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Angry-HEX: an Artificial Player for Angry Birds
Based on Declarative Knowledge Bases

Francesco Calimeri1, Michael Fink2, Stefano Germano1, Andreas Humenberger2,
Giovambattista Ianni1, Christoph Redl2, Daria Stepanova2, Andrea Tucci1, and Anton Wimmer2

1Dipartimento di Matematica e Informatica, Università della Calabria, Italy
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This paper presents the Angry-HEX artificial intelligent agent that participated in the 2013 and 2014 Angry Birds Artificial
Intelligence Competitions. The agent has been developed in the context of a joint project between the University of Calabria
(UniCal) and the Vienna University of Technology (TU Vienna).

The specific issues that arise when introducing artificial intelligence in a physics-based game are are dealt with a combination
of traditional imperative programming and declarative programming, used for modelling discrete knowledge about the game and
the current situation. In particular, we make use of HEX programs, which are an extension of Answer Set Programming (ASP)
programs towards integration of external computation sources, such as 2-D physics simulation tools.
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I. INTRODUCTION

Angry Birds is a popular video game: its main goal is to
destroy all pigs in a scene by shooting birds of different

kinds at them using a slingshot. Score is given to the player
according to the number of destroyed pigs and objects plus a
bonus for each spared bird. The pigs are sheltered by complex
structures made of objects of different materials (wood, ice,
stone, etc.) and shapes, mostly but not exclusively rectangular.
After a player’s shot, the scenario evolves complying with laws
of physics, with the crash of object structures and a generally
complex interaction of subsequent falls.

Interestingly, in this game one can find many of the chal-
lenges that physics-based games present to the AI commu-
nity. These are mostly related to the need of dealing with
uncertainty in several respects, such as predicting the unknown
consequences of a possible move/shot, or estimating the ad-
vantages of a choice with respect to possible alternative moves,
or planning over multiple moves where any intermediate move
is subject to failure or unexpected outcome. In turn, the above
technical challenges require the effective resolution of other
important issues, like the identification of objects via artificial
vision, the combination of simulation and decision making,
the modelling of game knowledge, and the correct execution
of planned moves.

The Angry Birds AI Competition runs on a client/server
architecture with one server and an instance of the browser-
based version of the game for each participating agent. Each
participating agent runs on a client which connects the browser
game to the server according to a given protocol. An artificial
player can also obtain the current reference scores for each
level, and can prompt the server for executing a shot, which
will in turn be performed in the corresponding game screen.
The long-term goal of the competition series is to foster the
building of AI agents that can play any previously unseen level

better than the best human players. In order to successfully win
this challenge, participants are solicited to combine different
areas of AI such as computer vision, knowledge representa-
tion and reasoning, planning, heuristic search, and machine
learning. Successfully integrating methods from these areas is
indeed one of the great challenges of AI.

In this work, we present Angry-HEX, an artificial player
for Angry Birds, based on declarative knowledge bases, that
participated in the 2013 and 2014 Angry Birds AI Compe-
titions [1], [2], which recently inspired a number of research
contributions [3]–[6]. The agent features a combination of tra-
ditional imperative programming and declarative programming
that allows us to achieve high flexibility in strategy design and
knowledge modelling. In particular, we make use of Answer
Set Programming (ASP) [7]–[12], a well-established paradigm
of declarative programming for knowledge representation and
reasoning (KRR), and HEX programs [13], which are a proper
extension of ASP programs towards integration of external
computation and knowledge sources; knowledge bases, written
in ASP, drive both decisions about which target to hit for each
shot (tactic gameplay), and which level should be played and
how (strategic gameplay). The usage of Answer Set Program-
ming has several benefits. First of all, ASP knowledge bases
are much more flexible and easier to change than a procedural
algorithm. In particular, thanks to the availability of constructs
such as aggregate atoms and weak constraints, reasoning
strategies can be easily encoded as a set of few rules, while the
development of dedicated algorithms is time consuming and
error prone. Therefore, conducting experiments with different
strategies in order to optimize our agent is much easier.
Furthermore, ASP is a general purpose declarative language
in which temporal and spatial reasoning can be embedded
as shown for instance in [14], [15]; also, ASP can be used
in the planning domain, for modelling action languages (see
e.g. the seminal work [16]), and probabilistic reasoning [17].
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The advantages above come however at the price of a lower
scalability when large input datasets have to be dealt with.
In the context of the Angry Birds game, it is also necessary
to deal with data coming from (approximately) continuous
domains: Indeed, physics simulation libraries, using floating
point operations, are needed; such data cannot be efficiently
dealt with in a natively discrete, logic-based framework such
as ASP. In this respect, HEX-programs, an extension of ASP,
are well-suited as they allow for encapsulating external sources
of information: on the one hand, numeric computations and
part of the spatial processing tasks are computed on what can
be called “the physics side” and can be embedded as external
sources; on the other hand, actual reasoning strategies can be
specified declaratively on a declarative “reasoning side”. This
way, numeric processing is hidden in the external sources,
since returned elaborated results are limited to those aspects
which are relevant for the declarative part; this can be encoded
by a fairly limited set of discrete logic assertions.

The main contributions of the present work can be sum-
marized as follows. Towards modelling dynamic (situation-
dependent) and static knowledge in a physics-based game,
we propose a hybrid model in which logic-based, declarative
knowledge modelling is combined with traditional program-
ming modules whose purpose is acting on the game and
extracting discrete knowledge from the game itself. In our
architecture, the decision support side is implemented in
an extension of Answer Set Programming (ASP) integrated
with external sources of computation modelled by means of
traditional imperative programming. We contextualized this
approach to the Angry Birds Game, and propose an agent
which participated in the Angry Birds AI Competition Series.
Also, we analyzed the performance of the proposed agent in
several respects.

We point out next the advantages of the herein proposed
approach. (i) It is possible to deal with the respective limi-
tations of both declarative modelling and traditional program-
ming and gain instead from respective benefits; indeed, on
the one hand, logic programming is extremely handy and
performance efficient when dealing with discrete domains, but
it has limited ability to cope with nearly-continuous domains,
and at the price of unacceptable performance. On the other
hand, ad-hoc programmed modules lack flexibility but allow
efficient processing of nearly-continuous knowledge (ballistic
and geometric formulas, artificial vision, etc.). (ii) The intro-
duction of declarative logic-based knowledge bases allows to
combine statements concerning commonsense knowledge of
the game (e.g., in the context of Angry Birds, “Blue birds are
good on ice blocks”) with objective knowledge (e.g. “an ice
block w pixels wide is currently at coordinates (x, y)”) when
performing decision making; it permits also to focus attention
on declarative descriptions of the game knowledge and of the
goals to be achieved, rather than on how to implement under-
lying evaluation algorithms. This allows fast prototyping, and
consequently much greater efficiency in the usage of developer
time. For instance, both strategy and tactics behaviors can be
easily refined and/or redefined by quickly changing logic as-
sertions. (iii) Benchmarks show that logic-based approaches,
and particularly, ASP-based approaches, if properly combined

with procedural facilities, can be employed in applications
having requirements near to real-time, making the gap between
the performance of current logic-based solutions and require-
ments of pure real-time applications much narrower. (iv) The
approach generalizes to a wide range of applications which
share a number of aspects with the Angry Birds setting, such as
automated room cleaning, semi-interactive turn-based games,
planning in slowly evolving environments, such as robot and
space probes etc. One can adapt our approach to such or
similar scenarios, by adding a process step to the traditional
observe-think-act cycle [18], thus obtaining a sort of observe-
process-think-act cycle, and properly implementing the four
stages. More in detail, the observation and process phases can
be implemented by hardwiring sensors and processing their
inputs in a procedural environment, providing a focused set of
external sources of knowledge to the think phase; the process
phase plays the role of discretizing and reducing information,
so that the think phase, carried out by a logic-based system, is
efficiently performed, still keeping the benefits of declarative
knowledge modelling; the act phase is straightforward and re-
wires decisions to actual actions. A deployment of an approach
similar to present work can be found in [19].

In the following, we first describe the Angry Birds AI
competition setting; then we overview the agent architecture
and outline specific design choices introduced for dealing with
physics and uncertainty; then, we comment experimental re-
sults in terms of time and score performance. Finally, we draw
conclusions and discuss open issues and future development.

II. THE ANGRY BIRDS AI COMPETITION SETTING

We briefly describe the game and the competition setting.

A. Game Environment

For each agent participating in the competition, a unique
corresponding Angry Birds game instance runs on a game
server, while the agent itself is executed on a client computer.
The competition machinery supports Java, C/C++ and Python
agents, and can run the artificial players under either Windows
or Linux. Each agent is allowed a total of 100MB of local disk
space on the client computer, for its convenience, including
the space required for the agent code. Client computers have
no access to the internet, and can only communicate with the
game server by means of a specific communication API. No
communication with other agents is possible, and each agent
can only access files in its own directory.

The communication with the game server allows each agent
to obtain screenshots of the current game state to submit
actions and other commands. The actual game is played over
the Google Chrome (browser) version of Angry Birds, in SD
(low-resolution) mode, and all screenshots have a resolution
of 840× 480 pixels.

B. Game Objects

The objects an agent might have to deal with correspond to
all block and bird types, background, terrain, etc. occurring in
the first 21 levels of the “Poached Eggs” level set available



3

at chrome.angrybirds.com. In addition, the competition levels
may include white birds, black birds, so-called TNT boxes,
triangular blocks and hollow blocks (triangle and squares).

Once a bird is shot, the player can perform an additional
“tap” anytime afterwards, provided that it is performed before
the bird touches any other object. This action causes different
events according to each bird type: blue birds generate multiple
little blue birds; yellow birds accelerate and become very good
at breaking wood; white birds drop an explosive egg while
accelerating towards the sky; black birds explode making great
damage, and so on. “Tapping” at the appropriate moment in
time can make shot outcomes vary greatly.

C. Game Levels and Competition Setting

The levels used in the competition are not known in advance
to the participants and are not present in the original version
of the game; throughout the competition, each game level
can be accessed, played and re-played in arbitrary order by
the agent. Participants have a total time budget to solve the
competition levels corresponding to a few minutes per game
level, on average. As an example, as reported by the official
competition rules, for 10 levels there is a maximum allowed
time of 30 minutes. Once the overall time limit is reached,
the connection of agents with the game server is terminated,
then the agents have up to two minutes to store any needed
information and then stop running.

A sample agent (the so-called Naive agent) is launched on
all qualification game levels in advance; it does not participate
in the competition, but its high scores are recorded and
intended to provide participants with a reference baseline. The
Naive agent is programmed to randomly aiming at pigs, no
matter of their shelters, with no particular tactics.

Some strategy is needed when the agent takes part in
multiple rounds. In particular, each participating agent must be
able to distinguish between qualification round 1, qualification
round 2, and the Finals.

Qualifications are run in two rounds, both on the same level
set. During the first qualification round, agents can obtain,
besides their own scores, the per level high score obtained by
the Naive agent; during the second qualification round, agents
can obtain the overall per level high score obtained in the
first round (among all participants). Agents can, for example,
program the strategy by determining the game levels where
they can obtain the highest improvements between the two
rounds. Agents cannot be modified between round 1 and round
2.

The highest scoring agents after qualification round 2 partic-
ipate to the finals, where they are divided into groups. During
finals, any agent can query the current group high score for
each game level (but not the high scores of other groups).
Grand finals are played on groups of two agents only.

III. ASP AND HEX PROGRAMS

The Angry-HEX agent models its knowledge of the game
by means of a variant of ASP knowledge bases called HEX
programs, and reasons on top of it via an appropriate solver.
In this section we introduce both ASP and HEX programs.

A. Answer Set Programming

Answer Set Programming (ASP) [7]–[11], [20] is a well-
established declarative programming approach to knowledge
representation and reasoning, proposed in the area of non-
monotonic reasoning and logic programming. ASP has a close
relationship to other formalisms such as propositional satisfia-
bility (SAT) [21], Satisfiability Modulo Theories (SMT) [22],
Constraint Handling Rules (CHR) [23], PDDL (planning) [24],
and many others. The fully declarative nature of ASP allows
one to encode a large variety of problems by means of simple
and elegant logic programs. The idea is to model a given
problem domain and contingent input data with a knowledge
base KB composed of logic assertions, such that the logic
models (answer sets) of KB correspond to solutions of an input
scenario; an ASP knowledge base might have none, one or
many answer sets, depending on the problem and the instance
at hand.

For instance, let us consider 3-colorability, a well-known
NP-complete problem. Given a graph G, the problem is to
decide whether there exists an assignment of one out of three
colors (say, red, green, or blue) to each node of G such that
adjacent nodes always have different colors. Suppose that G
is represented by a set of assertions F using a unary predicate
node and a binary predicate arc. Then, the following ASP
knowledge base, composed of rules r1 and r2, declaratively
describes 3-colorings:

r1 : col(X, red) | col(X, green) | col(X, blue)← node(X).

r2 : ← col(X1, C), col(X2, C), arc(X1, X2).

Intuitively, a rule can be seen as a universally quantified
first order statement. Rule r1 expresses that each node must
either be colored red, green, or blue;1 rule r2 has empty
consequence, and is also called integrity constraint: roughly,
it is not permitted that all the literals in the constraint body
are true at the same time. Hence, r2 triggers inconsistency if
two adjacent nodes share the same color, thus excluding logic
models encoding invalid colorings. Thus, there is a one-to-
one correspondence between the solutions of the 3-colorability
problem and the answer sets of F ∪ {r1, r2}, and G is 3-
colorable if and only if F ∪ {r1, r2} has some answer set.

ASP is nowadays employed in a variety of applications,
ranging from classical AI to real-world and industrial ap-
plications, e.g. [25]–[27]. The needs addressed by such a
variety of applications fostered a thriving research within the
community, causing both the enrichment and standardization
of the language (the language standard ASP-Core is nowadays
at its 2.0 version [28]) and the development of efficient solvers
(for a list, we refer the reader to [29]). Advancements are
periodically assessed in the customary ASP Competition [29],
whose goal is to assess the state of the art in ASP solving on
challenging benchmarks.

1Variable names start with an upper case letter and constants start with a
lower case letter. Note that, differently from first-order models, answer sets
are required to be minimal: i.e. r1 does not classically implies that a node
cannot be assigned to more than one color, although the consequence of r1
implicitly represent an exclusive disjunction in ASP.
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B. HEX Programs

One can see that the main benefit of the introduction
of a paradigm like ASP consists in the possibility of de-
scribing problem domains at a high abstraction level, rather
than implementing specifically tailored algorithms. The ease
of modelling comes at the price of evaluation performance
(nonetheless, efficient ASP solvers are nowadays available, see
[29]). Discrete logic-based modelling paradigms are however
historically weak on a) modelling over continuous or nearly-
continuous values, and have a limited capability of b) dealing
with probabilistic or fuzzy values. Both aspects play a signif-
icant role in physics-based games, in which moving objects
are modelled using floating point values, and outcomes of the
game are subject to uncertainty.

In order to properly deal with such issues, we opted for mak-
ing use of HEX programs. HEX programs are an extension
of ASP which allows the integration of external information
sources, and which are particularly well-suited when some
knowledge of the problem domain at hand is better modelled
with means other than discrete logic. We formally overview
HEX programs next.

A signature consists of mutually disjoint sets P of pred-
icates, E of external predicates, C of constants, and V of
variables. C may contain constants that do not occur explicitly
in a HEX program and can even be infinite.

A (signed) ground literal is a positive or a negative formula
Ta resp. Fa, where a is a ground atom of form p(c1, . . . , c`),
with predicate p ∈ P and constants c1, . . . , c` ∈ C, abbreviated
p(~c). An assignment I is a consistent set of literals. We make
the convention that if an assignment does not explicitly contain
Ta or Fa for some atom a, i.e. the assignment is partial, then
a is false wrt. I . An interpretation is a complete assignment
I , i.e., for every atom a either Ta ∈ I or Fa ∈ I holds.

1) Syntax
HEX programs generalize (disjunctive) extended logic pro-

grams under the answer set semantics [10] with external atoms
of form &g [ ~X](~Y ), where &g ∈ E , ~X = X1, . . . , X` and each
Xi ∈ P ∪ C ∪ V is an input parameter, and ~Y = Y1, . . . , Yk
and each Yi ∈ C ∪ V is an output term.

Each p∈P has arity ar(p)≥ 0 and each &g ∈E has input
arity ar I(&g)≥ 0 and output arity ar O(&g)≥ 0. Each input
argument i of &g (1≤ i≤ ar I(&g)) has type const or pred,
denoted τ(&g , i), where τ(&g , i) = pred if Xi ∈ P and
τ(&g , i) = const otherwise.

A HEX program consists of a set of assertions (rules) r
of form

a1 | · · · | ak ← b1, . . . , bm,not bm+1, . . . ,not bn. (1)

where each ai is an (ordinary) atom and each bj is either an
ordinary atom or an external atom, and k + n > 0.

The consequence (head) of r is H(r) = {a1, . . . , an}, the
premise (body) is B(r) = B+(r) ∪ notB−, where B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn}
is the negative body. For any rule, set of rules O, etc., let
A(O) and EA(O) be the set of all ordinary and external atoms
occurring in O, respectively.

a) Example: the following rule exemplifies how external
information is dealt together with classical logic assertions:

instability(O, I)← &stability[W,H](S),

object(O,W,H), I = 100− S.

The above rule specifies the instability of an object given its
stability. This latter value is computed externally by means
of the atom &stability[W,H](S), which intuitively processes
an object of width W and height H , returning its stability
S, a value ranging in the interval {0, . . . , 100}, describing a
measure of how an object is prone to fall in the current scene.

2) Semantics
The semantics of a HEX program P is defined via its

grounding grnd(P ) (over C), where the value of a ground
external atom &g [~p](~c) wrt. an interpretation I is given by
the value f&g(I, ~p,~c) of a k+l+1-ary Boolean oracle function
f&g [13]. The notion of satisfaction of (sets of) ground literals,
rules, programs etc. O wrt. an interpretation I (denoted I |= O,
i.e., I is a model of O) extends from ordinary logic programs
to HEX programs, by taking external atoms into account. That
is, for every ordinary atom a, I |= a if Ta ∈ I , and I 6|= a
if Fa ∈ I , and for every external atom a = &g [~p](~c), I |= a
if f&g(I, ~p,~c) = 1. For a rule r of form (1), I |= r if either
I |= ai for some 1 ≤ i ≤ k, I |= bj for some m < j ≤ n,
or I 6|= bj for some 1 ≤ j ≤ m. Finally, I |= P , if I |= r
for every r ∈ P . An answer set of a HEX program P is
any model I of the FLP-reduct P I of P wrt. I , given by
P I = {r ∈ grnd(P ) | I |= B(r)} [30], whose positive part
{Ta ∈ I} is subset-minimal, i.e., there exists no model I ′ of
P I such that {Ta ∈ I ′} ⊂ {Ta ∈ I}.2 The set of all answer
sets of P is denoted by AS(P ). Answer sets can be ranked
according to cost functions, which are expressed by declarative
optimization statements called weak constraints [31], [32].
Weak constraints express desiderata which should be satisfied.
Let us consider again the 3-coloring example of section III-A),
and imagine that we want to limit the number blue-colored
nodes; then, we might add the rule {:∼ col(X, blue).}
Weak constraints might also feature weights and levels for a
more thorough expression of optimization problems; for more
details, we refer the reader to the literature.

IV. THE ANGRY-HEX AGENT

Since logic-based reasoning is not specifically tailored to
reasoning with non-discrete domains, it is particularly chal-
lenging to deal with physics-based simulations. This technical
challenge can be coped with a hybrid system. Hence, we
propose a double-sided architecture, in which a “decision
making” side and a “simulation side” can be identified. The
decision support side is realized using a logic-based knowledge
base, while the simulation side is out-sourced to specialized
library code.

In particular, in the Angry-HEX Agent the decision making
process is carried out by computing the answer sets of a
number of HEX programs. Namely, the program PTact models

2The FLP-reduct is equivalent to the traditional Gelfond-Lifschitz reduct
for ordinary logic programs [10], but more attractive for extensions such as
aggregates or external atoms.
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the knowledge of the game within a single level, i.e. tactics
aspects; and PStrat models the strategical knowledge required
when deciding which level is convenient to be played. When
decisions have to be made, both PTact and PStrat are coupled
with respective sets of logical assertions ATact and AStrat,
where ATact describes the situation in the currently played
level, and AStrat describes the overall game status (scores,
etc.) Respectively, each answer set of PTact ∪ATact describes
a possible target object to be hit with a bird, while the answer
sets of PStrat ∪ AStrat describe which is the next level to
played.

It is worth mentioning that we did not make use of machine
learning techniques or other means for automatically obtaining
knowledge of the game. Tactics and strategy have been mod-
elled based on our own experience and experiments with the
game. The contribution of this paper is indeed focused on the
ease of knowledge modelling rather than automated learning,
which can be subject of future research.

A. Framework Architecture

The Framework architecture consists of several components
as shown in Fig. 1. The Angry Birds Extension works on
top of the Google Chrome browser, and allows to interact
with the game by offering a number of functionalities, such
as capturing the game window and executing actions (e.g.,
moving the mouse, clicking, zooming). The Vision Module
segments images and recognizes the minimum bounding rect-
angles of essential objects, their orientation, shape and type.
Objects include birds of various colors, pigs, the slingshot, and
bricks made of several materials and shapes. The Trajectory
Module estimates the parabolic trajectory that a bird would
follow, given a particular release point of the slingshot. The
AI Agent stub is supposed to include the artificial intelligence
programmed by participants of the competition, therefore it is
the core module implementing the decision making process.
The Game Server interacts with the Angry Birds Extension via
the Proxy module, which can handle commands like CLICK
(left click of the mouse), DRAG (drag the cursor from one
place to another), MOUSEWHEEL (scroll the mouse wheel),
and SCREENSHOT (capture the current game window). There
are many categories of messages (Configuration messages,
Query messages, In-Game action messages and Level selection
messages); the Server/Client Communication Port receives
messages from agents and sends back feedback after the server
executed the actions asked by the messages.

B. Other Improvements to the Framework Architecture

The framework utilities allow an agent to gather the infor-
mation needed to play the game levels; hence, we enhanced
some modules of the base architecture in order to fit our
needs. These parts are reported in Figure 1 as boxes filled with
slanted lines; in the following we discuss such improvements.
(i) Concerning the Vision Module, we added the possibility
of recognizing the orientation of blocks and the level terrain;
even though these features were later implemented in the
Framework Architecture by the competition organizers, we
preferred to stick to our version, for what some particular

Chrome Browser

Game ClientGame Server

Game Application
(chrome.angrybirds.com)

Angry Bird 

Chrome Extension

Proxy

Agent Manager
Server

Comms

Game Manager

Client

Comms

AI Agent Trajectory

Utils

Vision

DLVHEX

Fig. 1. The Framework Architecture. Slanted lines rectangles represents parts
of the framework modified by our team, while gray ones represent the modules
entirely developed by our team. Remaining modules were provided by the
Competition organizers.

vision tasks are concerned. (ii) In the Trajectory Module,
we added thickness to trajectories. A parabola is attributed a
thickness value proportional to the size of a bird: this feature
is helpful in order to exclude actually unreachable targets from
the set of possible hits, because of narrow passages and sharp
edges in objects’ structures. Also, while the original Trajectory
Module is capable of aiming at objects’ centroids only, we
can aim at several points taken on the left and on the top
face of objects (recall that birds are always shot from the left-
hand side of the screen). This has a two-fold benefit: first,
objects that have their centroid hidden by other objects are not
necessarily out of a possible hit, for instance, an object can
have its top face clearly reachable while its centroid point is
not; second, we can better choose the most convenient among a
set of hitting points. For instance, higher points on the left face
of an object are preferable because of an expectedly greater
domino effect. (iii) Waiting for the outcome of a shot can
be a time-consuming task: we added a quick-shot modality in
which the next shot is performed after a fixed time, although
there might still be slightly moving objects.

C. Our Agent

As already said, the core component of the framework Game
Client is the AI agent. Figure 2 shows an overview of the
Angry-HEX agent: the bot is composed of two main modules,
the Reasoner and the Memory.

The memory module provides the agent with some learning
mechanisms; in its current version, its first goal is to avoid that
Angry-HEX replays the same level in the same way twice (for
instance, by selecting a different initial target at the beginning
of a level). Such an approach results to be quite effective,
since changing the order of objects to be shot (even just the
first one) results in completely different outcomes in terms
of level evolution, and hence in future targeting choices and
possibly improved scores for the same level. The reasoner
module is in charge of deciding which action to perform. This
module features two different intelligence layers: the Tactic
layer, which plans shots and steers all decisions about “how”
to play a level, and the Strategy layer, which establishes in
what order the levels have to be faced; this layer decides also
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whether it is worth replaying, not necessarily in a consecutive
attempt, the same level more than once.

HexAgent Memory

Strategy

Reasoner

Reasoner

Tactic

Reasoner

Fig. 2. An overview of the Angry-HEX Agent Architecture.

Tactic layer. The tactic layer is declaratively implemented
using the DLVHEX solver, which computes optimal shots on
the basis of the information about the current scene and the
knowledge modeled within the HEX program PTact.

In particular, the tactic layer accesses and produces the
following information. Input data: scene information encoded
as a set of logic assertions ATact (position, size and orientation
of pigs, ice, wood and stone blocks, slingshot, etc. as obtained
by the Vision Module); a knowledge base PTact encoding
knowledge about the gameplay. It is worth noting that physics
simulation results and several other pieces of information
are accessed within PTact via the so-called external atom
construct. Output data: Answer sets of PTact ∪ ATact which
contain a dedicated predicate target describing the object
which has been chosen as a target and some information about
the required shot, like the type of trajectory (high or low) and
the hitting point (several points on the left and top face of the
target can be aimed at).

We describe next the knowledge modeled by PTact. A
shootable target T is defined as an object for which it exists
a direct and unobstructed trajectory from the slingshot to T .

For each shootable target T , we define a measure of the
estimated damage that can occur on all other objects if T
is hit. The specific behavior of each bird type is taken into
account (e.g. yellow birds are very effective on wood, etc.).
Also, the estimated damage takes into account the probability
of specific events. The higher the estimated damage function
value, the better the target.

Targets are ranked by taking first those which maximize the
estimated damage to pigs; estimated damage to other objects
is taken into account, on a lower priority basis, only for targets
which tie in the estimated damage for pigs.

The optimal answer set, containing, among its logical conse-
quences the optimal target Topt, is the answer set maximizing
the damage function (see section V-A).
Topt is then passed to the Trajectory Module. This latter

module computes the actual ballistic data needed in order to
hit Topt (see Sub-section IV-B for more details).

Next we show some typical assertions used in Angry-HEX;
for the sake of simplicity, we report a properly simplified
version of the rules, even though the general idea is respected.
In the following, with variable names of type T [i] and O[i]
we refer to trajectory types and objects, respectively.

target(O, T ) | nontgt(O, T )← shootable(O, T ).
}

Guess

← target(O1, ), target(O2, ), O1 6= O2.
← target( , T1), target( , T2), T1 6= T2.
target exists ← target( , ).
← not target exists.

Check

Intuitively, the first rule expresses that each shootable object
can be possibly aimed, while the constraints (the “check” part)
ensure that exactly one target is chosen.

Strategy layer. Upon completion of a level, the strategy
layer decides which level should be played next. Like for the
tactics layer we pursued a declarative ASP approach for the
implementation of the strategy layer. This module is modelled
by means of an ASP program, and the next level to be played
is conveniently extracted from its logical consequences. This
approach significantly improves the previous version of the
Angry-HEX agent, where the strategy was hard-wired in Java.
The ASP program PStrat contains appropriate modelling of
the following guidelines on the choice of the next level (here
order reflects priority). (1) Play each level once. (2) Play levels
for which the gap between our agent’s score and the current
best score is maximal (up to a limited number of attempts
k). (3) Play levels where Angry-HEX outperforms all other
agents, but its score minimally differs from the second best
result (up to a certain number of attempts k′). (4) If none of
the above rules is applicable, play a random level.

The program PStrat has several pieces of input data avail-
able, reflecting the history of the game with respect to the
played levels and scores achieved. Moreover, for each level,
the strategy layer keeps track of previously selected target
objects and, as mentioned, ensures the avoidance of repetition
of the same opening shot on a particular level, thus allowing
multiple approaches at solving the same level.

For example, the encoding of the first guideline in the ASP
environment is provided in the following two rules:

r1 : chooselevel(1)← timeslevelplayed(1, 0),

myscore(1, 0).

r2 : chooselevel(X)← timeslevelplayed(X, 0),

timeslevelplayed(Y,Z),

myscore(X, 0),

#succ(Y,X), Z ≥ 1.

Rule r1 schedules level 1 at the beginning of the game.
The rule r2 states that if a level X has not been yet
played (represented by predicates timeslevelplayed(X , 0 )
and myscore(X , 0 )), X comes next after Y (predicate
#succ(Y,X)), and Y has been played more than once
(timeslevelplayed(Y ,Z ), Z ≥ 1), then we choose the level
X as the next one to be scheduled (chooselevel(X )). For
instance, if the facts timeslevelplayed(4 , 0 ), myscore(4 , 0 ),
timeslevelplayed(3 , 1 ), are available due to the rules de-
scribed above, the fact chooselevel(4 ) will be deducted, and
then level 4 will be scheduled.
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V. REASONING WITH PHYSICS-BASED SIMULATION

The “simulation side” allows to access and manipulate
information typically not tailored to being dealt with a logic-
based decision support system; in particular, we employ ex-
ternal atoms constructs to perform physics simulations and
spatial preprocessing that help us to decide where to shoot.
This way, the actual physics simulation and the numeric
computations are hidden in the external atoms. The external
atoms summarize the results in a discrete form.

Given a current level state, external processing is used
for several tasks such as: determine if an object is stable
(i.e., prone to an easy fall); determine whether an object B
will fall when object A falls due to a structural collapse, or if
it can be pushed (i.e., A can make B fall by domino effect);
determine which objects intersect with a given trajectory of
a bird, and in which sequence; determine if an object O is
shootable (i.e., there exist a trajectory with O as the first
intersecting object); find the best trajectory for a White Bird
(white birds have a peculiar behavior and require a special
treatment).

In the following we present a more detailed description of
the simulation information we used. The data coming from the
simulation side is fed into the decision making side as input
assertions and by means of external atoms. Input assertions
approximately encode statical information which is available
a priori, like the current position of objects. External atoms
elaborate and produce information triggered by the decision
making side, like running a physics simulation and providing
its outcome in terms of the number of falling objects, etc.

Input assertions. The input assertions, in the form of
logical facts, encode information about the position of objects
in a scene and data needed for trajectory prediction, such as:

birdType(BT ). The type of bird that is currently on the
slingshot.

slingshot(X,Y,W,H). The size and position of the sling-
shot, used for trajectory prediction.

velocity(X). The current velocity scale. This is a value used
internally by the trajectory prediction module.

object(O,M,X, Y,W,H,A). There is one assertion of this
kind for each object in the scene. Objects are enumerated for
unique identification with ID O. Material M can be any of
ice,wood , stone, pig , ground . Location of centroid (X,Y ) of
the rotated rectangle denotes the position of the object, width
W and height H denote its size, and angle A denotes the
rotation of the object at hand.

External Atoms. The following information sources avail-
able to the HEX program are implemented as external atoms.
All external atoms are implemented using the physics software
Box2D, which has been chosen for being a well documented,
supported and regularly updated 2D physics engine. Box2D
is widely used for game development and indeed the same
Angry Birds game uses the library. All objects (objs) are
added to a 2D World that we will call W . A simulation is
then started on W , and the world is allowed to settle (as shown
in Fig. 5). Usually there are small gaps between the objects,
because of vision inaccuracies. Gaps need to be explicitly dealt
with, since it is desirable that an object should still be detected

Fig. 3. An illustration of low and high trajectories (solid and dashed line
respectively).

Fig. 4. An example of the output from the &next atom.

as resting on the other object even if there is a one pixel gap:
we therefore let the physics software proceed up to equilibrium
(i.e. until all the objects are at rest). After every time step of
the simulation we set all directional and angular velocities to
zero, to avoid objects gaining speed and crashing buildings,
and in order to keep the settled world as close to the original
as possible. Let W ∗ be the 2D scene computed from W as
above. In the following we assume that the mentioned external
atoms implicitly operate on W ∗.
&on top all [objs](Ou, Ol). Allows to browse the set of

couples of objects Ou, Ol for which Ou lies on top of object
Ol. This information is used assuming that if Ol does not exist,
Ou would likely fall. This is determined by checking whether
object Ou exerts a force on Ol , that is oriented downwards.
If so, we assume that Ou rests on Ol. In order to improve
performance, a graph of object dependencies is calculated on
the first call to this atom and, subsequently, cached answers
are served.

&next [D,TO, Tj , V, Sx, Sy, Sw, Sh, objs](I,O). For a bird
trajectory aimed at object D, of type Tj , &next allows to
inspect which objects are intersected by such a trajectory. Tj
can either be high or low (see Figure 3). V, Sx, Sy, Sw, Sh are
helper variables required by the trajectory prediction module.
V is the velocity scale, available from the velocity(. . . ) atom
and Sx, Sy, Sw, Sh are the slingshot position and dimension
values, available from the atom slingshot(. . . ). I is the
position of the object O in the sequence of objects that would
be hit in the trajectory Tj (e.g. in Figure 4 the object #2 has
position 1 and so on). The offset TO allows to choose from a
set possible hitting points on the exposed faces of O.
&shootable[O, Tj , V, Sx, Sy, Sw, Sh, B, objs](O,S, U).

This statement is true if object O is shootable with trajectory
type Tj , i.e. if there exists a parabola whose O is the first
intersected object from left to right. Most of the terms have
the same meaning of ones in the next atom. B identifies the
bird type, which could be one of red, yellow, blue, black,
white, for the thickness of a bird is used when determining
shootability. S and U are the best offsets positions over O
faces for the given trajectory and the given bird type.
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(a) (b)

Fig. 5. An example of a level (#4 from the Theme One of the original set
“Poached Eggs”) and the corresponding reconstruction made by our external
atoms using Box2D.

&firstbelow [P, objs](O). Denotes that the object with ID
O is directly below the object P , with no items in between.
We calculate this similarly to the &next atom, but instead of
a trajectory we use a straight upward ray from O to P . The
statement holds only if P is the first intersected object by such
a ray.
&stability [W,H](S). Denotes the stability S of an object

given its parameters W,H (width and height respectively). S
is the ratio (width/height)×50 rounded to the nearest integer
or 100 if it is greater than 100.
&canpush[objs](OA, OB). For each object OA, selects all

the objects OB that can be pushed by OA by a left-to-right
domino fall. The canpush relation between an object OA

an OB is computed by geometrically checking whether OA,
if rotated of 90 degrees rightwards, would overlap the OB

extension.
&clearsky [O, objs]. This atom is specific for white birds

and identifies whether the object O can be hit by the egg of a
white bird. That is, it is determined whether there is enough
space above O to let a White Bird to vertically release its egg
on the object.
&bestwhite[O, Tj , V, Sx, Sy, Sw, Sh, objs](Y ). Again, with

specific focus on White Birds behavior, this atom returns
the best height Y above the object O where to shoot, with
trajectory type Tj , in order to achieve a good shot. A shoot
with a White Bird on object O is considered optimal if it
actually hits O and maximizes the damage effects of the
“departure at 45 degrees” of the white bird in order to hit
other objects. The other terms have the same meaning as in
the &next atom.

The following are some examples of logic rules featuring
external atoms; pushDamage intuitively describes the likeli-
hood of damage when an object ObjB is “pushed” by an
adjacent object ObjA:

pushDamage(ObjB , PA, PB)← (2)
pushDamage(ObjA, , PA), PA > 0,

&canpush[ngobject ](ObjA,ObjB),

pushability(ObjB , PuB),

P = PA ∗ PuB/100.

&canpush works as described above, and allows to determine
whether ObjA can make ObjB fall by means of a domino
effect. It is worth noticing that &canpush , as well as other
atoms, uses geometric computations in a continuous space,
however the values returned are discrete, in this particular case
the result of the atom evaluation corresponds to the truth of a

set of propositional atoms. PB is a damage value estimate
expressed as an integer value ranging from 0 to 100, and
obtained as the product between the push damage PA of ObjA
and the pushability PuB of ObjB , normalized in the integer
range 0, . . . , 100. The pushability value for an object is defined
relying on empirical knowledge of the game, and defines how
much an object can be pushed in terms of its shape, stability
and material (e.g. long rods are easily pushable, etc.). Another
example follows.

eggShootable(Obj,X)← &clearsky [Obj, objects](), (3)
ngobject(Obj, ,X, , , , ).

The above rule checks if an object that is not the scene
ground surface (ngobject) can be hit by the egg released by
a White Bird. Again, like in rule 2, the computation in the
continuous space is entirely performed by the external atom.

A. The estimated damage function

The aim of the reasoning engine is to find the “best” object
to shot, the most appropriate tap time and “how” the object
should be hit (i.e., where to aim – to the center of the object, to
a long or a short side, etc.). In order to identify the best target
object, we attribute to each possible target a score Sc1 based
on the sum of damage likelihood for each pig and TNT box
in the scene, and a score Sc2 based on the sum of damages
of other objects. We select the target that maximizes Sc1, or,
in case of a tie, we maximize Sc2.

In turn, per each object, we attribute several damage type
quotas. In general, all the damage types are computed in
terms of causal event chains, in which damage is linearly
weighted by the likelihood of the event causing the damage.
The likelihood of an event is in turn obtained by the product
of fixed empirical values combined with the likelihood of
previous events in the causality chain. Damage types are
described next.

direct damage: the damage an object takes when hit by a
bird. Direct damage is calculated by examining the sequence of
objects that intersect the assumed trajectory using the &next
atom. This type of damage depends on the intrinsic damage
probability P of each object and on the energy loss E of the
bird (the farther an object is in the intersected object list the
lesser its direct damage value). The following is an example
of a rule to compute the direct damage:

directDamage(Obj, P,E)← target(Inner, Tr), (4)
next(Obj, 0, Outer, T, ),

objectType(Obj, T ), birdType(Bird),

damageProbability(Bird, T, P ),

energyLoss(Bird, T,E).

The next atom summarizes the external &next by means of
rules like the following:

next(X,Y, Z, T, C)← shootable(X,T,C, ), (5)
&next [X,C, T, V, Sx, Sy, Sw, Sh, objects](Y,Z),

velocity(V ), slingshot(Sx, Sy, Sw, Sh), T 6= egg.

In the above, the truth of an assertion next(X,Y, Z, T, C) can
be read as “X is the Y -th object in the trajectory T aiming at
object Z, with horizontal shift C from the object’s centroid”.
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push damage: the damage an object undergoes when pushed
by another object. It is calculated by building the already
mentioned chain of “pushes”, and depends on the intrinsic
pushability of an object and on the values coming from the
external atom &canpush . An example illustrating the role of
&canpush is provided in rule (2) above.

fall damage/fall desirability: the damage an object under-
goes when another object is destroyed below it. It is calculated
according to the values of the &on top all external atom, and
it depends on the intrinsic material fall importance PN of the
object and on all other kinds of damages (i.e. a fall damage
chain can be started by a direct or push damage chain). For
instance, in order to compute the damage of a ”falling” object
Obj one can specify the following rule:

fallDamage(Obj ,P)← (6)
pushDamage(RemovedObj , ,PR),PR ≥ 50 ,

&on top all [objects](Obj ,RemovedObj ),

objectType(Obj ,T ),materialFallImportance(T ,PN ),

P = PR ∗ PN /100 .

B. Modelling empirical knowledge

A good portion of empirical knowledge of the gameplay is
encoded in terms of logical assertions. As opposed to hard-
wiring this information into traditional code, this allows better
flexibility and easier fine-tuning and troubleshooting.

One type of such empirical knowledge comes into play
when static object damage values are combined in order to
form causal chains. Causal chains terminate using an energy
loss estimate; energy losses take into account the residual
energy available when the effects of a shot propagate from an
object to another. Also, we model the attitude of a particular
bird type towards destroying different material types. For in-
stance, the following assertions encode the damage probability
of an object depending on the object material and on the type
of bird hitting the object at hand. They correspond to intuitive
statements like “Blue birds are very good on ice blocks”:

damageProbability(blue,wood , 10).
damageProbability(yellow ,wood , 100).
damageProbability(blue, ice, 100).
damageProbability(yellow , ice, 10).

Other empirical knowledge includes the following.
damage probability: for each couple (Bird Type, Material)

we encode the damage an object made of Material receive
when hit by Bird Type.

energy loss: for each couple (Bird Type, Material), we
encode the reduction of energy a bird of Bird Type experiences
when it destroys an object made of Material.

pushability: it denotes how “easy” is an object made of
a given material to be pushed, when other conditions and
features (i.e., shape) are fixed. For instance, stones react less
to pushes than wood.

material fall importance: the damage an object made of a
given material can cause when it falls, under other conditions
equal, like size. For instance, stones are assumed to have
greater density.

A second group of empirical gameplay information comes
into play when dealing with trajectory prediction. The Trajec-
tory prediction module, given in input some target coordinates,

considers several “high” (aiming at a vertical fall to an object)
and several “low” trajectories (aiming at a horizontal hit on
the left-hand face of an object), but returns only two of both
categories. Many candidate trajectories are discarded because
of obstructions before the target point. This discretization is
done in order to reduce the space of possibilities which the
reasoning module has to take decisions on. This approximation
can be considered acceptable, and we indeed did not experi-
mented appreciable differences in the effects of two different
parabolas of same category.

Trajectory prediction is treated differently depending on the
type of bird that is on the slingshot at reasoning time. For
what red, yellow, blue and black birds are concerned, we use
a normal “parabolic” trajectory. This trajectory aims at the
objects’ left face if a low trajectory is selected while the top
face is aimed at if an high trajectory is chosen. Three hitting
points are possible for each face, for a total of 12 possible
trajectories per object.

As for tapping time, we tap yellow birds relatively close
to the target object, so to maximize their acceleration effect
without compromising the parabolic trajectory; blue birds are
tapped a bit earlier in order to maximize their “spread” effect,
while black birds are tapped right on target so to maximize
their explosion effect.

The white bird receives special treatment: we first try to
identify which objects can be hit by the vertical fall of the egg
that a white bird can release with a tap. We then choose the
best point where the bird should release the egg itself, in terms
of side effects, since the white bird continues its trajectory after
laying its egg, thus creating more damage chains.

VI. RESULTS/BENCHMARKS

In this section we discuss experiments and performance.

A. Competition outcomes and Third party benchmarks

Angry-HEX performed quite well in the 2013 and 2014
Angry Birds AI Competitions. Our team participated also in
2012, but with two preliminary agents, that were also largely
different from the herein presented Angry-HEX agent. Our
agent reached semifinals in 2013 (being the best one during
all previous rounds) and quarterfinals in 2014.3

The Organizing Committee performed also some bench-
marks over the participating agents in the same settings of the
competition, in order to allow participants to easily compare
the performance of their agents with others. The benchmarks
were run on the first 21 levels of the freely available Poached
Eggs levels, and each agent had a time budget of 63 minutes,
corresponding to an average of 3 minutes per level. Table I
of Supplementary Material4 shows the results of the Bench-
marks executed by the organizers. Teams with names in bold
participated in the 2014 Competition, the others in the 2013
Competition. Bold numbers represent high-scores of each level
among all participants.

3For official results see public data available at https://goo.gl/aP460U and
https://goo.gl/V0gVse (Table II and III in Supplementary Material).

4Publicly available at https://goo.gl/y72QMP
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Fig. 6. (a) The average percentage of time spent in each “main task” by our agent. Solid bars account for tasks common to all the agents (i.e. tasks that
are performed by using functionalities provided by the organizer’s framework); Slanted lines bars account for the specific tasks of our agent, performed using
our reasoning modules. (b) The time spent by the Tactic layer with respect to the number of objects in the scene.

In the after-show benchmarks of 2013, Angry-HEX per-
formed better than all other participants. Our score was very
good in many levels (reaching the 3 stars score), even if only
in one level we had the best score among all the participants.
In the after-show benchmarks of 2014, Angry-HEX performed
better than most of the other participants that had outperformed
it in the quarterfinals. In some levels we performed similarly
to the 2013 (usually with a slightly lower score); however,
in some other we performed much better. Similarly to what
happened in the previous edition, in 2014 no agent was able
to perform better than others in all the levels, and also this
year the best scores of each level was done mostly by the
agents in the center/bottom part of the classification. The fact
that the scores in each level are typically distributed over
many participants that are listed below Angry-HEX in rankings
might hint that the strategies implemented in other agents
are tailored to specific types of levels, but generalize less, or
worse, than the one of Angry-HEX. A proper deeper analysis
of the levels where Angry-HEX was not the best this year
could be a fruitful approach for defining special cases in its
tactics. It is worth to notice that the agents almost always reach
a 3-star score, that represent a very good score to achieve
for a human player. However, to date, the “Man vs Machine
Challenge”, in which each year human players compete with
the winners of the Angry Birds AI Competitions, was always
won by human players. Eventually, it is important to notice
that the differences between our results in these 2 years are
very little, and are mostly due to a large restructuring of the
agent code, which has been performed in 2014 in order to
make it more extensible, flexible and easy to install. Therefore,
we expect to take advantage of this work in the forthcoming
competition editions.

Remark. At the time of printing, we just received the
results of the 2015 Competition; our agent ranked 2nd overall.
Complete results are reported in the Supplementary Material,
and confirm what discussed above.

B. Tests on time performance

The tactic layer is repeatedly prompted for deciding the
chosen target on the current scene: reducing reasoning times
is crucial in order to better exploit the allowed time and

improving scores. We recall that the core of the tactic layer
is an evaluation machinery carried over the logical knowledge
base PTact, coupled with a set of assertions ATact that describe
the current scene; hence, both the size of ATact and PTact

affects its performance. Another important performance factor
is the number and duration of calls to external libraries.

The size of ATact is directly proportional to the number
of objects in the current scene: there is one logical statement
for each object in the scene, plus a constant number of facts
encoding the slingshot position, the current bird type, and
the scale factor of the scene, respectively. PTact, instead,
is a fixed knowledge base featuring about three hundred
statements, made both of rules and facts that encode the
domain knowledge. For what calls to external libraries are
concerned, these were optimized with the aim of reducing the
number of possibly redundant computations.5

Due to the unavailability to the public of the levels used
in the official Angry birds AI Competition, our comparative
studies of actual performance are limited to the publicly known
first 21 levels of the “Poached Eggs” level set,6 though they do
not explicitly stress reasoning capabilities of artificial agents.
The experiments were conducted on a virtual machine running
Ubuntu 14.04.2 LTS, containing 2-cores of a 2.29 GHz Quad-
core Processor and 3 GB of RAM, running standalone in its
hypervisor. First, we noted that the reasoning time was a small
fraction of the overall time spent for each shot; indeed, most
of the time is spent by animations and the simulation of the
shot itself, as shown in Fig. 6a.

Fig. 6b depicts the number of objects in the scene of a
level against the time spent by the reasoning tasks within
the Tactic Layer, on that level. It is worth noting that the
number of objects in a level is not a direct measure of “how
hard” is a level from a player perspective: this depends on
the materials, the shapes, the (relative) positions, the way pigs
are sheltered, and so on. The number of objects in a scene is
however proportional to the size of data given in input to the

5Furthermore, the burden of repeated identical calls to external sources has
been mitigated by caching.

6“Poached Eggs” is the first level set available in the publicly downloadable
version of the game, which reflect the competition setting in qualitative terms
(type of materials, shape of objects and type of birds available), and are
customarily used by the organizers in the after-show benchmarks
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Tactic Layer. We found some direct proportionality between
time and the number of objects in a scene, but, interestingly,
the system seems to scale fairly well with respect to the latter.
The fraction of reasoning time dedicated to external atom calls
did not show a clear trend: it averaged around 61% of the total
reasoning time, with low and high peaks of 30% and 90%
respectively.

We also focused in measuring the performance of the Tactic
Layer when changing tactics knowledge bases. In order to
compare the impact on time performance, when changing
tactics, we measured the reasoning time of three, incrementally
better in terms of gameplay, different reasoning knowledge
bases. The cactus plot in Figure 7 shows the performance of
the Tactic Layer (i.e. the time taken to take a decision given
an input scene already processed by the Vision module), for
all the runs needed for completing the Poached Eggs levels
(54 shots in total); in order to give a clearer glimpse at the
resulting trends the data series were sorted by execution time.
We experimented with three different tactics: directDamage (a
knowledge base of 133 logic assertions), in which only esti-
mated damage by direct hits is maximized; pushDamage (143
assertions), in which we add the potential damage of domino
effect, and fallDamage (155 assertions), which corresponds to
the tactics participating to the Competition, in which we add
also damage due by the vertical fall of objects. It is easy to
see that the time differences are not substantial, especially
if compared to the time cost of other evaluation quotas
(vision, gameplay, etc.) with fallDamage clearly asking for a
somewhat larger price in terms of time consumption. We can
conclude that, when designing knowledge bases, a fairly large
degree of freedom in designing sophisticated tactics can be
enjoyed without being worried by a loss in time performance.
External calls were a key-point for efficiency: the strategy of
outsourcing several tasks outside the decision making core
proved to be useful. As a matter of fact, the performance of one
earlier attempt of implementing an ASP-only agent capable of
playing a real-time game was far from satisfactory [33], given
the fairly limited efficiency of ASP solvers; we believe that
implementing this AI player using ASP (with no external calls
and/or a “process” stage), if feasible at all, would not have fit
with the real-time requirements of the game.
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Fig. 7. Reasoning times for different tactics knowledge bases, measured on
the first 21 levels of “Poached Eggs”

C. Impact of this work from the knowledge representation
and reasoning perspective.

The setting of the Angry Birds game has two particular
aspects: first, Angry Birds can be seen as a game which lies
somehow between a real-time game and a turn-based one,
allowing a fairly large time window for deciding the next shot;
second, at each step, the tactic layer must explore a search tree
whose size is reasonably small and polynomially proportional
to the number of objects in the current scene.

The above setting can be lifted to a variety of other
contexts in which (a) there is an acceptable time window
available for reasoning, and (b) the set of actions that can
be taken by the agent at hand is fairly small, do not underly
an exponentially larger search space, and no look-ahead of
arbitrary depth on future scenarios is required (or convenient)
to be performed. This generalized context covers e.g. planning
in slowly evolving environments (e.g. robot and space probes),
automated room cleaning, semi-interactive turn-based games,
etc. In this respect, the Angry-HEX agent constitutes a good
proof-of-concept showing how ASP, if properly deployed in
a hybrid architecture and extended with procedural aids, not
only qualifies as an effective tool for implementing near real-
time solutions while enjoying the advantages of declarative
approaches, but witnesses that the realizability of real-time
applications is much closer.

VII. CONCLUSION

The Angry Birds game, and hence the study, design and
implementation of this work, led to face several challenges
for knowledge representation and reasoning, and artificial
intelligence in general; eventually, we can make some consid-
erations. First of all, it looks clear that, in order to accomplish
complex jobs/tasks, a monolithic approach should be discarded
in favour of more diversified ones, consisting of convenient
integrations of various, if not many, methods and technologies.
In this respect, any bundle of KRR formalism/system of use,
besides expressive power, suitable syntax/semantics and good
efficiency/performance, must feature proper means for easing
such integration at all levels, from within the language to the
actual implementation. The work carried out by the scientific
community in the latest years and the effective use of ASP
in real-world and industry-level applications [34], suggest
Answer Set Programming as a powerful tool in such scenarios;
and the present work confirms this idea. Also performances do
not constitute a big issue, as discussed in section VI-B.

As for the original goal of Angry-HEX, even though from
the benchmarks and the results of the competitions our ap-
proach seems quite effective and general, we further identified
several aspects in which Angry-HEX can be improved. Most
importantly, we aim at introducing the planning of multiple
shots based on the order of birds that must be shot (it is
worth remembering that the type and number of birds, as well
as the order the player have to shoot them, is given at the
beginning of each level); we think that this might prove to be
useful especially when dealing with complex levels. A more
accurate study of the interaction between objects, and a more
detailed implementation of the different shapes of the objects
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are also under consideration. Furthermore, we aim to not affect
reasoning time when introducing improvements.
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