
VCWC: A Versioning Competition Workflow Compiler?

Günther Charwat1, Giovambattista Ianni2, Thomas Krennwallner1, Martin Kronegger1,
Andreas Pfandler1, Christoph Redl1, Martin Schwengerer1, Lara Spendier1,

Johannes Peter Wallner1, and Guohui Xiao1

1 Institute of Information Systems, Technische Universität Wien, A-1040 Vienna, Austria
2 Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy

1 Introduction

System competitions evaluate solvers and compare state-of-the-art implementations on
benchmark sets in a dedicated and controlled computing environment, usually compris-
ing of multiple machines. Running a competition is a time-consuming task that involves
execution, maintenance, and data extraction of thousands of small tasks and runs pro-
ducing a vast amount of log information for statistical and post mortem analysis. Each
subtask in a competition could have several dependencies on other tasks before it can be
executed, thus competition software must be aware of such intrinsic task prerequisites.
For instance, before data extraction, we have to run a solver on a particular benchmark
instance which is followed by verifying the result of the run using solution verification
software. Only when the statistical data has been extracted for all runs of a benchmark
instance for a particular solver, the next job will be to compute summary statistics of all
those runs, and so forth.

Performing experimental evaluations in computer science like competitions is not
a straightforward task: recent initiatives like [7] aim at establishing best practices in
computer science evaluations, especially identifying measures to be taken for ensuring
repeatability and classifying common pitfalls. Several programs exist that help running
a competition, controlling its parameters and the surrounding environment, but they
mainly focus on certain subtasks necessary for such an effort. For instance, Asparagus [1]
focusses on maintaining benchmarks and instances thereof. Other known tools such
as Runlim [20] and Runsolver [19] help to limit resources and measure CPU time and
memory usage of solver runs. Other systems are tailored at specific needs of specific
communities: the not publicly accessible ASP Competition evaluation platform for the
3rd ASP Competition 2011 [4] implements a framework for running a ASP competition.
Another more general platform is StarExec [22], which aims at providing a generic
framework for competition maintainers. The last two systems are similar in spirit, but
each have restrictions that reduce the possibility of general usage: the StarExec platform
does not provide support for generic solver input and has no scripting support, while
the ASP Competition evaluation platform has no support for fault-tolerant execution of
instance runs. Moreover, benchmark statistics and ranking can only be computed after
all solver runs for all benchmark instances have been completed.

A robust job execution platform is a basic requirement for a competition. During
benchmark evaluation, several different kinds of failures may happen, mainly
? This research is supported by the Austrian Science Fund (FWF) project P20841 and P24090.

(a) programming errors in the participant software;
(b) software bugs in the solution verification programs; or
(c) hardware failures during a run, which may be local to a machine (e.g., harddisk or

memory failure) or global to the network (for instance, when the server room air
condition fails).

The likelihood of failure (a) is very high when running a competition with several par-
ticipants, and it is treated as failing a benchmark instance when ranking solvers and
benchmarks. Participant solvers can fail for a variety of reasons: the execution environ-
ment must be aware of such potential problems, like waste of CPU or memory resources,
and reap all left-over processes of crashed solvers, in order to prevent interference with
follow-up jobs running on the same machine. Also, processes running wild may fill up
harddisk space, and administrative intervention can be necessary to bring the system
in a usable state again. Failure (b) is more subtle, as it involves the integrity of the
competition. Nevertheless, no competition can be immune to such events, and detecting
and treating such problems as early as possible is imperative. Problem (c) on the other
hand might appear to be something nobody can foresee and might be impossible to
prevent. The proper handling of such situations must be an integral part of the system,
e.g., by reverting the execution to its last consistent state and properly resuming.

Moreover, a competition platform must be flexible enough to allow for “late” or
updated benchmark and solver submissions. It is not uncommon that certain problems
arise during the execution of the competition that have not been spotted while selecting
benchmarks or when participants have submitted their final versions of their solvers.
Changing the course of the competition after the platform has started executing is
cumbersome and requires further effort for the competition maintainers.

However, there is no standard software that can address the problems and require-
ments mentioned above and on the same hand allows for a controlled and flexible
evaluation of solvers on benchmark instances. Finding and preventing errors during
execution cannot be guaranteed, but a fault-tolerant design helps the competition main-
tainers to perform all steps and minimizes the action required to come back to a safe state.
To address this issues, we introduce the Versioning Competition Workflow Compiler
(VCWC) system. VCWC uses a two-step approach: first, a workflow for a competition
track is generated; a workflow is a dependency description of jobs that need to be ex-
ecuted in order to come to a ranking of solvers that participate in a competition track.
Then, a versatile job scheduling system takes this workflow and executes it. Specifically,
VCWC is based on

– GNU Make and GNU M4 for building the track execution workflow,
– the HTCondor [25] high throughput computing platform, which provides flexible

means to support the requirements of running a competition, like job scheduling on
a collection of benchmark servers, and

– the Directed Acyclic Graph Manager (DAGMan) [6], a meta-scheduler for HT-
Condor that maintains the dependencies between jobs and provides facilities for a
reliable, fault-tolerant, and self-healing execution of benchmarking workflows.

2

VCWC is implemented using standard UNIX tools, thus it runs on every UNIX-like
system that has support for those utilities.3

This paper has the following contributions:
– we first identify the major tasks and concepts that arise in a solver competition and

then provide an overview of task dependencies and the resulting workflow for a
competition track (Section 2);

– based on the requirements and tasks described before, we give in-detail information
on the VCWC system and show how it has been implemented (Section 3); and

– we show how VCWC has been used in the ASP Competition 2013 in Section 4.
VCWC is open source and can be downloaded from https://github.com/tkren/vcwc.

2 Modeling a Competition

In this section, we describe the basic building blocks of a solver competition. We assume
familiarity with the notion of (computational) problem, instance, and solution for a
problem; an overview is given, e.g., in [17].

A benchmark B is a set of instances I from a well-defined computational problem,
where all instances are represented in a standardized format (e.g., as logic programs or
as CNF clauses). A solver S is an implementation for an algorithm that computes the
solution for a given instance I from a benchmark B, where solutions are represented in
a standardized format such as [13].

Given as set of benchmarks B and a set of solvers S, we define a track T as a
subset of B × S that is both left-total and right-total, i.e., for each B ∈ B there exists
an S ∈ S such that (B,S) ∈ T , and for every S ∈ S there exists a B ∈ B such
that (B,S) ∈ T . Intuitively, (B,S) ∈ T means that solver S participates in track
T in solving benchmark B. Each track has an associated computation environment
env(T) with a fixed number of CPUs, memory size, and available disk space. The set
of all participating solvers to a track T is S(T) = {S | (S,B) ∈ T} and the set of
all benchmarks is B(T) = {B | (S,B) ∈ T}. Then, a competition is a collection of
tracks. A run R of solver S on instance I in track T is the evaluation of S with instance
I within the limits of the computation environment env(T). A run has an associated
solution sol(R) and performance measurements for evaluation metrics such as runtime
and memory usage. In a competition track, every instance is usually evaluated k > 1
times to eliminate outliers and to provide well-founded statistical results.

We exemplify now the notions shown above. In the ASP Competition series [3], a
system track T forms a complete bipartite graph (B∪S, T), i.e., every solver participates
in solving all benchmarks. On the other hand, the model & solve track does not have this
restriction, a participating solver may choose which benchmarks to solve. Furthermore,
tracks are usually classified as sequential or parallel, which means that their computation
environment has exactly one CPU in case of sequential tracks, or more than one CPU in
case of parallel tracks.

In a competition, several tasks need to be performed in order to evaluate a solver’s
performance relative to other solvers that participate in a certain track. The outcome

3 The execution of the runs on the other hand is not limited to UNIX-like systems, as HTCondor
and DAGMan exists for almost all major operating systems

3

of a competition is a ranking of the participating solvers, which should summarize the
performance of a solver S on benchmark B relative to the other solvers that participate
in a track. A solution verification ver(R) of run R is a mapping ver(R) ∈ {0, 1, 2}
such that ver(R) = 0 whenever sol(R) is not a solution for I , ver(R) = 1 for sol(R)
being a correct solution for I , and ver(R) = 2 otherwise. Note that ver(R) might
implement an incomplete verification algorithm, as solution verification could be a
computationally hard task. The solver summary statistics sumstat(S,B) computes for
all runs R1, R2, . . . of solver S on instances I from benchmark B the performance
measurements of those runs as summary statistics such as means, median, etc., for all
instances I ∈ B. Based on sumstat(S,B), the benchmark ranking bmrank(B) of
a benchmark B ranks each solver S ∈ S based on a predefined benchmark scoring
function. Then, the track ranking trackrank(T) generates a combined performance
evaluation of a track T based on scoring function for bmrank(B) for all benchmarks
B ∈ B.

Modeling the Dependencies in a Competition. As described above, several steps
are necessary to generate the outcome trackrank(T) of a competition track T . When
combining all the tasks in a dependency graph, where nodes represent tasks and an edges
(u, v) represent a dependency between u and v such that u must be executed before
v, we get a task model of the competition track, which, when executed in sequence,
computes all prerequisite information for each task properly and generates the desired
outcome. Such a dependency graph forms a directed acyclic graph on the conceptual
level, and can be seen as a track execution workflow for a competition track. Workflow
execution platforms such as DAGMan [6] can take such a workflow and produce—using
dependency resolution mechanisms—a sequence of tasks that can be executed in the right
order. A welcoming side-effect is that job scheduling software such as HTCondor [25]
can run each individual task potentially in parallel on several benchmark servers, thus
speeding up the execution of the competition.

Based on the competition tasks introduced before, we explicitly outline in Fig. 1 the
implicit dependencies of the tasks and show a competition workflow that can be used to
perform all necessary computational tasks in a competition. Let n = |S|, m = |B|, and
k be the number of runs per instance. Nodes Ru

v,w[i] stand for the tasks associated with
the i-th run, 1 ≤ i ≤ k, of solver Su on instance Iv of benchmark Bw. These tasks are
comprehensive of computing the solution and perform the respective verification. The
nodes STu

w represent the solver summary statistics task of solver Su in benchmark Bw,
i.e., STu

w takes all runs executed and verified on Su that are associated with instances
from Bw and creates summary statistics. Then, nodes BRw represent the benchmark
ranking jobs that are connected to all STu

w for 1 ≤ u ≤ n. The topmost node TR is the
track ranking task in a competition, while the lowest node r gives us the computation
root, a unique entry point in the workflow without associated task.

Workflow Versioning. A further benefit of modeling a competition track as a workflow
is to have a graph-based representation of tasks that can be easily modified and updated
when basic constituents of a track change. To address the problem of late participant
submissions or fixing broken benchmark instances after competition has already started,
we introduce a workflow versioning mechanism.

4

TR

BR1

ST 1
1

R1
1,1[1] R1

1,|B1|[k]

STn
1

Rn
1,1[1] Rn

1,|B1|[k]

BRm

ST 1
m

R1
m,1[1] R1

m,|Bm|[k]

STn
m

Rn
m,1[1] Rn

m,|Bm|[k]

r

. . .

.

.

Fig. 1. Competition workflow for a track with m benchmarks and n solvers

Using these principles, one can add updated or fresh participants, benchmark (or
instances thereof), or further runs. Additions and removals do not have impact on
previously stored executions of the workflow, and broken runs do not appear in generated
statistics. We identify the following use cases for changing the workflow of a track T :
1. adding a new benchmark Bm+1 to T ;
2. adding a new solver Sn+1 to T ; or
3. adding a new instance I|Bj |+1 to a a particular benchmark Bj from T .

3 Implementation of the VCWC System

The system architecture of VCWC is shown in Fig. 2. The main components are
– the VCWC compiler, which generates a competition workflow description and

profiles for instance parameters;
– DAGMan (Directed Acyclic Graph Manager), a meta-scheduler for managing de-

pendencies between jobs built on top of
– HTCondor, a job scheduler for building high-throughput computing environments.

We show now the basic steps that are required to come from the principal components
of a competition track T , i.e., benchmarks and participating solvers, to an executable
workflow for T .

The first step before T can be executed is to prepare benchmark sets and to select
instances for each benchmark. If track T is of the “model and solve” type, participating

5

TR

BR1

ST 1
1

R1
1,1[1] R1

1,|B1|[k]

STn
1

Rn
1,1[1] Rn

1,|B1|[k]

BRm

ST 1
m

R1
m,1[1] R1

m,|Bm|[k]

STn
m

Rn
m,1[1] Rn

m,|Bm|[k]

r

. . .

.

.

Track Workflow

Run Profile

Run Profile

...

VCWC

S B

Track
Description

DAGMan

Meta-Scheduler

HTCondor

Job scheduling

· · ·
Instance

Run

Summary
Statistics

Benchmark
Ranking

Track
Ranking

Benchmark servers

Fig. 2. VCWC System Architecture (dashed lines: data flow, solid lines: call flow)

solvers can choose which benchmarks they solve and prepare a dedicated tool for each
benchmark. Alternatively, if T is of the strict “system track” type, all participating
solvers are run on all benchmarks. Based on this, VCWC expects a benchmarks directory
with all possible benchmarks B having corresponding subdirectories assigned to track T .
The selected instances of a benchmark are stored in those subdirectories. Furthermore,
additional information is required for mapping benchmarks to participating solvers.
VCWC thus expects a dedicated participants directory of participating solvers S,
with subdirectories for each possible benchmark of a track. If one particular solver S
signed up to solve benchmark B, the subdirectory called B will contain a directory S
with the software solution for B for that particular solver S.

Then, VCWC requires a track description file that records the location of the
benchmarks and participants folders, the track name, the workflow output
directory, and other parameters. Using this description file as commandline argument,
VCWC will then generate a workflow (called DAG file in DAGMan jargon) for T that
can be processed by DAGMan, which submits jobs for execution in the network of
benchmark servers. Further files that are required for track execution are job submis-
sion files for HTCondor. Job submission files describe the location of executables and
arguments for particular jobs.

HTCondor is a high-troughput computing framework for distributed computation of
computationally intensive tasks. Each task (job) that needs to be executed is first sent into
a job queue, and based on priority management and job requirements (such as number
of CPUs or memory) it is scheduled to run on one of the target machines that are free for
new jobs and fulfill all job requirements. Using this framework, it is easy to pool several
dedicated benchmark machines to form a powerful cluster for competition execution.
The HTCondor job queue is persistent, i.e., once a job has been submitted for running,
it will stay in the queue until it has been served by one of the available benchmark

6

machines and the computation result is available. This “fire-and-forget” mechanism
survives machine reboots and system crashes, i.e., no administrative intervention is
necessary after an unexpected system shutdown. Once HTCondor comes up again, it will
re-schedule previously interrupted jobs and starts the computation from scratch again.

HTCondor itself does not keep track of job dependencies, this is DAGMan’s respon-
sibility. The DAGMan meta-scheduler takes one argument: the DAG file that has been
generated by VCWC. When we start the execution for track T , DAGMan deploys a job
to HTCondor that continuously runs and dispatches jobs in the workflow in the correct
topological sort. DAGMan monitors the submitted jobs, keeps track of their exit codes,
and only finishes successfully once all jobs have been successfully executed. Otherwise,
it stops processing whenever a job fails and no further job can be submitted according
to the current topological ordering. In this situation, DAGMan records successful and
unsuccessful runs and exits: in this case, administrative intervention is required to bring
the track execution back to life. After the reason for the job failure has been found
and eliminated, a simple re-deploy of DAGMan on HTCondor resumes processing the
workflow at the previously failed job.

In the following subsections, we will provide information how each component is
implemented and provide details on how they are run.

VCWC. The VCWC tool consists of a wrapper shell script that invokes GNU Make [9]
on a Makefile. First, this Makefile reads the track description, which references the
benchmarks and participants folders as input, and generates lists of benchmark
instances and solvers. Based on this information, the Makefile instantiates rules that
tell GNU Make how to generate the DAGMan workflow.

For instance, a typical VCWC call and its output looks like this:

vcwc trackinfo-t03.mk
Welcome to vcwc 0.1
generating workflow for track t03 with following setup:
- benchmarks: b01 b02 b04 b05 b06 b07 b08 b09 b10 b11 b12 [...]
- participants: s40 s42 s44 s60 s62 s63
- benchmarks/participants: b18/s40 b18/s60 b18/s42 b18/s63 [...]
- runs: r000 r001 r002
- workflow version: 000
- timestamp: 2013-04-26 14:34:15+02:00
compiling 90 runs for S/t03/b01/s40/000
[...]
compiling 78 runs for S/t03/b04/s40/000
[...]
compiling 6 participants for B/t03/b01/000
compiling 6 participants for B/t03/b02/000
[...]
linking 26 benchmarks for T/t03/001

This will generate a DAG file for DAGMan and run profiles for each individual instance
run. The generated DAG workflow has always the same shape as Fig. 1. Each node in
this DAG encodes the job type, which is an instance run, a solver summary statistics, a
benchmark ranking, or the track ranking job. VCWC uses the GNU M4 macro processing
language to instantiate workflow templates and run profiles based on the names of
benchmarks, solvers, instances, and runs.

Adding new instances, benchmarks, or solvers to a track execution workflow is imple-
mented as described in Section ??. This can be done by simply adding instance or solver
files and their corresponding directories to the benchmarks and participants

7

folders. GNU Make will automatically recognize that the input has changed, and will
only regenerate those parts of the workflow that requires changes.

DAGMan and HTCondor. In this subsection, we exemplarily show how to execute a
track using the VCWC system. Once the VCWC compiler generated a workflow file, we
can submit the corresponding DAG for execution. This is simply done using a call to

vcwc trackinfo-t03.mk submit
[...]
Running rescue DAG 2
[...]
Log of the life of condor_dagman itself : [...]/t03/track.dag.dagman.log

which calls condor_submit_dag. In the example output above we can see that
DAGMan has successfully deployed its workflow manager to HTCondor. The message
Running rescue DAG 2 shows that DAGMan did not successfully execute the
whole track before, either because a job failed and no further job could be run therefore,
because the execution was forced to stop, or even because the system had to be restarted.
DAGMan thus attempts to continue to run from a previous state stored in a rescue
file with version 2 (hence, this is the third attempt to execute this track). A look into the
HTCondor execution queue shows the following picture:

condor_q -dag
-- Submitter: lion.kr.tuwien.ac.at : <10.0.0.100:52610> : lion.kr.tuwien.ac.at
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
260226.0 aspstat 4/28 18:04 0+00:22:38 R 0 0.3 condor_dagman -f -
260347.0 |-R/t02/b05/s 4/28 18:07 0+00:02:00 R 0 0.0 run_instance.sh as
260348.0 |-R/t02/b05/s 4/28 18:07 0+00:02:00 R 0 0.0 run_instance.sh as
[...]
260358.0 |-R/t02/b01/s 4/28 18:09 0+00:01:39 R 0 0.0 run_instance.sh as
260359.0 |-R/t02/b01/s 4/28 18:09 0+00:00:00 I 0 0.0 run_instance.sh as
260360.0 |-R/t02/b01/s 4/28 18:09 0+00:00:00 I 0 0.0 run_instance.sh as
[...]
106 jobs; 0 completed, 0 removed, 93 idle, 13 running, 0 held, 0 suspended

In this situation, we see that there is one DAGMan instance executing our track, and
12 jobs are being run on the benchmark servers in parallel, while 93 jobs are pending to
be executed on one of the machines connected to the benchmark cluster.

4 Use Case: ASP Competition 2013

VCWC has been developed as part of the ASP Competition 2013 evaluation software.
A lot of experience had been gained when running the former competition, and the
design of VCWC has profit from this. Special care has been given to have a versatile
system that allows to address the failure sources (a)–(c) described above. Even though
very unlikely, fatal hardware failures (c) do occur, in fact, during the execution of the
ASP competition 2013, a broken valve actuator prevented to distribute chilled water
from the backup cooling system, thus excess heat continued to warm up the data center
to an ambient temperature of 45 degrees Celsius, and all server machines had to shut
down. After the cooling loop was working again, starting up the benchmark servers
automatically re-scheduled all unfinished jobs, and the track workflows continued to run
without administrative intervention.

8

VCWC can easily handle thousands of benchmark runs. With 21 participants among
two main tracks and 27 benchmark problems, VCWC has been put under intensive
testing: The system track workflow consists of over 18000 jobs, and the size of the DAG
file is about 3 MiB. It took about a minute to generate this file, mainly because a lot of
small intermediate files had to be written to the harddisk during the compilation. While
setting up the Competition, the incremental versioning system allowed to make fixes
with no impact in the ongoing run. We got further mileage out of using GNU Make
for the implementation of VCWC by using its parallel execution mechanism. In this
scenario, we could profit from an immediate 4-fold speedup for compiling the workflows
just by turning on parallel make execution on our benchmark servers with two 12-core
AMD Opteron Processor 6176 SE processors and 128GiB RAM.

5 Conclusion and Related Work

Scientific competitions and evaluations are traditionally run on custom evaluation plat-
forms. The degree of complexity and the type of service of such platforms might vary,
ranging from simple benchmark repositories to fully-fledged evaluation systems. In
the neighbouring communities it is worth citing the IPC Script collection [12] used
throughout the International Planning Competition series up to its seventh edition [5];
the SMT-Exec platform [2, 21] adopted in Satisfiability Modulo Theories Competitions;
the TPTP library and associated infrastructure [23] used in Automated theorem proving
competitions [24]; the Quantified Boolean Formulas satisfiability community with its
QBF-LIB library [8] and evaluation platform [18]; and, last but not least, the very active
satisfiability community, with its large SATLIB collection [11] and longstanding experi-
ence in competition evaluation systems (see [14]). To the best of our knowledge none of
the aforementioned platforms focus on workflow and workload management issues.

In the ASP community, our VCWC platform follows chronologically and is inspired
by the Asparagus Web-based Benchmarking Environment [1] and the (not publicly
accessible) Third ASP Competition evaluation platform [4]. An attempt at providing a
general purpose platform, serving multiple communities and generalizing specific needs
is the StarExec platform [22].

Among interdisciplinary initiatives aimed at fostering benchmark best practices we
recall the Evaluate initiative and the Compare workshop [7, 15].

Future versions of VCWC may provide support for more fine-grained instance
runs that allow to parametrize solver heuristics; currently, each solver setting requires
a dedicated solver. While the filesystem-based data storage is good enough for most
purposes, more powerful alternatives such as SQL storage might be of interest. Support
for other job scheduling platforms such as Oracle Grid Engine [16] or Hadoop [10] could
be of interest when using VCWC in environments that do not have HTCondor installed.

References

1. Asparagus Web-based Benchmarking Environment. http://asparagus.cs.uni-potsdam.de/
2. Barrett, C., Deters, M., Moura, L., Oliveras, A., Stump, A.: 6 years of smt-comp. Journal of

Automated Reasoning 50(3), 243–277 (2013), http://dx.doi.org/10.1007/s10817-012-9246-5

9

3. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The Answer Set Programming Competition.
AI Magazine 33(4), 114–118 (December 2012), http://www.kr.tuwien.ac.at/staff/tkren/pub/
2012/aimag2012-aspcomp.pdf

4. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. Theory
and Practice of Logic Programming FirstView, 1–19 (2012)

5. Coles, A.J., Coles, A., Olaya, A.G., Jiménez, S., López, C.L., Sanner, S., Yoon, S.: A survey
of the seventh international planning competition. AI Magazine 33(1) (2012)

6. Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflows for e-Science, chap.
Workflow Management in Condor, pp. 357–375. Springer (2007)

7. Collaboratory on Experimental Evaluation of Software and Systems in Computer Science.
http://evaluate.inf.usi.ch/ (2012)

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001), www.qbflib.org

9. GNU Make. https://www.gnu.org/software/make/
10. Hadoop. https://hadoop.apache.org/
11. Holger, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Proceedings

of Theory and Applications of Satisfiability Testing, 4th International Conference (SAT 2000).
pp. 283–292. IOS Press (2000)

12. The software of the seventh international planning competition (IPC). http://www.plg.inf.uc3m.
es/ipc2011-deterministic/FrontPage/Software (2011)

13. Järvisalo, M., Berre, D.L., Roussel, O.: Rules of the 2011 sat competition.
http://www.satcompetition.org/2011/rules.pdf (2011)

14. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver competitions.
AI Magazine 33(1) (2012)

15. Klebanov, V., Beckert, B., Biere, A., Sutcliffe, G. (eds.): Proceedings of the 1st International
Workshop on Comparative Empirical Evaluation of Reasoning Systems, Manchester, United
Kingdom, June 30, 2012, CEUR Workshop Proceedings, vol. 873. CEUR-WS.org (2012)

16. Oracle grid engine. http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
17. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
18. Peschiera, C., Pulina, L., Tacchella, A.: Designing a solver competition: the QBFEVAL’10

case study. In: Stump, A., Sutcliffe, G., Tinelli, C. (eds.) Workshop on Evaluation Methods
for Solvers, and Quality Metrics for Solutions (EMSQMS) 2010. EasyChair Proceedings in
Computing, vol. 6, pp. 19–32. EasyChair (2012)

19. Roussel, O.: Controlling a solver execution with the runsolver tool system description. Journal
on Satisfiability, Boolean Modeling and Computation 7, 139–144 (2011)

20. Runlim. http://fmv.jku.at/runlim/
21. SMT Exec. http://www.smtexec.org/
22. Stump, A., Sutcliffe, G., Tinelli, C.: Introducing StarExec: a cross-community infrastructure

for logic solving. In: Klebanov et al. [15], p. 2
23. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning

43(4), 337–362 (2009)
24. Sutcliffe, G.: The CADE-23 automated theorem proving system competition–CASC-23. AI

Communications 25(1), 49–63 (2012)
25. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experi-

ence. Concurrency Computat. Pract. Exper. 17(2-4), 323–356 (2005)

10

