈ ∆).

2.1 HEX-Programs

HEX-programs were introduced in [7] as a generalization of (disjunctive) extended logic
programs under the answer set semantics [11]; for details and background see [7].

Syntax. HEX-programs extend ordinary ASP programs by external atoms, which enable
a bidirectional interaction between a program and external sources of computation.
External atoms have a list of input parameters (terms or predicate names) and a list of
output parameters. Informally, to evaluate an external atom, the reasoner passes the terms
and extensions of the predicates in the input tuple to the external source associated with
the external atom. The external source computes output tuples that are matched with the
output list. Formally, an external atom is of the form &g [Y] (X), where Y = Y1, . . . , Yk
are input parameters from T ∪ V ∪ P , and X = X1, . . . , Xl are output terms. Input
Yi ∈ Y is called predicate input if Yi ∈ P and term input otherwise.

Definition 1 (HEX-programs). A HEX-program consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where each ai is an (ordinary) atom p(X1, . . . , X`) with Xi ∈ T ∪ V for all 1 ≤ i ≤ `,
each bj is either an ordinary atom or an external atom, and k + n > 0. 3

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal; B+(r) =

3 Strong negation can be introduced as usual (use new atoms ¬a and constraints← a,¬a).

{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For a
rule r or a program Π , let A(r) and A(Π) be the set of all ordinary (i.e., non-external)
atoms occurring in r or Π , respectively.
Semantics. We first define the semantics of ground (variable-free) HEX-programs.
Intuitively, a ground external atom &g [y] (x) is true, if the external source &g yields
output tuple x when evaluated with input y. Formally, the semantics of a ground external
atom &g [y] (x) wrt. an assignment A is given by a 1+k+l-ary Boolean oracle function
f&g that is defined for all possible values of A, y and x, where k is the length of y and l
is the length of x. Thus, &g [y] (x) is true relative to A if and only if f&g(A,y,x) = 1.
Satisfaction of ordinary ground rules and ground ASP programs [11] is extended to
ground HEX-rules and programs in the obvious way. We assume that predicates, which
do not occur in the input of an external atom, do not influence its semantics, i.e.,
f&g(A,y,x) = f&g(A

′,y,x) whenever A and A′ coincide on all atoms over p ∈ y∩P .

Definition 2 (FLP-Reduct [9]). For an interpretation A over a ground program Π , the
FLP-reduct fΠA of Π wrt. A is the set {r ∈ Π | A |= b, for all b ∈ B(r)}.

An assignment A1 is smaller than or equal to another assignment A2 wrt. a program
Π , denoted A1 ≤Π A2, if {Ta ∈ A1 | a ∈ A(Π)} ⊆ {Ta ∈ A2 | a ∈ A(Π)}.

Definition 3 (Answer Set). An answer set of ground program Π is a ≤Π -minimal
(complete) model A of fΠA; the set of all answer sets of Π is denoted AS(Π).

Example 1. Consider the program Π = {p← &id [p] ()}, where &id [p] () is true iff p
is true. It has the answer set A1 = ∅, which is a ≤Π -minimal model of fΠA1 = ∅. 2

As for possibly non-ground programs, let grndT (Π) be the ground program resulting
from Π if the variables in Π are replaced by terms from T in all possible ways. The
answer sets of a program Π are then given by AS(Π) = AS(grndT (Π)). Safety
criteria ensure that a finite subset of grndT (Π) suffices in practice [8].
Evaluation. Describing the evaluation algorithms for HEX-programs in detail is beyond
this paper; we give here only an overview. The answer sets of a HEX-program Π are to
be determined by the DLVHEX solver using a transformation to ordinary ASP programs
as follows. Each ground external atom &g [y] (x) inΠ is replaced by an ordinary ground
external replacement atom e&g[y](x) and a rule e&g[y](x) ∨ ne&g[y](x)← is added to
the program. The answer sets of the resulting guessing program Π̂ are computed with
an ordinary ASP solver and projected to non-replacement atoms. However, the resulting
interpretations are not necessarily models of Π , as the values of &g [y](x) under f&g and
e&g[y](x) can be different. Each answer set of Π̂ thus merely yields a candidate which
must be checked against the external sources. If no discrepancy is found, the candidate is
a compatible set of Π . Finally, for each compatible set also minimality wrt. the reduct is
checked; if true, then the compatible set yields an answer set. The ordinary ASP solver
at the backend solves the problem by encoding the input program as a set of nogoods.

In addition to this procedure, additional nogoods are added during solving to describe
parts of the behavior of external atoms in terms of input-output relationships [6]. Al-
though not strictly necessary, it turned out to be highly effective in search space pruning
as it eliminates guesses of external atoms that violate known behavior in advance.

2.2 Constraint programming

Basic formalism. Constraint programming is a declarative programming paradigm
where variables are assigned values from domains, and the allowed combinations of
variable values are restricted by constraints.

Definition 4 (Constraint Satisfaction Problem). A constraint satisfaction problem
(CSP) is a triplet 〈V,D,C〉, where V is a set of variables, D is a domain, and C is a set
of constraints of form 〈X,R〉 where X ∈ V k and R ⊆ Dk for some k > 0.

Definition 5 (Solutions to Constraint Satisfaction Problems). For a CSP 〈V,D,C〉,
an interpretation is a mapping I : V 7→ D, and a solution is an interpretation I such
that for all 〈v, R〉 ∈ C with v = v1, . . . , vn it holds that (I(v1), . . . , I(vn)) ∈ R.

A CSP is called consistent, if it has a solution and inconsistent otherwise. Note that
we assume all variables in V have the same domain D; this is for the sake of simplicity,
indeed w.l.o.g. different domains for the variables can be simulated by appropriate
constraints. Moreover, in the following we assume to have a fixed domain D and only
specify it explicitly when relevant in examples.

Example 2. Consider the CSP 〈V,D,C〉where V = {x, y},D = {1, . . . , 10}, andC =
{c1 : 〈(x, y), {(1, 8), (2, 9), (2, 10)}〉, c2 : 〈y, {9, 10}〉, c3 : 〈x, {1, 2}〉, c4 : 〈x, {4, 5}〉}
One can easily see that the CSP is inconsistent due to c3 and c4. 2

Constraint expressions. We now introduce arithmetic expressions to denote sets of
value combinations and provide an interpretation of such expressions as by Definition 4.

We start with a set of constraint terms CT , which are (possibly non-ground) atoms
p(X1, . . . , Xn) with p ∈ P and Xi ∈ V ∪ T for 1 ≤ i ≤ n, variables V or terms T ,
e.g. p(c), p(X), Y and 10; variables allow for exploiting the grounder when writing
constraint expressions. The set of constraint operators consists of arithmetic operators
CA = {+,−, ∗, /} and comparison operators CC = {≡, 6≡, >,>,6, <}.4

The set of arithmetic expressions is CE = {o1 ◦1 o2 ◦2 · · · ◦n−1 on | o1, . . . , on ∈
CT ∪ N, ◦1, . . . , ◦n−1 ∈ CA} ∪ {sum(p, i) | p ∈ P, i ∈ N}; expressions of kind
sum(p, i) are useful for the integration with logic programming, as they allow to query
program predicates in constraint expressions. We call an arithmetic expression ground,
if it does not contain variables from V . Every ground constraint term is either a string
(viewed as a constraint variable) or an integer (viewed as a numeric constant). The set
of all constraint expressions is CO = {l ◦ r | l, r ∈ CE , ◦ ∈ CC}; we call a constraint
expression ground, if both l and r are ground. For a constraint expression e ∈ CO of
form e = l ◦ r, let e = l◦r be the negated constraint atom, where ◦ is the negation of an
operator ◦ such that ≡ = 6≡, > =6, > =<, etc.

We now provide a translation of ground constraint expressions e ∈ CO to constraints
as by Definition 4. Once the domain D is fixed, we can use a set of ground constraint
expressions E ⊆ CO to define a CSP of kind 〈V,D,C〉, where V are the variables
occurring in E, and the constraints C are constructed as follows.

4 In the implementation, operators in constraint expressions are prefixed with ‘$’ to distinguish
them from builtin predicates. As we do not use builtins in this paper, we drop ‘$’ for simplicity.

Definition 6. For a ground e ∈ CO with the lexicographically ordered list of distinct
constraint variables v of length k, and interpretation A, the constraint given by e and
A is Γ (e,A) = 〈v, {d ∈ Dk | γ(e,d) holds}〉, where γ(e,d) results from e when:

– all constraint variables vi with 1 ≤ i ≤ k are replaced by di;
– operators from CA and CC have the standard semantics;
– all expressions of form sum(p, i) are replaced by

∑
{Tp(x1,...,xn)∈A} xi.

For E = {e1, . . . , en} ⊆ CO, let Γ (E,A) = 〈
⋃

1≤i≤n Vi, D,
⋃

1≤i≤nRi〉 be the
CSP given by D, E and A, where 〈Vi, Ri〉 = Γ (ei,A) for all 1 ≤ i ≤ n.

Intuitively, A serves to interpret constraint terms sum(p, i); this prepares for the
integration with HEX-programs below. If e resp.E contains no constraint terms sum(p, i),
functions γ and Γ are independent of A and we might drop it from the argument list.

Example 3. LetD = {0, . . . , 3} be the domain. The constraint expression e1 = x+y <
3 gives the constraint Γ (e1) = 〈(x, y), {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}〉. Let
A = {Tp(1),Tp(2)}, the expression e2 = x + y > sum(p, 1) gives Γ (e2,A) =
〈(x, y), {(1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}〉, i.e., sum(p, 1) is replaced by 3. 2

3 Integrating HEX-Programs and Constraint Programming

We now introduce an integration of HEX-programs with constraint programming, called
constraint HEX-programs.5 As HEX-programs subsume ASP-programs, this is a strict
generalization of the integration of ASP and CP. Afterwards, we provide a translation of
constraint HEX-programs to standard HEX-programs using a dedicated external atom for
interfacing the constraint solver, which allows for reusing existing evaluation algorithms.

3.1 Constraint HEX-Programs

We now extend HEX-programs as by Definition 1 to constraint HEX-programs by allowing
constraint expressions to be used as atoms; we sometimes call HEX-programs without
constraint expressions standard HEX-programs to stress the absence of such atoms.
Syntax. We first extend Definition 1 to capture constraint expressions.

Definition 7 (Constraint HEX-programs). A constraint HEX-program consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (2)

where each ai is an (ordinary) atom or a constraint expression, each bj is either an
ordinary atom, an external atom or a constraint expression, and k + n > 0. A HEX-
program may define the domain for constraint variables; default it is the set of integers.

We assume w.l.o.g. that default-negated constraint atoms not b in rule bodies are
rewritten to positive atoms b. Constraint expressions occurring within programs are also
called constraint atoms. The sets H(r), B(r), B+(r) and B−(r) are defined akin to

5 The content of this section is based on the preliminary work done in [19], which was a first less
thorough step toward the combination of HEX-programs with constraint programming.

HEX-programs. As before, A(r) and A(Π) are the sets of ordinary atoms in a rule and
in a program, respectively; they include neither external atoms nor constraint atoms.
Semantics. We extend the definition of interpretations to encompass constraint atoms.
A constraint assignment is a consistent set of literals Ta or Fa, where a is an ordinary
ground atom or a ground constraint atom from CO. Satisfaction of rules and answer sets
are then extended from HEX-programs to constraint HEX-programs in the obvious way.

Definition 8. Let Π be a ground constraint HEX-program. A constraint interpretation
A is a constraint answer set of Π , if it is an answer set of Π and the CSP Γ (E,A) is
satisfiable, where E = {e ∈ CO | Te ∈ A} ∪ {e ∈ CO | Fe ∈ A}.

The set of all constraint answer sets of a constraint HEX-program Π is denoted
CAS(Π). The answer sets AS(Π) of a non-ground constraint HEX-program are given
by the answer sets AS(grndT (Π)) of grndT (Π) obtained by substituting variables by
terms in all possible ways; the substitution includes variables in constraint expressions.
Intuitively, the CSP consists of the constraints represented by the constraint atoms.

Example 4. Suppose Alice owns a restaurant offering different daily menus. The menus
are chosen on the basis of the prices of foods and drinks such that the price of the food
should be greater than the price of the drink. The prices of all menus should be no greater
than 20; menus with a price equal to 20 are called exclusive.

This can be encoded by the following program Π with domain N.
r1 : food(P)← &sql [“Select price from Food”] (P)
r2 : drink(P)← &sql [“Select price from Drink”] (P)
r3 : max price(20)

r4 : inMenu(F,D) ∨ outMenu(F,D)← drink(D), food(F)

r5 : ← D > F, inMenu(F,D)

r6 : F +D 6 P ← inMenu(F,D),max price(P)

r7 : exclusive menu ← inMenu(F,D),max price(P), F +D ≡ P
Here, the prices of food and drink are represented by atoms food(·) and drink(·),

respectively. We use an external atom &sql [·] (·) in order to load all prices from the
database of the restaurant. Rule r4 creates all possible combinations of available menus.
Rule r5 enforces the price of the food to be greater than the prices of the drink. Rule r6
implements the maximum price and rule r7 checks the existence of an exclusive menu.

Let the facts be F = {max price(20), food(30), food(10), drink(8)}, the unique
constraint answer set of the program contains, besides facts, TinMenu(10, 8), and
ToutMenu(30, 8) as positive atoms, and there is no exclusive menu. 2

3.2 Encoding Constraint HEX-Programs in Standard HEX-Programs

We now provide a translation to standard HEX-programs. The basic idea is to encode
constraint atoms by ordinary atoms whose truth values are guessed. For each guess,
the atoms representing constraints serve as input to an external atom that checks the
consistency of the CSP encoded by constraint expressions by employing a constraint
solver. To encode constraint atoms from CO as ordinary atoms, their operators and

operands are stored as individual arguments of the ordinary atoms. Since constraint
atoms may contain ASP variables, the grounding component of the HEX-solver is reused
for generating ground constraint atoms. In the following, let con be a new predicate.

Definition 9. For E = a1 ◦1 · · · ◦n−1 an ∈ CO with ai ∈ CE for 1 ≤ i ≤ n, ◦j ∈ CC
for exactly one 1 ≤ j < n, and ◦i ∈ CA for all 1 ≤ i < n, i 6= j, let toAtom(E) =
con(a1, ◦1, . . . , ◦n−1, an). For ordinary or external atoms A, let toAtom(A) = A.

Note that all components of the constraint expression occur as separate terms in
the rewritten atom, which is possible as operators such as ≡ or 6 can be used as
constants (cf. Section 2). Further note that the result of toAtom might result in a
function term, e.g., e = p(X) > 2 is translated to toAtom(e) = con(p(X), >, 2).
That is, the original atom p(X) is encoded as a function term with function symbol
p and argument X , which is possible as sets P and C are not necessarily disjoint.
For a rule r let toAtom(r) be result of atom-wise application of toAtom to all atoms
in r. Importantly, also the inverse function toAtom−1 exists as for any atom of kind
con(x), toAtom−1(con(x)) only needs to concatenate the elements of x, while for
atoms over predicates different from con it is the identity function. For an assignment
A let toAtom−1(A) = {toAtom−1(con(x)) | Tcon(x) ∈ A} be the set of constraint
expressions encoded as ordinary atoms in A.

Towards an encoding of constraint HEX-programs in standard HEX-programs, we
introduce a function which generates guessing rules for all constraints in a given rule r.

Definition 10. Let the guessing rules guess(r) for the constraint atoms in rule r be:
guess(r) = {toAtom(e)∨toAtom(e)← B(r)\CO| for all e ∈ CO∩(H(r)∪B(r))}.

Intuitively, for a rule r, rule guess(r) guesses the truth value of constraint atoms in
r, where the (possibly) non-empty body guarantees safety.

Moreover, the sums of predicate arguments used in sum expressions are computed
using auxiliary predicates. The idea is to collect all required sums (occurring in some
constraint expression) in a new predicates sum , whose parameters are the predicate and
argument position to be summed up, and the value of this sum.

Definition 11. For a constraint HEX-program Π , let sumdef (Π) = {sum(p, i,Xi)←
p(X1, . . . , X`) | for all sum(p, i) ∈ CA occurring in Π, ` ∈ ar(p), ` ≥ i}.

Finally, we define an external source that performs the consistency check of the
guessed values of the (rewritten) constraint expressions in the program. For the sake
of simplicity we do not communicate the values of constraint variables back to the
HEX-program, but an according extension would be possible by adding output values.

Definition 12. For a constraint interpretation A overΠ , let f&check (A, con, sum, ε) =
1 (= 0) if the CSP Γ (toAtom−1(A),A) has a (has no) solution.

Intuitively, the external atom internally recovers the underlying CSP given by the
atoms over con in A and checks its consistency; the constraint expressions are retrieved
by function toAtom−1 and directly define a CSP using function Γ from Definition 6.

Now we can define a translation of a constraint HEX-program, which consists of the
original program with constraint atoms replaced by ordinary ones, the guessing rules for
constraint atoms, the computation of the sums, and the consistency check.

Definition 13. Given a constraint HEX-program Π , we define:
translation(Π) = {toAtom(r) | r ∈ Π} ∪ {guess(r) | r ∈ Π} ∪

sumdef (Π) ∪ {← not&check [con, sum] ()}

Example 5. Consider the previous constraint HEX-program Π from Example 4 with con-
straint domain N. We now show how translate(Π) is constructed. The set {toAtom(r) |
r ∈ Π} made by ordinary atoms that represent constraint atoms is as follows:

r1 : food(P)← &sql [“Select price from Food”] (P)
r2 : drink(P)← &sql [“Select price from Drink”] (P)
r3 : max price(20)

r4 : inMenu(F,D) ∨ outMenu(F,D)← drink(D), food(F)

r′5 : ← con(D,>,F), inMenu(F,D)

r′6 : con(F,+, D,6, P)← inMenu(F,D),max price(P)

r′7 : exclusive menu ← inMenu(F,D),max price(P), con(F,+, D,≡, P)
Next, the set of guessing rules {g5, g6, g7} = {guess(r) | r ∈ Π}, stemming from

the constraint atoms in r5, r6 and r7, respectively, is as follows:
g5 : con(D,>,F) ∨ con(D,6, F)← inMenu(F,D)

g6 : con(F,+, D,6, P) ∨ con(F,+, D,>, P)← inMenu(F,D),max price(P)

g7 : con(F,+, D,≡, P) ∨ con(F,+, D, 6≡, P)← inMenu(F,D),max price(P)

We do not have any sum constraint expressions, thus sumdef (Π) = ∅.
Finally, rule← not&check [con, sum] () is added for consistency checking. 2

The following proposition states a one-to-one correspondence between the constraint
answer sets of a constraint HEX-program Π and the answer sets of the HEX-program
translation(Π); thus HEX-solvers may be used for constraint HEX-program solving.

Proposition 1. Given a constraint HEX-program Π , let Π ′ = translation(Π). Then:

1. If A′ ∈ AS(Π ′), then A ∈ CAS(Π) for A = A′ ∩ {Ta,Fa | a ∈ A(Π)}.
2. If A ∈ CAS(Π), then A = A′ ∩ {Ta,Fa | a ∈ A(Π)} for some A′ ∈ AS(Π ′).

4 Conflict-Driven Learning

Modern SAT and ASP solvers store the instance as nogoods (cf. Section 2) and construct
an assignment which satisfies them all. The basic technique is unit propagation: whenever
all but one literals of a nogood are true, the last one is set to false. If this does not derive
further values, a guess is made. However, many guesses lead to inconsistency because of
similar reasons. Therefore, conflict-driven learning was introduced to derive additional
nogoods from conflicts [16, 10] which describe its initial reason, avoid this reason in the
further search, and potentially allow for backtracking several decisions.

The technique was extended to external sources, where external atoms might add no-
goods which describe (parts of) their behavior [6]. For example, let &diff [p, q] (X) com-
pute the difference of the extensions of p and q and A = {Tp(a),Tp(b),Tq(a)Fq(b)}.

Then f&diff (A, p, q, b) = 1 and f&diff (A, p, q, x) = 0 for x 6= b. The nogood {Tp(b),
Fq(b),Fediff [p,q](b)}might be added to express that the output contains b whenever p(b)
is true and q(b) is false. It eliminates guesses in the further search which violate known
behavior. We adopt the technique to constraint HEX-programs by learning techniques for
the external atom &check , which encode reasons for inconsistencies wrt. constraints.

4.1 Irreducibility

Whenever the external atom &check [con, sum] () is unsatisfied, the set of all constraint
expressions in the assignment A is inconsistent. This set is a valid explanation for the
conflict, i.e., {Te&check [con,sum]()} ∪ {Tcon(x) ∈ A} ∪ {σsum(p, i) ∈ A | σ ∈
{T,F}} could serve as a nogood. However, in many cases not all constraint expressions
are relevant. In order to describes the reason effectively, we rather compute a subset-
minimal set of atoms to represent conflicting constraint expressions.

Definition 14 (Irreducible Inconsistent Set (IIS)). An inconsistent setC of constraints
is an irreducible inconsistent set (IIS) [17], if every subset C ′ (C is consistent.

Example 6. Consider the inconsistent set of constraints C in Example 2. One can show
that after removing c1, set C is still inconsistent and therefore it is not an IIS. In contrast,
C ′ = {c3, c4} is an IIS as the removal of at least one constraint makes it consistent. 2

The definition carries over to constraint expressions. For an interpretation A we call
E ⊆ CO an IIS if Γ (E,A) is inconsistent but Γ (E′,A) is consistent for any E′ (E.

Example 7. The set E = {x < y, y < x} of constraint expressions is an IIS (for any
domain) as it is inconsistent but removal of at least one element makes it consistent. 2

Forward filtering. The algorithm constructs the IIS iteratively beginning from the
empty set, cf. Algorithm 1. In each iteration, a constraint expression which is involved in
the inconsistency is identified and added to the constructed IIS. The process is repeated
until the current set of constraints becomes inconsistent, i.e., an IIS has been found.

Proposition 2. For an inconsistent set E ⊆ CO, the ForwardFiltering(E) is an IIS.

4.2 Nogood Learning

We now present nogoods which can be learned from IISs. The input to the nogood
learning function Λ shown in the following definition needs to be an IIS of constraint
expressions, but no specific construction method for an IIS is assumed. Thus, the IIS
might be computed by the algorithm shown above or in the literature, e.g., [17].

Definition 15. Let A be an interpretation over translate(Π) where Π is a constraint
HEX-program. We define the nogood learned from an IIS E ⊆ CO as follows:

Λ(A, E) ={Te&check [con,sum]()} ∪ {TtoAtom(e) | e ∈ E} ∪
{σsum(p, i, v) ∈ A | sum(p, i) occurs in E, σ ∈ {T,F}}

Algorithm 1: ForwardFiltering
Data: Inconsistent setE ⊆ CO
Result: IISE′ ⊆ E
E′ ← ∅
whileE′ is consistent do

T ← E′

for c ∈ E do
T ← T ∪ {c}
if T is inconsistent then

E′ ← E′ ∪ {c}
break

returnE′

Algorithm 2: TheoryPropagation
Data: Constraint expressionsE and assigned onesEA ⊆ E
Result: IISE′ s.t.EA ⊆ E′ ⊆ E or⊥ if none exists
EU ← E \ EA

for u ∈ EU do
E′ ← EA

if E′ ∪ {u} is inconsistent then
return IIS overE′ ∪ {u} (cf. Section 4)

return⊥

Proposition 3. For a constraint HEX-program Π , any answer set of translation(Π) is
a solution to Λ(A, E) for all assignments A and IISs E ⊆ CO.

Intuitively, Λ(A, E) expresses that the IIS forms a reason why e&check [con,sum]() is
false for the current values of all sum(p, i). Such nogoods can be added as any guess
eliminated by such nogoods would be rejected when &check is evaluated anyway.

5 Theory Propagation

We now exploit the constraint theory for the search before the interpretation is inconsis-
tent by presenting the current partial assignment to the external source whenever internal
propagation cannot infer further truth values; the source might add nogoods [6]. For a
constraint HEX-program Π and a (possibly partial) assignment A over translation(Π),
one can extract the set EA = toAtom−1(A) of constraint expressions assumed to be
true. For the set of all constraint expressions E appearing in Π , Algorithm 2 computes
an IIS E′ ⊆ E. Since EA is not necessarily inconsistent, the algorithm might include
yet unassigned constraint expressions, i.e., we might have E′ * EA. Adding nogoods
for such IISs possibly implies yet unassigned atoms and, thus, avoid wrong guesses.

Proposition 4. Whenever Algorithm 2 returns E 6= ⊥, then E is an IIS.

Example 8. Consider the set of constraint expression E = {e1 : x + y < 3, e2 : x 6
1, e3 : y > 3, e4 : z > 2}, and suppose the algorithm starts with the set EA = {e1} of
already assigned constraint expressions. As it is consistent, it adds e2, which is still
consistent. It then adds e3, resulting in the inconsistent set {e1, e3}, which is also an IIS.
(In general one can reduce the set resulting from this process to an IIS, cf. Section 4.) 2

Although the IIS might contain constraint expressions whose truth values are yet
unknown, it can still be fed to function Λ to learn nogoods in advance. Formally:

Proposition 5. For a constraint HEX-program Π with constraint expressions E, Π ′ =
translation(Π) and a possibly partial assignment A over Π ′, any answer set of Π ′ is a
solution to Λ(A, E′) for E′ = TheoryPropagation(E, toAtom−1(A)) if E′ 6= ⊥.

si
ze Const. HEX w/o Th. Prop. Const. HEX with Th. Prop. CLINGCON

back for range back for range back for range
1 0.08 0.08 0.07 0.08 0.07 0.08 0.02 0.02 0.02
3 0.13 0.12 0.35 0.22 0.12 0.32 0.03 0.03 0.03
5 — — — 15.79 15.63 15.57 2.51 2.63 2.64
7 — — — 43.89 43.96 43.99 9.27 9.56 9.29
9 — 222.99 — 40.74 40.62 40.50 7.78 7.85 7.41

11 — — — 49.44 49.59 49.39 10.56 11.20 9.30
13 — — — 32.22 31.87 31.84 5.69 5.55 5.71

Table 1: Worker Skill Benchmark Results

6 Implementation and Evaluation

For implementing our technique, we integrated GRINGO and CLASP as backends into our
prototype system DLVHEX. We then exploited the external source interface for imple-
menting the external atom &check for consistency checking wrt. constraint theories. The
implementation is provided as a plugin to the reasoner and uses GECODE as constraint
solver backend (the implementation is flexible such that interfaces to other constraint
solvers could be easily added). The plugin further supports theory propagation as dis-
cussed in the previous section. Moreover, thanks to the possibility to extend the input
language, the constraint plugin supports constraint HEX-programs as in Definition 7 and
transparently rewrites it to a standard HEX-program prior to evaluation.

Benchmarks. We evaluated the implementation on a Linux server with two 12-core
AMD 6176 SE CPUs with 128GB RAM using a couple of benchmarks (see https:
//github.com/hexhex/caspplugin), which have been considered in the preliminary thesis
work [19]. We compare our implementation without and with theory propagation using
different nogood learning techniques. We further compare our implementation to the
CLINGCON system. The timeout was set to 300 seconds per instance (denoted —).

Worker skill. In the following scheduling problem, we consider tasks to be assigned to
workers, such that the skills of the worker are not smaller than the difficulty of the task
(difficulty and the skills are expressed by integers).

The results are shown in Table 1. While the CLINGCON system is faster than our
system, theory propagation reduced significantly the performance gap. Without theory
propagation, most instances are not solvable within the timeout. This is because learned
nogoods are added much less frequently since the assignment needs to be completed
before the external source is triggered, so the reasoner spends a significant amount of
time completing assignments that might be actually already conflicting.

Packing. This problem consists of a set of squares of given sizes which are to be placed
in a rectangular area of a given size such that no squares intersect. It was taken from the
ASP Competition 2011 but restated as a constraint HEX-program.

The results are shown in Table 2. Also here, CLINGCON is faster. A closer analysis
revealed that theory propagation is applied only very few times at the beginning of the
search with no visible effect. This is because the problem features only constraint atoms
in disjunctive rule heads and the instances are under constrained, thus constraint atoms
are mostly subject to choices upon either a solution is found or some nogood is learned.

si
ze Const. HEX w/o Th. Prop. Const. HEX with Th. Prop. CLINGCON

for back for back for back
1 4.44 4.26 4.40 4.24 0.03 0.03
3 5.40 4.94 5.47 4.65 0.02 0.02
5 6.50 6.09 6.73 5.80 0.02 0.03
7 7.00 5.41 7.48 6.14 0.03 0.02
9 6.69 5.14 6.36 4.94 0.03 0.02

11 7.26 5.33 5.65 5.44 0.02 0.02
13 6.15 4.99 6.73 5.84 0.02 0.02

Table 2: Packing Benchmark Results

si
ze Const. HEX w/o Th. Prop. Const. HEX with Th. Prop. CLINGCON

back for range back for range back for range
1 0.08 0.08 0.07 0.07 0.07 0.07 0.02 0.02 0.01
3 0.20 0.13 1.00 0.13 0.14 0.36 0.03 0.02 0.02
5 0.29 0.32 0.29 0.34 0.41 0.33 0.04 0.04 0.04
7 — — — 1.38 1.38 1.39 0.04 0.04 0.03
9 — — — 1.73 1.74 1.63 0.05 0.06 0.05

11 — — — 2.91 2.90 2.57 0.06 0.07 0.07
13 — — — 4.10 4.29 4.07 0.08 0.09 0.08

Table 3: Reachability Benchmark Results

Reachability. In this problem a set of cars with limited reachability is to be assigned to
destinations in a graph, such that no car is assigned to a node which exceeds its limit.

The results are shown in Table 3. Without the theory propagation only the simplest
instances can be solved, while theory propagation allows for scaling up to a larger size.
We observed that theory propagation, in this problem, is never applied on the easiest
instances (as they are solved after a few choices). However, starting from instances of
size 7, the first calls to theory propagation, which occur at the beginning of the search, are
very effective in cutting the search space. The strategy without theory propagation cannot
benefit from this initial pruning, and since also nogood learning from the constraints
becomes more rare, no solution is found within the timeout.

Summary. While all benchmarks show that our implementation cannot yet compete
with CLINGCON, we already achieved a significant improvement compared to the im-
plementation without theory propagation. The remaining gap is explained by a tighter
coupling of the ASP solver and the theory solver. In fact, although thanks to theory
propagation, the constraint solver is now queried for partial interpretations, each call still
needs to investigate the updated partial interpretation from scratch to determine an IIS.
In contrast, CLINGCON also exploits information about atoms which have changed or not
since the previous call, which allows for more efficient computation of implied atoms.
However, the theory propagation methods already show significant improvements, and it
is expected that advanced technique such as in CLINGCON will further shrink the gap.

Integration with other External Sources – Application Scenario. In contrast to pure
CASP, constraint HEX-programs allow for combining constraints and other external
sources. We consider a company which hires employees and assigns them to departments
based on their skills. Constraints limit the absolute salaries and salary gaps. The total set

of employed applicants may influence the required skills due to administrative issues.

r1 : worker(W,Sk ,Sl)← &sql

[
“Select id, skill, salary

from Applicant where skill in (%1)”
, req

]
(W,Sk ,Sl)

r2 : dept(D,U)← &sql [“Select id, upperbound sal from Department”] (D,U)

r3 : worker dept(W,D)← &ontology [worker , D] (W), dept(D,M)

r4 : hire(W,D,Sk ,Sl) ∨ ¬hire(W,D,Sk ,Sl)← worker dept(W,D),worker(W,Sk ,Sl)

r5 : ← hire(W,D1,Sk ,Sl), hire(W,D2,Sk ,Sl), D1 6≡ D2

r6 : ← req(Sk , N),&count [hire, 3,Sk] (C), C 6≡ N

r7 : U ≥ Sl ← hire(W,D,Sk ,Sl), dept(D,U)

r8 : ← hire(W1, D,Sk1,Sl1), hire(W2, D,Sk2,Sl2),Sl1 > 15 ∗ Sl2
r9 : req(hr accounting , 1)← sum(hire, 3) > 100000

We assume that facts of kind req(sk , n) specify that n employees with skill sk
are needed. Rule r1 performs a pre-selection due to the possibly large number of
applicants, and imports only those whose skills are required; here, (%1) refers to the skills
represented by req . Rule r2 imports departments and their upper salary bounds. Rule r3
uses an ontology to infer possible departments at which a worker can be employed, based
on his/her skills; for each atom worker(w, sk , sl) (e.g. w = joe, sk = programming ,
sl = 2000), sk is interpreted as a concept in the ontology which is extended by individual
w; this infers for each department D all workers W who might work there. Rules r4 and
r5 guess all possible hirings of workers in at most one department; rule r6 ensures that the
requirements are satisfied, where &count [hire, 3,Sk] (C) yields the number of distinct
atoms hire(·, ·,Sk , ·), i.e., of hired applicants with skill Sk . Rule r7 enforces salaries to
be within the department limit. Rule r8 ensures that no employee can earn more than 15
times as much as any other employee in the department. Rule r9 derives that a dedicated
human resources accountant is needed, if the sum of all salaries exceeds a given limit.
As external atoms are used cyclically rather than in sequence, the application cannot be
simulated by manually calling dedicated systems for the various external sources.

7 Conclusion

We have presented constraint HEX-programs, which facilitate Constraint Answer Set
Programming (CASP) on top of HEX-programs. As the latter extend ASP with access
to arbitrary external sources, applications in constraint HEX-programs may exploit con-
straints and other background theories and can not be realized with CASP systems.
Our approach uses generic algorithms developed for HEX-programs. The current imple-
mentation is not yet competitive with dedicated CASP systems wrt. efficiency, but the
optimizations can improve performance significantly compared to the basic encoding.

CASP solvers realize more techniques than our solver [17], e.g. a tighter integration
of theory propagation methods which exploit information about truth value updates,
which we plan to integrate in future work. Also the integration of additional features,
such as global constraints, are up to future work. Moreover, guesses of constraint atoms
are not always necessary, e.g., when constraint expressions occur in heads of rules with

satisfied bodies, then the value is enforced rather than queried. Finally, while the CASP
resp. HEX-solver learns from the constraint solver, there is currently no information flow
in the other direction, which would be interesting to investigate.

References

1. Apt, K.: Principles of Constraint Programming. Cambridge University Press, NY, USA (2003)
2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories, Frontiers

in Artificial Intelligence and Applications, vol. 185, chap. 26, pp. 825–885. IOS Press (2009)
3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Comm. ACM

54(12), 92–103 (2011)
4. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. CoRR

abs/1007.4114 (2010)
5. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing efficient evaluation of

HEX programs by modular decomposition. In: LPNMR. LNCS, vol. 6645, pp. 93–106 (2011)
6. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-driven ASP solving with external

sources. TPLP 12, 659–679 (2012)
7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order

Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI. pp. 90–96.
Professional Book Center (2005)

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic-Web Reasoning. In: ESWC. LNCS, vol. 4011, pp.
273–287. Springer (2006)

9. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

10. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187–188, 52–89 (2012)

11. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9(3–4), 365–386 (1991)

12. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

13. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

14. Lierler, Y.: Relating constraint answer set programming languages and algorithms. Artificial
Intelligence 207, 1–22 (2014)

15. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating Answer Set Programming and Constraint
Logic Programming. Ann. Math. Artif. Intell. 53(1-4), 251–287 (2008)

16. Mitchell, D.G.: A SAT solver primer. EATCS Bulletin 85, 112–133 (2005)
17. Ostrowski, M., Schaub, T.: ASP modulo CSP: the clingcon system. TPLP 12, 485–503 (2012)
18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Artificial Intelligence 138, 181–234 (2002)
19. Stashuk, O.: Integrating Constraint Programming into Answer Set Programming. Master’s

thesis, Vienna University of Technology, Knowledge-based Systems Group (Sept. 2013)

